1932

Abstract

This review focuses on a recent class of path-integral-based methods for the simulation of nonadiabatic dynamics in the condensed phase using only classical molecular dynamics trajectories in an extended phase space. Specifically, a semiclassical mapping protocol is used to derive an exact, continuous, Cartesian variable path-integral representation for the canonical partition function of a system in which multiple electronic states are coupled to nuclear degrees of freedom. Building on this exact statistical foundation, multistate ring polymer molecular dynamics methods are developed for the approximate calculation of real-time thermal correlation functions. The remarkable promise of these multistate ring polymer methods, their successful applications, and their limitations are discussed in detail.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082620-021809
2022-04-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082620-021809.html?itemId=/content/journals/10.1146/annurev-physchem-082620-021809&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Evans RFL, Fan WJ, Chureemart P, Ostler TA, Ellis MOA, Chantrell RW 2014. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26:10103202
    [Google Scholar]
  2. 2. 
    Hammes-Schiffer S. 2001. Theoretical perspectives on proton-coupled electron transfer reactions. Acc. Chem. Res. 34:4273–81
    [Google Scholar]
  3. 3. 
    Born M, Oppenheimer R. 1927. Zur Quantentheorie der Molekeln [On the quantum theory of molecules]. Ann. Phys. 389:20457–84
    [Google Scholar]
  4. 4. 
    Makri N, Makarov DE. 1995. Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J. Chem. Phys. 102:114611–18
    [Google Scholar]
  5. 5. 
    Beck MH, Jäckle A, Worth GA, Meyer HD. 2000. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324:11–105
    [Google Scholar]
  6. 6. 
    Wang H, Thoss M 2003. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119:31289–99
    [Google Scholar]
  7. 7. 
    Bonfanti M, Worth GA, Burghardt I 2020. Multi-configuration time-dependent Hartree methods: from quantum to semiclassical and quantum-classical. Quantum Chemistry and Dynamics of Excited States L González, R Lindh 383–411 Hoboken, NJ: Wiley
    [Google Scholar]
  8. 8. 
    Greene SM, Batista VS. 2017. Tensor-train split-operator Fourier transform (TT-SOFT) method: multidimensional nonadiabatic quantum dynamics. J. Chem. Theory Comput. 13:94034–42
    [Google Scholar]
  9. 9. 
    Richings G, Polyak I, Spinlove K, Worth G, Burghardt I, Lasorne B. 2015. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 34:2269–308
    [Google Scholar]
  10. 10. 
    Curchod BF, Martínez TJ. 2018. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118:73305–36
    [Google Scholar]
  11. 11. 
    Meyer HD, Miller WH. 1979. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70:73214–23
    [Google Scholar]
  12. 12. 
    Stock G, Thoss M. 1997. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78:4578–81
    [Google Scholar]
  13. 13. 
    Thoss M, Stock G. 1999. Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59:164–79
    [Google Scholar]
  14. 14. 
    Miller WH. 2001. The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105:132942–55
    [Google Scholar]
  15. 15. 
    Sun X, Wang H, Miller WH 1998. Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation. J. Chem. Phys. 109:177064–74
    [Google Scholar]
  16. 16. 
    Wang H, Sun X, Miller WH 1998. Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys. 108:239726–36
    [Google Scholar]
  17. 17. 
    Wang H, Song X, Chandler D, Miller WH 1999. Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: spin-boson problem with Debye spectral density. J. Chem. Phys. 110:104828–40
    [Google Scholar]
  18. 18. 
    Ananth N, Venkataraman C, Miller WH. 2007. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation. J. Chem. Phys. 127:8084114
    [Google Scholar]
  19. 19. 
    Miller WH. 2009. Electronically nonadiabatic dynamics via semiclassical initial value methods. J. Phys. Chem. A 113:81405–15
    [Google Scholar]
  20. 20. 
    Liu J. 2015. Recent advances in the linearized semiclassical initial value representation/classical Wigner model for the thermal correlation function. Int. J. Quantum Chem. 115:11657–70
    [Google Scholar]
  21. 21. 
    Church MS, Hele TJH, Ezra GS, Ananth N 2018. Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation. J. Chem. Phys. 148:10102326
    [Google Scholar]
  22. 22. 
    Cotton SJ, Miller WH. 2016. The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes. J. Chem. Theory Comput. 12:3983–91
    [Google Scholar]
  23. 23. 
    Cotton SJ, Miller WH. 2019. Trajectory-adjusted electronic zero point energy in classical Meyer-Miller vibronic dynamics: symmetrical quasiclassical application to photodissociation. J. Chem. Phys. 150:19194110
    [Google Scholar]
  24. 24. 
    Cotton SJ, Miller WH. 2019. A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states. J. Chem. Phys. 150:10104101
    [Google Scholar]
  25. 25. 
    Makri N. 2015. Quantum-classical path integral: a rigorous approach to condensed phase dynamics. Int. J. Quantum Chem. 115:181209–14
    [Google Scholar]
  26. 26. 
    Kapral R. 2006. Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem. 57:129–57
    [Google Scholar]
  27. 27. 
    Huo P, Coker DF. 2012. Semi-classical path integral non-adiabatic dynamics: a partial linearized classical mapping Hamiltonian approach. Mol. Phys. 110:9–101035–52
    [Google Scholar]
  28. 28. 
    Agostini F, Abedi A, Suzuki Y, Min SK, Maitra NT, Gross EKU. 2015. The exact forces on classical nuclei in non-adiabatic charge transfer. J. Chem. Phys. 142:8084303
    [Google Scholar]
  29. 29. 
    Tully JC, Preston RK. 1971. Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2. J. Chem. Phys. 55:2562–72
    [Google Scholar]
  30. 30. 
    Tully JC. 1998. Mixed quantum-classical dynamics. Faraday Discuss 110:407–19
    [Google Scholar]
  31. 31. 
    Wang L, Akimov A, Prezhdo OV 2016. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7:112100–12
    [Google Scholar]
  32. 32. 
    Subotnik JE, Jain A, Landry B, Petit A, Ouyang W, Bellonzi N. 2016. Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67:387–417
    [Google Scholar]
  33. 33. 
    Tully JC. 2012. Perspective: nonadiabatic dynamics theory. J. Chem. Phys. 137:2222A301
    [Google Scholar]
  34. 34. 
    Hammes-Schiffer S, Tully JC 1995. Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics of infrequent events. J. Chem. Phys. 103:198513–27
    [Google Scholar]
  35. 35. 
    Cao J, Voth GA. 1993. A new perspective on quantum time correlation functions. J. Chem. Phys. 99:1210070–73
    [Google Scholar]
  36. 36. 
    Cao J, Voth GA. 1994. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. J. Chem. Phys. 100:75106–17
    [Google Scholar]
  37. 37. 
    Jang S, Voth GA. 1999. A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J. Chem. Phys. 111:62371–84
    [Google Scholar]
  38. 38. 
    Voth GA. 2007. Path-integral centroid methods in quantum statistical mechanics and dynamics. Adv. Chem. Phys. 93:135–218
    [Google Scholar]
  39. 39. 
    Craig IR, Manolopoulos DE 2004. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys. 121:83368–73
    [Google Scholar]
  40. 40. 
    Craig IR, Manolopoulos DE 2005. Chemical reaction rates from ring polymer molecular dynamics. J. Chem. Phys. 122:8084106
    [Google Scholar]
  41. 41. 
    Habershon S, Manolopoulos DE, Markland TE, Miller TF III. 2013. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem. 64:387–413
    [Google Scholar]
  42. 42. 
    Feynman RP, Hibbs AR. 1965. Quantum Mechanics and Path Integrals Mineola, NY: Dover Publ, 1st ed..
  43. 43. 
    Chandler D, Wolynes PG 1981. Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74:74078–95
    [Google Scholar]
  44. 44. 
    Miller TF III. 2008. Isomorphic classical molecular dynamics model for an excess electron in a supercritical fluid. J. Chem. Phys. 129:19194502
    [Google Scholar]
  45. 45. 
    Menzeleev AR, Miller TF III. 2010. Ring polymer molecular dynamics beyond the linear response regime: excess electron injection and trapping in liquids. J. Chem. Phys. 132:3034106
    [Google Scholar]
  46. 46. 
    Menzeleev AR, Ananth N, Miller TF III. 2011. Direct simulation of electron transfer using ring polymer molecular dynamics: comparison with semiclassical instanton theory and exact quantum methods. J. Chem. Phys. 135:7074106
    [Google Scholar]
  47. 47. 
    Boekelheide N, Salomón-Ferrer R, Miller TF III. 2011. Dynamics and dissipation in enzyme catalysis. PNAS 108:3916159–63
    [Google Scholar]
  48. 48. 
    Kenion RL, Ananth N. 2016. Direct simulation of electron transfer in the cobalt hexammine(II/III) self-exchange reaction. Phys. Chem. Chem. Phys. 18:3726117–24
    [Google Scholar]
  49. 49. 
    Kretchmer JS, Miller TF III. 2017. Kinetically-constrained ring-polymer molecular dynamics for non-adiabatic chemistries involving solvent and donor–acceptor dynamical effects. Faraday Discuss 195:191–214
    [Google Scholar]
  50. 50. 
    Ananth N. 2013. Mapping variable ring polymer molecular dynamics: a path-integral based method for nonadiabatic processes. J. Chem. Phys. 139:12124102
    [Google Scholar]
  51. 51. 
    Duke JR, Ananth N. 2015. Simulating excited state dynamics in systems with multiple avoided crossings using mapping variable ring polymer molecular dynamics. J. Phys. Chem. Lett. 6:214219–23
    [Google Scholar]
  52. 52. 
    Pierre S, Duke JR, Hele TJ, Ananth N. 2017. A mapping variable ring polymer molecular dynamics study of condensed phase proton-coupled electron transfer. J. Chem. Phys. 147:23234103
    [Google Scholar]
  53. 53. 
    Ranya S, Ananth N. 2020. Multistate ring polymer instantons and nonadiabatic reaction rates. J. Chem. Phys. 152:11114112
    [Google Scholar]
  54. 54. 
    Eklund EC, Ananth N. 2021. Investigating the stability and accuracy of a classical mapping variable Hamiltonian for nonadiabatic quantum dynamics. Regul. Chaotic Dyn. 26:2131–46
    [Google Scholar]
  55. 55. 
    Richardson JO, Thoss M. 2013. Nonadiabatic ring-polymer molecular dynamics. J. Chem. Phys. 139:3031102
    [Google Scholar]
  56. 56. 
    Richardson JO, Meyer P, Pleinert MO, Thoss M. 2017. An analysis of nonadiabatic ring-polymer molecular dynamics and its application to vibronic spectra. Chem. Phys. 482:124–34
    [Google Scholar]
  57. 57. 
    Chowdhury SN, Huo P. 2019. State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics. J. Chem. Phys. 150:24244102
    [Google Scholar]
  58. 58. 
    Chowdhury SN, Huo P. 2021. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. J. Chem. Phys. 154:12124124
    [Google Scholar]
  59. 59. 
    Chowdhury SN, Huo P. 2017. Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations. J. Chem. Phys. 147:21214109
    [Google Scholar]
  60. 60. 
    Domcke W, Yarkony DR. 2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52
    [Google Scholar]
  61. 61. 
    Liu J. 2016. A unified theoretical framework for mapping models for the multi-state Hamiltonian. J. Chem. Phys. 145:20204105
    [Google Scholar]
  62. 62. 
    Runeson JE, Richardson JO. 2019. Spin-mapping approach for nonadiabatic molecular dynamics. J. Chem. Phys. 151:4044119
    [Google Scholar]
  63. 63. 
    Polley K, Loring RF. 2020. Spectroscopic response theory with classical mapping Hamiltonians. J. Chem. Phys. 153:20204103
    [Google Scholar]
  64. 64. 
    Huo P, Miller TF III, Coker DF. 2013. Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics. J. Chem. Phys. 139:15151103
    [Google Scholar]
  65. 65. 
    Meyer HD, Miller WH. 1979. Classical models for electronic degrees of freedom: derivation via spin analogy and application to F*+H2→F+H2. J. Chem. Phys. 71:52156–69
    [Google Scholar]
  66. 66. 
    Nakamura H, Truhlar DG. 2001. The direct calculation of diabatic states based on configurational uniformity. J. Chem. Phys. 115:2210353
    [Google Scholar]
  67. 67. 
    Baer M. 2002. Introduction to the theory of electronic non-adiabatic coupling terms in molecular systems. Phys. Rep. 358:275–142
    [Google Scholar]
  68. 68. 
    Nakamura H, Truhlar DG. 2002. Direct diabatization of electronic states by the fourfold way. II. Dynamical correlation and rearrangement processes. J. Chem. Phys. 117:125576–93
    [Google Scholar]
  69. 69. 
    Wu Q, Van Voorhis T. 2006. Constrained density functional theory and its application in long-range electron transfer. J. Chem. Theory Comput. 2:3765–74
    [Google Scholar]
  70. 70. 
    Sirjoosingh A, Hammes-Schiffer S. 2011. Diabatization schemes for generating charge-localized electron-proton vibronic states in proton-coupled electron transfer systems. J. Chem. Theory Comput. 7:92831–41
    [Google Scholar]
  71. 71. 
    Subotnik JE, Alguire EC, Ou Q, Landry BR, Fatehi S. 2015. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Acc. Chem. Res. 48:51340–50
    [Google Scholar]
  72. 72. 
    Yarkony DR, Xie C, Zhu X, Wang Y, Malbon CL, Guo H. 2019. Diabatic and adiabatic representations: electronic structure caveats. Comput. Theor. Chem. 1152:41–52
    [Google Scholar]
  73. 73. 
    Mao Y, Montoya-Castillo A, Markland TE. 2020. Excited state diabatization on the cheap using DFT: photoinduced electron and hole transfer. J. Chem. Phys. 153:24244111
    [Google Scholar]
  74. 74. 
    Richings GW, Habershon S. 2020. A new diabatization scheme for direct quantum dynamics: Procrustes diabatization. J. Chem. Phys. 152:15154108
    [Google Scholar]
  75. 75. 
    Trotter HF. 1959. On the product of semi-groups of operators. Proc. Am. Math. Soc. 10:4545–51
    [Google Scholar]
  76. 76. 
    Suzuki M. 1976. Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51:2183–90
    [Google Scholar]
  77. 77. 
    Chandler D. 1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:62959–70
    [Google Scholar]
  78. 78. 
    Parrinello M, Rahman A. 1984. Study of an F center in molten KCl. J. Chem. Phys. 80:2860
    [Google Scholar]
  79. 79. 
    Ananth N, Miller TF III. 2010. Exact quantum statistics for electronically nonadiabatic systems using continuous path variables. J. Chem. Phys. 133:23234103
    [Google Scholar]
  80. 80. 
    Chandler D. 1987. Introduction to Modern Statistical Mechanics Oxford, UK: Oxford Univ. Press
  81. 81. 
    Ceperley DM, Jacucci G. 1987. Calculation of exchange frequencies in bcc 3He with the path-integral Monte Carlo method. Phys. Rev. Lett. 58:161648–51
    [Google Scholar]
  82. 82. 
    Kubo R. 1957. Statistical mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12:6570–86
    [Google Scholar]
  83. 83. 
    Zwanzig R. 1965. Time-correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem. 16:67–102
    [Google Scholar]
  84. 84. 
    Müller U, Stock G. Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics. II. Application to nonadiabatic processes. J. Chem. Phys. 111:77
    [Google Scholar]
  85. 85. 
    Golosov AA, Reichman DR. 2001. Classical mapping approaches for nonadiabatic dynamics: short time analysis. J. Chem. Phys. 114:31065–74
    [Google Scholar]
  86. 86. 
    Habershon S, Manolopoulos DE. 2009. Zero point energy leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water. J. Chem. Phys. 131:24244518
    [Google Scholar]
  87. 87. 
    Hele TJ, Althorpe SC. 2013. Derivation of a true (t → 0+) quantum transition-state theory. I. Uniqueness and equivalence to ring-polymer molecular dynamics transition-state-theory. J. Chem. Phys. 138:8084108
    [Google Scholar]
  88. 88. 
    Hele TJ, Althorpe SC. 2013. Derivation of a true (t → 0+) quantum transition-state theory. II. Recovery of the exact quantum rate in the absence of recrossing. J. Chem. Phys. 139:8084115
    [Google Scholar]
  89. 89. 
    Althorpe SC. 2021. Path-integral approximations to quantum dynamics. Eur. Phys. J. B 94:155
    [Google Scholar]
  90. 90. 
    Hele TJ. 2013. An electronically non-adiabatic generalization of ring polymer molecular dynamics. arXiv:1308.3950 [physics.chem-ph]
  91. 91. 
    Hele TJ, Willatt MJ, Muolo A, Althorpe SC 2015. Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics. J. Chem. Phys. 142:19191101
    [Google Scholar]
  92. 92. 
    Hele TJ, Ananth N. 2016. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation. Faraday Discuss. 195:269–89
    [Google Scholar]
  93. 93. 
    Hele TJ, Willatt MJ, Muolo A, Althorpe SC 2015. Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics. .” J. Chem. Phys. 142:13134103
    [Google Scholar]
  94. 94. 
    Welsch R, Song K, Shi Q, Althorpe SC, Miller TF III. 2016. Non-equilibrium dynamics from RPMD and CMD. J. Chem. Phys. 145:20204118
    [Google Scholar]
  95. 95. 
    Bonella S, Coker DF. 2003. Semiclassical implementation of the mapping Hamiltonian approach for nonadiabatic dynamics using focused initial distribution sampling. J. Chem. Phys. 118:104370–85
    [Google Scholar]
  96. 96. 
    Colbert DT, Miller WH. 1998. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96:31982–91
    [Google Scholar]
  97. 97. 
    Steele RP, Zwickl J, Shushkov P, Tully JC. 2011. Mixed time slicing in path integral simulations. J. Chem. Phys. 134:7074112
    [Google Scholar]
  98. 98. 
    Coronado EA, Xing J, Miller WH 2001. Ultrafast non-adiabatic dynamics of systems with multiple surface crossings: a test of the Meyer–Miller Hamiltonian with semiclassical initial value representation methods. Chem. Phys. Lett. 349:5–6521–29
    [Google Scholar]
  99. 99. 
    Tao X, Shushkov P, Miller TF III. 2019. Simple flux-side formulation of state-resolved thermal reaction rates for ring-polymer surface hopping. J. Phys. Chem. A 123:133013–20
    [Google Scholar]
  100. 100. 
    Menzeleev AR, Bell F, Miller TF III. 2014. Kinetically constrained ring-polymer molecular dynamics for non-adiabatic chemical reactions. J. Chem. Phys. 140:6064103
    [Google Scholar]
  101. 101. 
    Kretchmer JS, Miller TF III. 2016. Tipping the balance between concerted versus sequential proton-coupled electron transfer. Inorg. Chem. 55:31022–31
    [Google Scholar]
  102. 102. 
    Duke JR, Ananth N. 2016. Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates. Faraday Discuss 195:253–68
    [Google Scholar]
  103. 103. 
    Mandal A, Yamijala SS, Huo P. 2018. Quasi-diabatic representation for nonadiabatic dynamics propagation. J. Chem. Theory Comput. 14:41828–40
    [Google Scholar]
  104. 104. 
    Zhou W, Mandal A, Huo P. 2019. Quasi-diabatic scheme for nonadiabatic on-the-fly simulations. J. Phys. Chem. Lett. 10:227062–70
    [Google Scholar]
  105. 105. 
    Habershon S, Fanourgakis GS, Manolopoulos DE. 2008. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water. J. Chem. Phys. 129:7074501
    [Google Scholar]
  106. 106. 
    Horikoshi A, Kinugawa K. 2005. Effective potential analytic continuation approach for real time quantum correlation functions involving nonlinear operators. J. Chem. Phys. 122:17174104
    [Google Scholar]
  107. 107. 
    Eklund EC, Ananth N. 2020. MAVARIC: a C++ program used to compute Mapping Variable Ring Polymer Molecular Dynamics correlation functions. MAVARIC Version 1.0.0. https://doi.org/10.5281/zenodo.3900570
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082620-021809
Loading
/content/journals/10.1146/annurev-physchem-082620-021809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error