1932

Abstract

Photoelectron spectroscopy combined with quantum chemistry has been a powerful approach to elucidate the structures and bonding of size-selected boron clusters (B), revealing a prevalent planar world that laid the foundation for borophenes. Investigations of metal-doped boron clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The current review focuses on recent advances in transition-metal-doped boron clusters, including the discoveries of metal-boron multiple bonds and metal-doped novel aromatic boron clusters. The study of the RhB and RhBO clusters led to the discovery of the first quadruple bond between boron and a transition-metal atom, whereas a metal-boron triplebond was found in ReBO and IrBO. The ReB cluster was shown to be the first metallaborocycle with Möbius aromaticity, and the planar ReB cluster was found to exhibit aromaticity analogous to metallabenzenes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082820-113041
2022-04-20
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082820-113041.html?itemId=/content/journals/10.1146/annurev-physchem-082820-113041&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lipscomb WN. 1977. The boranes and their relatives. Science 196:1047–55
    [Google Scholar]
  2. 2. 
    Jemmis ED, Prasad DLVK. 2006. Icosahedral B12, macropolyhedral boranes, β-rhombohedral boron and boron-rich solids. J. Solid State Chem. 179:2768–74
    [Google Scholar]
  3. 3. 
    Albert B, Hillebrecht H 2009. Boron: elementary challenge for experimenters and theoreticians. Angew. Chem. Int. Ed. 48:8640–68
    [Google Scholar]
  4. 4. 
    Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM et al. 2009. Ionic high-pressure form of elemental boron. Nature 457:863–67
    [Google Scholar]
  5. 5. 
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. 2006. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250:2811–66
    [Google Scholar]
  6. 6. 
    Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R. 2007. Boron cluster cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46:8503–6
    [Google Scholar]
  7. 7. 
    Sergeeva AP, Popov IA, Piazza ZA, Li W-L, Romanescu C et al. 2014. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47:1349–58
    [Google Scholar]
  8. 8. 
    Wang L-S. 2016. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35:69–142
    [Google Scholar]
  9. 9. 
    Jian T, Chen X, Li S-D, Boldyrev AI, Li J, Wang L-S 2019. Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48:3550–91
    [Google Scholar]
  10. 10. 
    Pan S, Barroso J, Jalife S, Heine T, Asmis KR, Merino G. 2019. Fluxional boron clusters: from theory to reality. Acc. Chem. Res. 52:2732–44
    [Google Scholar]
  11. 11. 
    Zhai H-J, Wang L-S, Alexandrova AN, Boldyrev AI 2002. Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117:7917–24
    [Google Scholar]
  12. 12. 
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S, Steiner E, Fowler PW 2003. Structure and bonding in B6 and B6: planarity and antiaromaticity. J. Phys. Chem. A 107:1359–69
    [Google Scholar]
  13. 13. 
    Zhai H-J, Wang L-S, Alexandrova AN, Boldyrev AI, Zakrzewski VG. 2003. Photoelectron spectroscopy and ab initio study of B3 and B4 anions and their neutrals. J. Phys. Chem. A 107:9319–28
    [Google Scholar]
  14. 14. 
    Zhai H-J, Alexandrova AN, Birch KA, Boldyrev AI, Wang L-S. 2003. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 42:6004–8
    [Google Scholar]
  15. 15. 
    Zhai H-J, Kiran B, Li J, Wang L-S 2003. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2:827–33
    [Google Scholar]
  16. 16. 
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S. 2004. Electronic structure, isomerism, and chemical bonding in B7 and B7. J. Phys. Chem. A 108:3509–17
    [Google Scholar]
  17. 17. 
    Kiran B, Bulusu S, Zhai H-J, Yoo S, Zeng XC, Wang L-S. 2005. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. PNAS 102:961–64
    [Google Scholar]
  18. 18. 
    Sergeeva AP, Zubarev DY, Zhai H-J, Boldyrev AI, Wang L-S. 2008. A photoelectron spectroscopic and theoretical study of B16 and B162–: an all-boron naphthalene. J. Am. Chem. Soc. 130:7244–46
    [Google Scholar]
  19. 19. 
    Pan L-L, Li J, Wang L-S 2008. Low-lying isomers of the B9 boron cluster: the planar molecular wheel versus three-dimensional structures. J. Chem. Phys. 129:024302
    [Google Scholar]
  20. 20. 
    Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI. 2010. A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2:202–6
    [Google Scholar]
  21. 21. 
    Sergeeva AP, Averkiev BB, Zhai H-J, Boldyrev AI, Wang L-S. 2011. All-boron analogues of aromatic hydrocarbons: B17 and B18. J. Chem. Phys. 134:224304
    [Google Scholar]
  22. 22. 
    Li W-L, Romanescu C, Jian T, Wang L-S. 2012. Elongation of planar boron clusters by hydrogenation: boron analogues of polyenes. J. Am. Chem. Soc. 134:13228–31
    [Google Scholar]
  23. 23. 
    Piazza ZA, Li W-L, Romanescu C, Sergeeva AP, Wang L-S, Boldyrev AI. 2012. A photoelectron spectroscopy and ab initio study of B21: Negatively charged boron clusters continue to be planar at 21. J. Chem. Phys. 136:104310
    [Google Scholar]
  24. 24. 
    Sergeeva AP, Piazza ZA, Romanescu C, Li W-L, Boldyrev AI, Wang L-S. 2012. B22 and B23: all-boron analogues of anthracene and phenanthrene. J. Am. Chem. Soc. 134:18065–73
    [Google Scholar]
  25. 25. 
    Popov IA, Piazza ZA, Li W-L, Wang L-S, Boldyrev AI. 2013. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J. Chem. Phys. 139:144307
    [Google Scholar]
  26. 26. 
    Piazza ZA, Hu H-S, Li W-L, Zhao Y-F, Li J, Wang L-S 2014. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5:3113
    [Google Scholar]
  27. 27. 
    Li W-L, Zhao Y-F, Hu H-S, Li J, Wang L-S 2014. [B30]: a quasiplanar chiral boron cluster. Angew. Chem. Int. Ed. 53:5540–45
    [Google Scholar]
  28. 28. 
    Li W-L, Chen Q, Tian W-J, Bai H, Zhao Y-F et al. 2014. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 136:12257–60
    [Google Scholar]
  29. 29. 
    Piazza ZA, Popov IA, Li W-L, Pal R, Zeng XC et al. 2014. A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B25 cluster. J. Chem. Phys. 141:034303
    [Google Scholar]
  30. 30. 
    Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Bai H et al. 2014. Observation of an all-boron fullerene. Nat. Chem. 6:727–31
    [Google Scholar]
  31. 31. 
    Chen Q, Li W-L, Zhao Y-F, Zhang S-Y, Hu H-S et al. 2015. Experimental and theoretical evidence of an axially chiral borospherene. ACS Nano 9:754–60
    [Google Scholar]
  32. 32. 
    Li W-L, Pal R, Piazza ZA, Zeng XC, Wang L-S. 2015. B27: appearance of the smallest planar boron cluster containing a hexagonal vacancy. J. Chem. Phys. 142:204305
    [Google Scholar]
  33. 33. 
    Wang Y-J, Zhao Y-F, Li W-L, Jian T, Chen Q et al. 2016. Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 144:064307
    [Google Scholar]
  34. 34. 
    Chen Q, Li W-L, Zhao X-Y, Li H-R, Feng L-Y et al. 2017. B33 and B34: aromatic planar boron clusters with a hexagonal vacancy. Eur. J. Inorg. Chem. 2017:4546–51
    [Google Scholar]
  35. 35. 
    Chen Q, Tian W-J, Feng L-Y, Lu H-G, Mu Y-W et al. 2017. Planar B38 and B37 clusters with a double-hexagonal vacancy: molecular motifs for borophenes. Nanoscale 9:4550–57
    [Google Scholar]
  36. 36. 
    Luo X-M, Jian T, Cheng L-J, Li W-L, Chen Q et al. 2017. B26: the smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape. Chem. Phys. Lett. 683:336–41
    [Google Scholar]
  37. 37. 
    Chen Q, Chen T-T, Li H-R, Zhao X-Y, Chen W-J et al. 2019. B31 and B32: chiral quasi-planar boron clusters. Nanoscale 11:9698–704
    [Google Scholar]
  38. 38. 
    Bai H, Chen T-T, Chen Q, Zhao X-Y, Zhang Y-Y et al. 2019. Planar B41 and B42 clusters with double-hexagonal vacancies. Nanoscale 11:23286–95
    [Google Scholar]
  39. 39. 
    Chen WJ, Ma YY, Chen TT, Ao MZ, Yuan DF et al. 2021. B48: a bilayer boron cluster. Nanoscale 13:3868–76
    [Google Scholar]
  40. 40. 
    Sai L, Wu X, Gao N, Zhao J, King RB. 2017. Boron clusters with 46, 48, and 50 atoms: competition among core-shell, bilayer and quasi-planar structures. Nanoscale 9:13905–9
    [Google Scholar]
  41. 41. 
    Zubarev DY, Boldyrev AI. 2007. Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28:251–68
    [Google Scholar]
  42. 42. 
    Zubarev DY, Boldyrev AI. 2008. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10:5207–17
    [Google Scholar]
  43. 43. 
    Boldyrev AI, Wang L-S. 2016. Beyond organic chemistry: aromaticity in atomic clusters. Phys. Chem. Chem. Phys. 18:11589–605
    [Google Scholar]
  44. 44. 
    Tang H, Ismail-Beigi S. 2007. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99:115501
    [Google Scholar]
  45. 45. 
    Yang X, Ding Y, Ni J. 2008. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys. Rev. B 77:041402
    [Google Scholar]
  46. 46. 
    Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D et al. 2015. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–16
    [Google Scholar]
  47. 47. 
    Feng B, Zhang J, Zhong Q, Li W, Li S et al. 2016. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8:563
    [Google Scholar]
  48. 48. 
    Zhang Z, Penev ES, Yakobson BI. 2017. Two-dimensional boron: structures, properties and applications. Chem. Soc. Rev. 46:6746–63
    [Google Scholar]
  49. 49. 
    Kong L, Wu K, Chen L. 2018. Recent progress on borophene: growth and structures. Front. Phys. 13:138105
    [Google Scholar]
  50. 50. 
    Mannix AJ, Zhang Z, Guisinger NP, Yakobson BI, Hersam MC. 2018. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 13:444–50
    [Google Scholar]
  51. 51. 
    Xie S-Y, Wang Y, Li X-B 2019. Flat boron: a new cousin of graphene. Adv. Mater. 31:1900392
    [Google Scholar]
  52. 52. 
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. 2001. Superconductivity at 39 K in magnesium diboride. Nature 410:63–64
    [Google Scholar]
  53. 53. 
    Chung H-Y, Weinberger MB, Levine JB, Kavner A, Yang J-M et al. 2007. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–39
    [Google Scholar]
  54. 54. 
    Scheifers JP, Zhang Y, Fokwa BP. 2017. Boron: enabling exciting metal-rich structures and magnetic properties. Acc. Chem. Res. 50:2317–25
    [Google Scholar]
  55. 55. 
    Tian F, Ren Z. 2019. High thermal conductivity in boron arsenide: from prediction to reality. Angew. Chem. Int. Ed. 58:5824–31
    [Google Scholar]
  56. 56. 
    Alexandrova AN, Zhai H-J, Wang L-S, Boldyrev AI. 2004. Molecular wheel B82– as a new inorganic ligand. Photoelectron spectroscopy and ab initio characterization of LiB8. Inorg. Chem. 43:3552–54
    [Google Scholar]
  57. 57. 
    Alexandrova AN, Boldyrev AI, Zhai H-J, Wang L-S. 2005. Photoelectron spectroscopy and ab initio study of the doubly antiaromatic B62– dianion in the LiB6 cluster. J. Chem. Phys. 122:054313
    [Google Scholar]
  58. 58. 
    Wang L-M, Huang W, Averkiev BB, Boldyrev AI, Wang L-S. 2007. CB7: experimental and theoretical evidence against hypercoordinate planar carbon. Angew. Chem. Int. Ed. 46:4550–53
    [Google Scholar]
  59. 59. 
    Averkiev BB, Zubarev DY, Wang L-M, Huang W, Wang L-S, Boldyrev AI. 2008. Carbon avoids hypercoordination in CB6, CB62–, and C2B5 planar carbon–boron clusters. J. Am. Chem. Soc. 130:9248–50
    [Google Scholar]
  60. 60. 
    Averkiev BB, Wang L-M, Huang W, Wang L-S, Boldyrev AI. 2009. Experimental and theoretical investigations of CB8: towards rational design of hypercoordinated planar chemical species. Phys. Chem. Chem. Phys. 11:9840–49
    [Google Scholar]
  61. 61. 
    Galeev TR, Li W-L, Romanescu C, Černušák I, Wang L-S, Boldyrev AI. 2012. Photoelectron spectroscopy and ab initio study of boron-carbon mixed clusters: CB9 and C2B8. J. Chem. Phys. 137:234306
    [Google Scholar]
  62. 62. 
    Bai H, Zhai H-J, Li S-D, Wang L-S. 2013. Photoelectron spectroscopy of aromatic compound clusters of the B12 all-boron benzene: B12Au and B12(BO). Phys. Chem. Chem. Phys. 15:9646–53
    [Google Scholar]
  63. 63. 
    Chen Q, Bai H, Zhai H-J, Li S-D, Wang L-S. 2013. Photoelectron spectroscopy of boron-gold alloy clusters and boron boronyl clusters: B3Aun and B3(BO)n (n = 1, 2). J. Chem. Phys. 139:044308
    [Google Scholar]
  64. 64. 
    Zhai H-J, Chen Q, Bai H, Lu H-G, Li W-L et al. 2013. Pi and sigma double conjugations in boronyl polyboroene nanoribbons: Bn(BO)2 and Bn(BO)2 (n = 5−12). J. Chem. Phys. 139:174301
    [Google Scholar]
  65. 65. 
    Tian W-J, Chen W-J, Yan M, Li R, Wei Z-H et al. 2021. Transition-metal-like bonding behaviors of a boron atom in a boron cluster boronyl complex [(η7-B7)-B-BO].. Chem. Sci. 12:8157–64
    [Google Scholar]
  66. 66. 
    Chen W-J, Kulichenko M, Choi HW, Cavanagh J, Yuan D-F et al. 2021. Photoelectron spectroscopy of size-selected bismuth-boron clusters: BiBn (n = 6–8). J. Phys. Chem. A 125:6751–60
    [Google Scholar]
  67. 67. 
    Wang L-M, Averkiev BB, Ramilowski JA, Huang W, Wang L-S, Boldyrev AI. 2010. Planar to linear structural transition in small boron-carbon mixed clusters: CxB5-x (x = 1–5). J. Am. Chem. Soc. 132:14104–12
    [Google Scholar]
  68. 68. 
    Galeev TR, Ivanov AS, Romanescu C, Li W-L, Bozhenko KV, Wang L-S, Boldyrev AI. 2011. Molecular wheel to monocyclic ring transition in boron-carbon mixed clusters C2B6 and C3B5. Phys. Chem. Chem. Phys. 13:8805–10
    [Google Scholar]
  69. 69. 
    Romanescu C, Sergeeva AP, Li W-L, Boldyrev AI, Wang L-S. 2011. Planarization of B7 and B12 clusters by isoelectronic substitution: AlB6 and AlB11. J. Am. Chem. Soc. 133:8646–53
    [Google Scholar]
  70. 70. 
    Galeev TR, Romanescu C, Li W-L, Wang L-S, Boldyrev AI. 2011. Valence isoelectronic substitution in the B8 and B9 molecular wheels by an Al dopant atom: umbrella-like structures of AlB7 and AlB8. J. Chem. Phys. 135:104301
    [Google Scholar]
  71. 71. 
    Li W-L, Romanescu C, Galeev TR, Wang L-S, Boldyrev AI. 2011. Aluminum avoids the central position in AlB9 and AlB10: photoelectron spectroscopy and ab initio study. J. Phys. Chem. A 115:10391–97
    [Google Scholar]
  72. 72. 
    Cheung LF, Czekner J, Kocheril GS, Wang L-S. 2019. High resolution photoelectron imaging of boron-bismuth binary clusters: Bi2Bn (n = 2–4). J. Chem. Phys. 150:064304
    [Google Scholar]
  73. 73. 
    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S. 2011. Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9. Angew. Chem. Int. Ed. 50:9334–37
    [Google Scholar]
  74. 74. 
    Li W-L, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang L-S. 2012. Transition-metal-centered nine-membered boron rings: M©B9 and M©B9 (M = Rh, Ir). J. Am. Chem. Soc. 134:165–68
    [Google Scholar]
  75. 75. 
    Galeev TR, Romanescu C, Li W-L, Wang L-S, Boldyrev AI. 2012. Observation of the highest coordination number in planar species: decacoordinated Ta©B10 and Nb©B10 anions. Angew. Chem. Int. Ed. 51:2101–5
    [Google Scholar]
  76. 76. 
    Romanescu C, Galeev TR, Sergeeva AP, Li W-L, Wang L-S, Boldyrev AI. 2012. Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe©B8 and Fe©B9. J. Organomet. Chem. 721:148–54
    [Google Scholar]
  77. 77. 
    Romanescu C, Galeev TR, Li W-L, Boldyrev AI, Wang L-S. 2013. Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. Acc. Chem. Res. 46:350–58
    [Google Scholar]
  78. 78. 
    Popov IA, Li W-L, Piazza ZA, Boldyrev AI, Wang L-S. 2014. Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12 and RhB12. J. Phys. Chem. A 118:8098–105
    [Google Scholar]
  79. 79. 
    Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang L-S. 2015. Cobalt-centred boron molecular drums with the highest coordination number in the CoB16 cluster. Nat. Commun. 6:8654
    [Google Scholar]
  80. 80. 
    Jian T, Li W-L, Chen X, Chen T-T, Lopez GV et al. 2016. Competition between drum and quasi-planar structures in RhB18: motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 7:7020–27
    [Google Scholar]
  81. 81. 
    Jian T, Li W-L, Popov IA, Lopez GV, Chen X et al. 2016. Manganese-centered tubular boron cluster–MnB16: a new class of transition-metal molecules. J. Chem. Phys. 144:154310
    [Google Scholar]
  82. 82. 
    Li W-L, Jian T, Chen X, Li H-R, Chen T-T et al. 2017. Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 53:1587–90
    [Google Scholar]
  83. 83. 
    Li W-L, Jian T, Chen X, Chen T-T, Lopez GV et al. 2016. The planar CoB18 cluster as a motif for metallo-borophenes. Angew. Chem. Int. Ed. 55:7358–63
    [Google Scholar]
  84. 84. 
    Li W-L, Chen X, Jian T, Chen T-T, Li J, Wang L-S 2017. From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 1:71
    [Google Scholar]
  85. 85. 
    Jian T, Cheung LF, Chen T-T, Wang L-S. 2017. Bismuth–boron multiple bonding in BiB2O and Bi2B. Angew. Chem. Int. Ed. 56:9551–55
    [Google Scholar]
  86. 86. 
    Cheung LF, Chen T-T, Kocheril GS, Chen W-J, Czekner J, Wang L-S 2020. Observation of four-fold boron–metal bonds in RhB(BO) and RhB. J. Phys. Chem. Lett. 11:659–63
    [Google Scholar]
  87. 87. 
    Chen T-T, Cheung LF, Chen W-J, Cavanagh J, Wang L-S. 2020. Observation of transition-metal–boron triple bonds in IrB2O and ReB2O. Angew. Chem. Int. Ed. 59:15260–65
    [Google Scholar]
  88. 88. 
    Cheung LF, Kocheril GS, Czekner J, Wang L-S. 2020. Observation of Möbius aromatic planar metallaborocycles. J. Am. Chem. Soc. 142:3356–60
    [Google Scholar]
  89. 89. 
    Cheung LF, Czekner J, Kocheril GS, Wang L-S. 2019. ReB6: a metallaboron analog of metallabenzenes. J. Am. Chem. Soc. 141:17854–60
    [Google Scholar]
  90. 90. 
    Chen T-T, Li W-L, Bai H, Chen W-J, Dong X-R et al. 2019. Re©B8 and Re©B9: new members of the transition-metal-centered borometallic molecular wheel family. J. Phys. Chem. A 123:5317–24
    [Google Scholar]
  91. 91. 
    Weichman ML, Neumark DM. 2018. Slow photoelectron velocity-map imaging of cryogenically cooled anions. Annu. Rev. Phys. Chem. 69:101–24
    [Google Scholar]
  92. 92. 
    Mason JL, Folluo CN, Jarrold CC. 2021. More than little fragments of matter: electronic and molecular structures of clusters. J. Comput. Chem. 154:200901
    [Google Scholar]
  93. 93. 
    Wang L-S, Cheng HS, Fan J. 1995. Photoelectron spectroscopy of size-selected transition metal clusters: Fen, n = 3–24. J. Chem. Phys. 102:9480–93
    [Google Scholar]
  94. 94. 
    Leon I, Yang Z, Wang L-S 2013. High resolution photoelectron imaging of Au2. J. Chem. Phys. 138:184304
    [Google Scholar]
  95. 95. 
    León I, Yang Z, Liu H-T, Wang L-S. 2014. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. Rev. Sci. Instrum. 85:083106
    [Google Scholar]
  96. 96. 
    Fokwa BP. 2010. Transition-metal-rich borides–fascinating crystal structures and magnetic properties. Eur. J. Inorg. Chem. 2010:3075–92
    [Google Scholar]
  97. 97. 
    Gu Q, Krauss G, Steurer W. 2008. Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20:3620–26
    [Google Scholar]
  98. 98. 
    Levine JB, Tolbert SH, Kaner RB. 2009. Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19:3519–33
    [Google Scholar]
  99. 99. 
    Kvashnin AG, Allahyari Z, Oganov AR. 2019. Computational discovery of hard and superhard materials. J. Appl. Phys. 126:040901
    [Google Scholar]
  100. 100. 
    Lee E, Park H, Joo H, Fokwa BPT 2020. Unexpected correlation between boron chain condensation and hydrogen evolution reaction (HER) activity in highly active vanadium borides: enabling predictions. Angew. Chem. Int. Ed. 59:11774–78
    [Google Scholar]
  101. 101. 
    Robinson PJ, Liu G, Ciborowski S, Martinez-Martinez C, Chamorro JR et al. 2017. Mystery of three borides: differential metal-boron bonding governing superhard structures. Chem. Mater. 29:9892–96
    [Google Scholar]
  102. 102. 
    Sheifers JP, Nguyen RDT, Zhang Y, Fokwa BPT. 2020. Direct correlation of mechanical hardness and chemical bonding in intermetallic double peroskite borides Sc2Ir6−xPdxB. J. Phys. Chem. A 124:26062–67
    [Google Scholar]
  103. 103. 
    Lewis GN. 1916. The atom and the molecule. J. Am. Chem. Soc. 38:762–85
    [Google Scholar]
  104. 104. 
    Shaik S, Danovich D, Wu W, Su P, Rzepa HS, Hiberty PC. 2012. Quadruple bonding in C2 and analogous eight-valence electron species. Nat. Chem. 4:195
    [Google Scholar]
  105. 105. 
    Danovich D, Hiberty PC, Wu W, Rzepa HS, Shaik S. 2014. The nature of the fourth bond in the ground state of C2: the quadruple bond conundrum. Chem. Eur. J. 20:6220–32
    [Google Scholar]
  106. 106. 
    Xu LT, Dunning TH Jr. 2014. Insights into the perplexing nature of the bonding in C2 from generalized valence bond calculations. J. Chem. Theory Comput. 10:195–201
    [Google Scholar]
  107. 107. 
    de Sousa DWO, Nascimento MAC. 2016. Is there a quadruple bond in C2?. J. Chem. Theory Comput. 12:2234–41
    [Google Scholar]
  108. 108. 
    Hermann M, Frenking G 2016. The chemical bond in C2. Chem. Eur. J. 22:4100–8
    [Google Scholar]
  109. 109. 
    Zhou M, Tsumori N, Li Z, Fan K, Andrews L, Xu Q 2002. OCBBCO: a neutral molecule with some boron−boron triple bond character. J. Am. Chem. Soc. 124:12936–37
    [Google Scholar]
  110. 110. 
    Li S-D, Zhai H-J, Wang L-S. 2008. B2(BO)22− – diboronyl diborene: a linear molecule with a triple boron−boron bond. J. Am. Chem. Soc. 130:2573–79
    [Google Scholar]
  111. 111. 
    Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A 2012. Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 336:1420–22
    [Google Scholar]
  112. 112. 
    Pyykkö P. 2015. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119:2326–37
    [Google Scholar]
  113. 113. 
    Chowdhury P, Balfour W. 2007. A spectroscopic study of the rhodium monoboride molecule. Mol. Phys. 105:1619–24
    [Google Scholar]
  114. 114. 
    Borin AC, Gobbo JP. 2008. Low-lying singlet and triplet electronic states of RhB. J. Phys. Chem. A 112:4394–98
    [Google Scholar]
  115. 115. 
    Chi C, Wang J-Q, Hu H-S, Zhang Y-Y, Li W-L et al. 2019. Quadruple bonding between iron and boron in the BFe(CO)3 complex. Nat. Commun. 10:4713
    [Google Scholar]
  116. 116. 
    Tzeli D, Mavridis A 2008. Electronic structure and bonding of the 3d transition metal borides, MB, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations. J. Chem. Phys. 128:034309
    [Google Scholar]
  117. 117. 
    Merriles DM, Tieu E, Morse MD. 2019. Bond dissociation energies of FeB, CoB, NiB, RuB, RhB, OsB, IrB, and PtB. J. Chem. Phys. 151:044302
    [Google Scholar]
  118. 118. 
    Merriles DM, Nielson C, Tieu E, Morse MD 2021. Chemical bonding and electronic structure of the early transition metal borides: ScB, TiB, VB, YB, ZrB, NbB, LaB, HfB, TaB, and WB. J. Phys. Chem. A 125:4420–34
    [Google Scholar]
  119. 119. 
    Cheung LF, Kocheril GS, Czekner J, Wang L-S. 2020. The nature of the chemical bonding in 5d transition-metal diatomic borides MB (M = Ir, Pt, Au). J. Chem. Phys. 152:174301
    [Google Scholar]
  120. 120. 
    Pyykko P. 1988. Relativistic effects in structural chemistry. Chem. Rev. 88:563–94
    [Google Scholar]
  121. 121. 
    Pan S, Manoj S, Frenking G. 2020. Quadruple bonding of bare group-13 atoms in transition metal complexes. Dalton Trans. 49:14815–25
    [Google Scholar]
  122. 122. 
    Tzeli D, Karapetsas I. 2020. Quadruple bonding in the ground and low-lying excited states of the diatomic molecules TcN, RuC, RhB, and PdBe. J. Phys. Chem. A 124:6667–81
    [Google Scholar]
  123. 123. 
    Schoendorff G, Ruedenberg K, Gordon MS 2021. Multiple bonding in rhodium monoboride. Quasi-atomic analyses of the ground and low-lying excited states. J. Phys. Chem. A 125:4836–46
    [Google Scholar]
  124. 124. 
    Vidovic D, Pierce GA, Aldridge S. 2009. Transition metal borylene complexes: boron analogues of classical organometallic systems. Chem. Commun. 10:1157–71
    [Google Scholar]
  125. 125. 
    Braunschweig H, Dewhurst RD, Schneider A. 2010. Electron-precise coordination modes of boron-centered ligands. Chem. Rev. 110:3924–57
    [Google Scholar]
  126. 126. 
    Soleilhavoup M, Bertrand G. 2017. Borylenes: an emerging class of compounds. Angew. Chem. Int. Ed. 56:10282–92
    [Google Scholar]
  127. 127. 
    Heilbronner E. 1964. Hűckel molecular orbitals of Mőbius-type conformations of annulenes. Tetrahedron Lett 5:1923–28
    [Google Scholar]
  128. 128. 
    Herges R. 2006. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106:4820–42
    [Google Scholar]
  129. 129. 
    Rzepa HS. 2005. Möbius aromaticity and delocalization. Chem. Rev. 105:3697–715
    [Google Scholar]
  130. 130. 
    Mauksch M, Tsogoeva SB. 2010. Demonstration of “Möbius” aromaticity in planar metallacycles. Chem. Eur. J. 16:7843–51
    [Google Scholar]
  131. 131. 
    Zhu C, Luo M, Zhu Q, Zhu J, Schleyer PVR et al. 2014. Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums. Nat. Commun. 5:3265
    [Google Scholar]
  132. 132. 
    Chen D, Xie Q, Zhu J. 2019. Unconventional aromaticity in organometallics: the power of transition metals. Acc. Chem. Res. 52:1449–60
    [Google Scholar]
  133. 133. 
    Szczepanik DW, Solà M. 2019. Electron delocalization in planar metallacycles: Hückel or Möbius aromatic?. ChemistryOpen 8:219–227
    [Google Scholar]
  134. 134. 
    Li W-L, Ivanov AS, Federic J, Romanescu C, Cernusak I et al. 2013. On the way to the highest coordination number in the planar metal-centred aromatic Ta©B10 cluster: evolution of the structures of TaBn (n = 3–8). J. Chem. Phys. 139:104312
    [Google Scholar]
  135. 135. 
    Bleeke JR. 2001. Metallabenzenes. Chem. Rev. 101:1205–28
    [Google Scholar]
  136. 136. 
    Fernández I, Frenking G, Merino G. 2015. Aromaticity of metallabenzenes and related compounds. Chem. Soc. Rev. 44:6452–63
    [Google Scholar]
  137. 137. 
    Frogley BJ, Wright LJ. 2018. Recent advances in metallaaromatic chemistry. Chem. Eur. J. 24:2025–38
    [Google Scholar]
  138. 138. 
    Poon KC, Liu L, Guo T, Li J, Sung HHY et al. 2010. Synthesis and characterization of rhenabenzenes. Angew. Chem. Int. Ed. 49:2759–62
    [Google Scholar]
  139. 139. 
    Chen TT, Li WL, Jian T, Chen X, Li J, Wang L-S 2017. PrB7: a praseodymium-doped boron cluster with a PrII center coordinated by a doubly aromatic planar η7-B73− ligand. Angew. Chem. Int. Ed. 56:6916–20
    [Google Scholar]
  140. 140. 
    Li W-L, Chen T-T, Xing D-H, Chen X, Li J, Wang L-S 2018. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. PNAS 115:E6972–77
    [Google Scholar]
  141. 141. 
    Chen T-T, Li W-L, Li J, Wang L-S 2019.. [ La(ηx-Bx) La](x = 7–9): a new class of inverse sandwich complexes. Chem. Sci. 10:2534–42
    [Google Scholar]
  142. 142. 
    Jiang Z-Y, Chen T-T, Chen W-J, Li W-L, Li J, Wang L-S 2021. Expanded inverse-sandwich complexes of lanthanum borides: La2B10 and La2B11. J. Phys. Chem. A 125:2622–30
    [Google Scholar]
  143. 143. 
    Chen T-T, Li W-L, Chen W-J, Li J, Wang L-S 2019. La3B14: an inverse triple-decker lanthanide boron cluster. Chem. Commun. 55:7864–67
    [Google Scholar]
  144. 144. 
    Chen T-T, Li W-L, Chen W-J, Yu X-H, Dong X-R et al. 2020. Spherical trihedral metallo-borospherenes. Nat. Commun. 11:2766
    [Google Scholar]
  145. 145. 
    Cheng S-B, Berkdemir C, Castleman A. 2014. Observation of d–p hybridized aromaticity in lanthanum-doped boron clusters. Phys. Chem. Chem. Phys. 16:533–39
    [Google Scholar]
  146. 146. 
    Cheng S-B, Berkdemir C, Castleman AW. 2015. Mimicking the magnetic properties of rare earth elements using superatoms. PNAS 112:4941–45
    [Google Scholar]
  147. 147. 
    Robinson PJ, Zhang X, McQueen T, Bowen KH, Alexandrova AN. 2017. SmB6 cluster anion: covalency involving f orbitals. J. Phys. Chem. A 121:1849–54
    [Google Scholar]
  148. 148. 
    Chen X, Chen T-T, Li W-L, Lu J-B, Zhao L-J et al. 2019. Lanthanides with unusually low oxidation states in the PrB3– and PrB4 boride clusters. Inorg. Chem. 58:411–18
    [Google Scholar]
  149. 149. 
    Mason JL, Harb H, Huizenga CD, Ewigleben JC, Topolski JE et al. 2019. Electronic and molecular structures of the CeB6 monomer. J. Phys. Chem. A 123:2040–48
    [Google Scholar]
  150. 150. 
    Li W-L, Chen T-T, Jiang Z-Y, Wang L-S, Li J 2020. Recent progresses in the investigation of rare-earth boron inverse sandwich clusters. Chin. J. Struct. Chem. 39:1009–18
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082820-113041
Loading
/content/journals/10.1146/annurev-physchem-082820-113041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error