1932

Abstract

In this review, we discuss the recent developments and applications of vibrational sum-frequency generation (VSFG) microscopy. This hyperspectral imaging technique can resolve systems without inversion symmetry, such as surfaces, interfaces and noncentrosymmetric self-assembled materials, in the spatial, temporal, and spectral domains. We discuss two common VSFG microscopy geometries: wide-field and confocal point-scanning. We then introduce the principle of VSFG and the relationships between hyperspectral imaging with traditional spectroscopy, microscopy, and time-resolved measurements. We further highlight crucial applications of VSFG microscopy in self-assembled monolayers, cellulose in plants, collagen fibers, and lattice self-assembled biomimetic materials. In these systems, VSFG microscopy reveals relationships between physical properties that would otherwise be hidden without being spectrally, spatially, and temporally resolved. Lastly, we discuss the recent development of ultrafast transient VSFG microscopy, which can spatially measure the ultrafast vibrational dynamics of self-assembled materials. The review ends with an outlook on the technical challenges of and scientific potential for VSFG microscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-050510
2021-04-20
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-050510.html?itemId=/content/journals/10.1146/annurev-physchem-090519-050510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Whitelam S, Jack RL. 2015. The statistical mechanics of dynamic pathways to self-assembly. Annu. Rev. Phys. Chem. 66:143–63
    [Google Scholar]
  2. 2. 
    Schwartz DK. 2001. Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52:107–37
    [Google Scholar]
  3. 3. 
    Whitesides GM. 2002. Self-assembly at all scales. Science 295:55642418–21
    [Google Scholar]
  4. 4. 
    Klug A. 1983. From macromolecules to biological assemblies (Nobel lecture). Angew. Chem. Int. Ed. 22:8565–82
    [Google Scholar]
  5. 5. 
    Hernández NE, Hansen WA, Zhu D, Shea ME, Khalid M et al. 2019. Stimulus-responsive self-assembly of protein-based fractals by computational design. Nat. Chem. 11:7605–14
    [Google Scholar]
  6. 6. 
    Mallory SA, Valeriani C, Cacciuto A. 2018. An active approach to colloidal self-assembly. Annu. Rev. Phys. Chem. 69:59–79
    [Google Scholar]
  7. 7. 
    Boles MA, Engel M, Talapin DV. 2016. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116:1811220–89
    [Google Scholar]
  8. 8. 
    Herbst S, Soberats B, Leowanawat P, Stolte M, Lehmann M, Würthner F. 2018. Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nat. Commun. 9:2646
    [Google Scholar]
  9. 9. 
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. 2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105:41103–70
    [Google Scholar]
  10. 10. 
    Van Rijn P, Tutus M, Kathrein C, Zhu L, Wessling M et al. 2013. Challenges and advances in the field of self-assembled membranes. Chem. Soc. Rev. 42:166578–92
    [Google Scholar]
  11. 11. 
    Chen IA, Walde P. 2010. From self-assembled vesicles to protocells. Cold Spring Harb. Perspect. Biol. 2:7a002170
    [Google Scholar]
  12. 12. 
    Zou Q, Liu K, Abbas M, Yan X 2016. Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics. Adv. Mater. 28:61031–43
    [Google Scholar]
  13. 13. 
    Schmidt-Mende L. 2001. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:55321119–22
    [Google Scholar]
  14. 14. 
    Nelson J. 2001. Solar cells by self-assembly?. Science 293:55321059–60
    [Google Scholar]
  15. 15. 
    Wang H, Gao T, Xiong W. 2017. Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics 4:71839–45
    [Google Scholar]
  16. 16. 
    Han Y, Raghunathan V, Feng R, Maekawa H, Chung C-Y et al. 2013. Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy. J. Phys. Chem. B. 117:206149–56
    [Google Scholar]
  17. 17. 
    Santos GM, Baldelli S. 2013. Monitoring localized initial atmospheric corrosion of alkanethiol-covered copper using sum frequency generation imaging microscopy: relation between monolayer properties and Cu2O formation. J. Phys. Chem. C 117:3417591–602
    [Google Scholar]
  18. 18. 
    Makarem M, Sawada D, O'Neill HM, Lee CM, Kafle K et al. 2017. Dependence of sum frequency generation (SFG) spectral features on the mesoscale arrangement of SFG-active crystalline domains interspersed in SFG-inactive matrix: a case study with cellulose in uniaxially aligned control samples and alkali-treated secondary cell walls of plants. J. Phys. Chem. C 121:1810249–57
    [Google Scholar]
  19. 19. 
    Whitesides GM, Boncheva M 2002. Beyond molecules: self-assembly of mesoscopic and macroscopic components. PNAS 99:84769–74
    [Google Scholar]
  20. 20. 
    Yang S, Yan Y, Huang J, Petukhov AV, Kroon-Batenburg LMJ et al. 2017. Giant capsids from lattice self-assembly of cyclodextrin complexes. Nat. Commun. 8:15856
    [Google Scholar]
  21. 21. 
    He WN, Xu JT. 2012. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37:101350–1400
    [Google Scholar]
  22. 22. 
    Jiang L, Peng Y, Yan Y, Deng M, Wang Y, Huang J. 2010.. “ Annular Ring” microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter 6:81731–36
    [Google Scholar]
  23. 23. 
    Laaser JE, Xiong W, Zanni MT. 2011. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages. J. Phys. Chem. B 115:112536–46
    [Google Scholar]
  24. 24. 
    Wang J, Clark ML, Li Y, Kaslan CL, Kubiak CP, Xiong W. 2015. Short-range catalyst-surface interactions revealed by heterodyne two-dimensional sum frequency generation spectroscopy. J. Phys. Chem. Lett. 6:214204–9
    [Google Scholar]
  25. 25. 
    Fang M, Baldelli S. 2017. Surface-induced heterogeneity analysis of an alkanethiol monolayer on microcrystalline copper surface using sum frequency generation imaging microscopy. J. Phys. Chem. C 121:31591–601
    [Google Scholar]
  26. 26. 
    Fang M, Baldelli S. 2015. Grain structures and boundaries on microcrystalline copper covered with an octadecanethiol monolayer revealed by sum frequency generation microscopy. J. Phys. Chem. Lett. 6:81454–60
    [Google Scholar]
  27. 27. 
    Cimatu K, Baldelli S. 2006. Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers. J. Phys. Chem. B 110:41807–13
    [Google Scholar]
  28. 28. 
    Cimatu K, Baldelli S. 2007. Spatially resolved surface analysis of an octadecanethiol self-assembled monolayer on mild steel using sum frequency generation imaging microscopy. J. Phys. Chem. C 111:197137–43
    [Google Scholar]
  29. 29. 
    Shah SA, Baldelli S. 2020. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Acc. Chem. Res. 53:61139–50
    [Google Scholar]
  30. 30. 
    Zheng D, Lu L, Kelly KF, Baldelli S. 2018. Chemical imaging of self-assembled monolayers on copper using compressive hyperspectral sum frequency generation microscopy. J. Phys. Chem. B 122:2464–71
    [Google Scholar]
  31. 31. 
    Rich CC, Mattson MA, Krummel AT. 2016. Direct measurement of the absolute orientation of N3 dye at gold and titanium dioxide surfaces with heterodyne-detected vibrational SFG spectroscopy. J. Phys. Chem. C 120:126601–11
    [Google Scholar]
  32. 32. 
    Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T. 2013. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64:579–603
    [Google Scholar]
  33. 33. 
    Deng GH, Qian Y, Wei Q, Zhang T, Rao Y. 2020. Interface-specific two-dimensional electronic sum frequency generation spectroscopy. J. Phys. Chem. Lett. 11:51738–45
    [Google Scholar]
  34. 34. 
    Liu WT, Shen YR 2014. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. PNAS 111:41293–97
    [Google Scholar]
  35. 35. 
    Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M et al. 2018. Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J. Phys. Chem. B 122:195006–19
    [Google Scholar]
  36. 36. 
    Kong L, Lee C, Kim SH, Ziegler GR. 2014. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J. Phys. Chem. B 118:71775–83
    [Google Scholar]
  37. 37. 
    Lee CM, Chen X, Weiss PA, Jensen L, Kim SH. 2017. Quantum mechanical calculations of vibrational sum-frequency-generation (SFG) spectra of cellulose: dependence of the CH and OH peak intensity on the polarity of cellulose chains within the SFG coherence domain. J. Phys. Chem. Lett. 8:155–60
    [Google Scholar]
  38. 38. 
    Lee CM, Kafle K, Park YB, Kim SH. 2014. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational Sum Frequency Generation (SFG) spectroscopy. Phys. Chem. Chem. Phys. 16:2210844–53
    [Google Scholar]
  39. 39. 
    Kiessling R, Tong Y, Giles AJ, Gewinner S, Schöllkopf W et al. 2019. Surface phonon polariton resonance imaging using long-wave infrared-visible sum-frequency generation microscopy. ACS Photonics 6:113017–23
    [Google Scholar]
  40. 40. 
    Wang H, Chen W, Wagner JC, Xiong W. 2019. Local ordering of lattice self-assembled SDS@2β-CD materials and adsorbed water revealed by vibrational sum frequency generation microscope. J. Phys. Chem. B 123:296212–21
    [Google Scholar]
  41. 41. 
    Han Y, Hsu J, Ge N, Potma EO. 2015. Polarization-sensitive sum-frequency generation microscopy of collagen fibers. J. Phys. Chem. B 119:83356–65
    [Google Scholar]
  42. 42. 
    Baldelli S. 2008. Chemical imaging of monolayers on metal surfaces: applications in corrosion, catalysis, and self-assembled monolayers. ChemPhysChem 9:162291–98
    [Google Scholar]
  43. 43. 
    Sun Z, Zheng D, Baldelli S. 2018. Study of the wetting of paraffin films on the metal surface in the dynamic dip-coating process using compressive-sensing sum-frequency generation microscopy. J. Phys. Chem. C 122:4626543–53
    [Google Scholar]
  44. 44. 
    Cyran JD, Backus EHG, Nagata Y, Bonn M. 2018. Structure from dynamics: vibrational dynamics of interfacial water as a probe of aqueous heterogeneity. J. Phys. Chem. B 122:143667–79
    [Google Scholar]
  45. 45. 
    Nihonyanagi S, Yamaguchi S, Tahara T. 2017. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117:1610665–93
    [Google Scholar]
  46. 46. 
    Cimatu K, Baldelli S. 2006. Sum frequency generation imaging microscopy of CO on platinum. J. Am. Chem. Soc. 128:5016016–17
    [Google Scholar]
  47. 47. 
    Cimatu K, Baldelli S. 2008. Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid-liquid interface. J. Am. Chem. Soc. 130:258030–37
    [Google Scholar]
  48. 48. 
    Raghunathan V, Han Y, Korth O, Ge N-H, Potma EO. 2011. Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett. 36:19389148. The best spatial resolution (600 nm) was reported.
    [Google Scholar]
  49. 49. 
    Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G. 2011. Sum frequency generation microscopy study of cellulose fibers. Appl. Spectrosc. 65:111254–59
    [Google Scholar]
  50. 50. 
    Zheng D, Lu L, Li Y, Kelly KF, Baldelli S. 2016. Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces. J. Phys. Chem. Lett. 7:101781–8750. The first broadband CS-VSFG microscopy was reported.
    [Google Scholar]
  51. 51. 
    Lee CM, Kafle K, Huang S, Kim SH. 2016. Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J. Phys. Chem. B 120:1102–16
    [Google Scholar]
  52. 52. 
    Mizutani G, Koyama T, Tomizawa S, Sano H. 2005. Distinction between some saccharides in scattered optical sum frequency intensity images. Spectrochim. Acta A Mol. Biomol. Spectrosc. 62:4–5845–4952. The first confocal point-scanning VSFG microscopy was developed.
    [Google Scholar]
  53. 53. 
    Sohrabpour Z, Kearns PM, Massari AM. 2016. Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces. J. Phys. Chem. C 120:31666–72
    [Google Scholar]
  54. 54. 
    Ishiyama T, Morita A. 2017. Computational analysis of vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 68:355–77
    [Google Scholar]
  55. 55. 
    Wang H-F, Velarde L, Gan W, Fu L. 2015. Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. Annu. Rev. Phys. Chem. 66:189–216
    [Google Scholar]
  56. 56. 
    Gopalakrishnan S, Liu D, Allen HC, Kuo M, Shultz MJ. 2006. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. 106:41155–75
    [Google Scholar]
  57. 57. 
    Wen YC, Zha S, Liu X, Yang S, Guo P et al. 2016. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116:016101
    [Google Scholar]
  58. 58. 
    Stiopkin IV, Jayathilake HD, Bordenyuk AN, Benderskii AV. 2008. Heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 130:72271–75
    [Google Scholar]
  59. 59. 
    McDermott ML, Vanselous H, Corcelli SA, Petersen PB. 2017. DNA's chiral spine of hydration. ACS Cent. Sci. 3:7708–14
    [Google Scholar]
  60. 60. 
    Eftekhari-Bafrooei A, Borguet E. 2009. Effect of surface charge on the vibrational dynamics of interfacial water. J. Am. Chem. Soc. 131:3412034–35
    [Google Scholar]
  61. 61. 
    Xiao M, Lu T, Lin T, Andre JS, Chen Z 2019. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 10:261903053
    [Google Scholar]
  62. 62. 
    Sagle LB, Cimatu K, Litosh VA, Liu Y, Flores SC et al. 2011. Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces. J. Am. Chem. Soc. 133:4618707–12
    [Google Scholar]
  63. 63. 
    Medders GR, Paesani F. 2016. Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J. Am. Chem. Soc. 138:113912–19
    [Google Scholar]
  64. 64. 
    Rehl B, Li Z, Gibbs JM. 2018. Influence of high pH on the organization of acetonitrile at the silica/water interface studied by sum frequency generation spectroscopy. Langmuir 34:154445–54
    [Google Scholar]
  65. 65. 
    Rao Y, Li X, Lei X, Jockusch S, George MW et al. 2011. Observations of interfacial population and organization of surfactants with sum frequency generation and surface tension. J. Phys. Chem. C 115:2412064–67
    [Google Scholar]
  66. 66. 
    Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. 2018. Model behavior: characterization of hydroxyacetone at the air-water interface using experimental and computational vibrational sum frequency spectroscopy. J. Phys. Chem. A 122:153837–49
    [Google Scholar]
  67. 67. 
    Wang HF, Gan W, Lu R, Rao Y, Wu BH. 2005. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int. Rev. Phys. Chem. 24:2191–256
    [Google Scholar]
  68. 68. 
    Shen YR. 2013. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64:129–50
    [Google Scholar]
  69. 69. 
    Yan ECY, Fu L, Wang Z, Liu W 2014. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114:178471–98
    [Google Scholar]
  70. 70. 
    Lambert AG, Davies PB, Neivandt DJ. 2005. Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 40:2103–45
    [Google Scholar]
  71. 71. 
    Ishiyama T, Imamura T, Morita A. 2014. Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114:178447–70
    [Google Scholar]
  72. 72. 
    Liljeblad JFD, Tyrode E. 2012. Vibrational sum frequency spectroscopy studies at solid/liquid interfaces: influence of the experimental geometry in the spectral shape and enhancement. J. Phys. Chem. C 116:4322893–903
    [Google Scholar]
  73. 73. 
    Azam MS, Cai C, Hore DK. 2019. Selective probing of thin-film interfaces using internal reflection sum-frequency spectroscopy. J. Phys. Chem. C 123:3823535–44
    [Google Scholar]
  74. 74. 
    Peng X, Zhang R, Feng RR, Liu AA, Zhou C et al. 2019. Active species in photocatalytic reactions of methanol on TiO2(110) identified by surface sum frequency generation vibrational spectroscopy. J. Phys. Chem. C 123:2213789–94
    [Google Scholar]
  75. 75. 
    Moon AP, Pandey R, Bender JA, Cotton DE, Renard BA, Roberts ST. 2017. Using heterodyne-detected electronic sum frequency generation to probe the electronic structure of buried interfaces. J. Phys. Chem. C 121:3418653–64
    [Google Scholar]
  76. 76. 
    Humbert B, Grausem J, Burneau A, Spajer M, Tadjeddine A. 2001. Step towards sum frequency generation spectromicroscopy at a submicronic spatial resolution. Appl. Phys. Lett. 78:135–37
    [Google Scholar]
  77. 77. 
    Flörsheimer M, Brillert C, Fuchs H. 1999. Chemical imaging of interfaces by sum frequency microscopy. Langmuir 15:175437–3977. The first VSFG microscopy was reported.
    [Google Scholar]
  78. 78. 
    Campagnola P. 2011. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal. Chem. 83:93224–31
    [Google Scholar]
  79. 79. 
    Tran RJ, Sly KL, Conboy JC. 2017. Applications of surface second harmonic generation in biological sensing. Annu. Rev. Anal. Chem. 10:387–414
    [Google Scholar]
  80. 80. 
    Chung C-Y, Potma EO. 2013. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64:77–99
    [Google Scholar]
  81. 81. 
    Cimatu KA, Baldelli S. 2009. Chemical microscopy of surfaces by sum frequency generation imaging. J. Phys. Chem. C 113:3816575–88
    [Google Scholar]
  82. 82. 
    Hoffmann DMP, Kuhnke K, Kern K. 2002. Sum-frequency generation microscope for opaque and reflecting samples. Rev. Sci. Instrum. 73:9322182. Significant progress was reported in correcting distortion in wide-field VSFG microscopy.
    [Google Scholar]
  83. 83. 
    Cai X, Hu B, Sun T, Kelly KF, Baldelli S. 2011. Sum frequency generation-compressive sensing microscope. J. Chem. Phys. 135:19194202
    [Google Scholar]
  84. 84. 
    Santos G, Baldelli S. 2012. Scale dependence of the orientation and conformation distribution analysis of a molecular monolayer using sum frequency generation imaging microscopy. J. Phys. Chem. C 116:4925874–87
    [Google Scholar]
  85. 85. 
    Candès EJ, Romberg JK, Tao T. 2006. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59:81207–23
    [Google Scholar]
  86. 86. 
    Inoue K, Fujii M, Sakai M. 2010. Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cells. Appl. Spectrosc. 64:3275–81
    [Google Scholar]
  87. 87. 
    Wampler RD, Kissick DJ, Dehen CJ, Gualtieri EJ, Grey JL et al. 2008. Selective detection of protein crystals by second harmonic microscopy. J. Am. Chem. Soc. 130:4314076–77
    [Google Scholar]
  88. 88. 
    Wan Y, McDole K, Keller PJ. 2019. Light-sheet microscopy and its potential for understanding developmental processes. Annu. Rev. Cell Dev. Biol. 35:655–81
    [Google Scholar]
  89. 89. 
    Lew MD, Lee SF, Ptacin JL, Lee MK, Twieg RJ et al. 2011. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. PNAS 108:46E1102–10
    [Google Scholar]
  90. 90. 
    Wang W, Shen H, Shuang B, Hoener BS, Tauzin LJ et al. 2016. Super temporal-resolved microscopy (STReM). J. Phys. Chem. Lett. 7:224524–29
    [Google Scholar]
  91. 91. 
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu NN et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:92995–99
    [Google Scholar]
  92. 92. 
    Wang H, Wagner JC, Chen W, Wang C, Xiong W. 2020. Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. PNAS 117:3823385–9292. The first ultrafast transient VSFG microscopy was demonstrated.
    [Google Scholar]
  93. 93. 
    Guyot-Sionnest P, Hunt JH, Shen YR. 1987. Sum-frequency vibrational spectroscopy of a Langmuir film: study of molecular orientation of a two-dimensional system. Phys. Rev. Lett. 59:141597–60093. The first VSFG spectroscopy on molecular systems was reported.
    [Google Scholar]
  94. 94. 
    Zhu XD, Suhr H, Shen YR. 1987. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 35:63047–50
    [Google Scholar]
  95. 95. 
    Mingabudinova LR, Vinogradov VV, Milichko VA, Hey-Hawkins E, Vinogradov AV. 2016. Metal-organic frameworks as competitive materials for non-linear optics. Chem. Soc. Rev. 45:195408–31
    [Google Scholar]
  96. 96. 
    Chen Z, Gallo G, Sawant VA, Zhang T, Zhu M et al. 2020. Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal-organic frameworks (MOFs). Angew. Chem. Int. Ed. 59:2833–38
    [Google Scholar]
  97. 97. 
    Hirose C, Akamatsu N, Domen K. 1992. Formulas for the analysis of the surface SFG spectrum and transformation coefficients of Cartesian SFG tensor components. Appl. Spectrosc. 46:61051–72
    [Google Scholar]
  98. 98. 
    Moad AJ, Simpson GJ. 2004. A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J. Phys. Chem. B 108:113548–6298. A comprehensive theory describes VSFG symmetry selection rules.
    [Google Scholar]
  99. 99. 
    Li Z, Wang J, Li Y, Xiong W. 2016. Solving the “magic angle” challenge in determining molecular orientation heterogeneity at interfaces. J. Phys. Chem. C 120:3620239–46
    [Google Scholar]
  100. 100. 
    Richter LJ, Petralli-Mallow TP, Stephenson JC 1998. Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt. Lett. 23:201594
    [Google Scholar]
  101. 101. 
    Auer BM, Skinner JL. 2008. Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in D2O. J. Chem. Phys. 129:21214705
    [Google Scholar]
  102. 102. 
    Kubo R 1969. A stochastic theory of line shape. Advances in Chemical Physics, Vol. 15: Stochastic Processes in Chemical Physics, KE Shuler 101–27 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  103. 103. 
    Chen X, Hua W, Huang Z, Allen HC 2010. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132:3211336–42
    [Google Scholar]
  104. 104. 
    Tian CS, Shen YR 2009. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. PNAS 106:3615148–53
    [Google Scholar]
  105. 105. 
    Xiong W, Laaser JE, Mehlenbacher RD, Zanni MT. 2011. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. PNAS 108:5220902–7
    [Google Scholar]
  106. 106. 
    Vanselous H, Petersen PB. 2016. Extending the capabilities of heterodyne-detected sum-frequency generation spectroscopy: probing any interface in any polarization combination. J. Phys. Chem. C 120:158175–84
    [Google Scholar]
  107. 107. 
    Xu B, Wu Y, Sun D, Dai H-L, Rao Y. 2015. Stabilized phase detection of heterodyne sum frequency generation for interfacial studies. Opt. Lett. 40:194472–75
    [Google Scholar]
  108. 108. 
    Hosseinpour S, Tang F, Wang F, Livingstone RA, Schlegel SJ et al. 2017. Chemisorbed and physisorbed water at the TiO2/water interface. J. Phys. Chem. Lett. 8:102195–99
    [Google Scholar]
  109. 109. 
    Dickson RM, Norris DJ, Tzeng Y-L, Moerner WE. 1996. Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274:5289966–68
    [Google Scholar]
  110. 110. 
    Lu HP, Xun L, Xie XS. 1998. Single-molecule enzymatic dynamics. Science 282:53951877–82
    [Google Scholar]
  111. 111. 
    Peterman EJG, Sosa H, Moerner WE. 2004. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55:79–96
    [Google Scholar]
  112. 112. 
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:57931642–45
    [Google Scholar]
  113. 113. 
    Huang B, Bates M, Zhuang X. 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  114. 114. 
    Klar TA, Hell SW. 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24:14954
    [Google Scholar]
  115. 115. 
    Snaider JM, Guo Z, Wang T, Yang M, Yuan L et al. 2018. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett 3:61402–8
    [Google Scholar]
  116. 116. 
    Wong CY, Penwell SB, Cotts BL, Noriega R, Wu H, Ginsberg NS. 2013. Revealing exciton dynamics in a small-molecule organic semiconducting film with subdomain transient absorption microscopy. J. Phys. Chem. C 117:4222111–22
    [Google Scholar]
  117. 117. 
    Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF et al. 2013. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano Lett 13:31336–40
    [Google Scholar]
  118. 118. 
    Silva WR, Graefe CT, Frontiera RR. 2016. Toward label-free super-resolution microscopy. ACS Photonics 3:179–86
    [Google Scholar]
  119. 119. 
    Cimatu K, Moore HJ, Lee TR, Baldelli S. 2007. Sum frequency generation imaging of microcontact-printed monolayers derived from aliphatic dithiocarboxylic acids: contrast based on terminal-group orientation. J. Phys. Chem. C 111:3211751–55
    [Google Scholar]
  120. 120. 
    Hernandez M, Chinwangso P, Cimatu K, Srisombat LO, Lee TR, Baldelli S. 2011. Chemical imaging and distribution analysis of mono-, bi-, and tridentate alkanethiol self-assembled monolayers on gold by sum frequency generation imaging microscopy. J. Phys. Chem. C 115:114688–95
    [Google Scholar]
  121. 121. 
    Jang JH, Jacob J, Santos G, Lee TR, Baldelli S. 2013. Image contrast in sum frequency generation microscopy based on monolayer order and coverage. J. Phys. Chem. C 117:2915192–202
    [Google Scholar]
  122. 122. 
    Hedberg J, Leygraf C, Cimatu K, Baldelli S. 2007. Adsorption and structure of octadecanethiol on zinc surfaces as probed by sum frequency generation spectroscopy, imaging, and electrochemical techniques. J. Phys. Chem. C 111:4717587–96
    [Google Scholar]
  123. 123. 
    Shon YS, Colorado R, Williams CT, Bain CD, Lee TR. 2000. Low-density self-assembled monolayers on gold derived from chelating 2-monoalkylpropane-1,3-dithiols. Langmuir 16:2541–48
    [Google Scholar]
  124. 124. 
    Kafle K, Shi R, Lee CM, Mittal A, Park YB et al. 2014. Vibrational sum-frequency-generation (SFG) spectroscopy study of the structural assembly of cellulose microfibrils in reaction woods. Cellulose 21:42219–31
    [Google Scholar]
  125. 125. 
    Perets EA, Yan ECY. 2019. Chiral water superstructures around antiparallel β-sheets observed by chiral vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 10:123395–401
    [Google Scholar]
  126. 126. 
    Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89
    [Google Scholar]
  127. 127. 
    Chen X, Lee CM, Wang HF, Jensen L, Kim SH. 2017. Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals. J. Phys. Chem. C 121:3418876–86
    [Google Scholar]
  128. 128. 
    Keikhosravi A, Bredfeldt JS, Sagar MAK, Eliceiri KW 2014. Second-harmonic generation imaging of cancer. Quantitative Imaging in Cell Biology, Methods in Cell Biology, Vol. 123 JC Waters, T Wittman 531–46 Amsterdam: Elsevier
    [Google Scholar]
  129. 129. 
    Williams RM, Zipfel WR, Webb WW. 2005. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88:21377–86
    [Google Scholar]
  130. 130. 
    Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. 2012. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7:4654–69
    [Google Scholar]
  131. 131. 
    Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M et al. 2005. Microbiology: protein structures forming the shell of primitive bacterial organelles. Science 309:5736936–38
    [Google Scholar]
  132. 132. 
    Wu C, Xie Q, Xu W, Tu M, Jiang L. 2019. Lattice self-assembly of cyclodextrin complexes and beyond. Curr. Opin. Colloid Interface Sci. 39:76–85
    [Google Scholar]
  133. 133. 
    Ravula T, Ramadugu SK, Di Mauro G, Ramamoorthy A. 2017. Bioinspired, size-tunable self-assembly of polymer-lipid bilayer nanodiscs. Angew. Chem. Int. Ed. 56:3811466–70 Corrigendum. 2019. Angew. Chem. Int. Ed. 58(38):13184
    [Google Scholar]
  134. 134. 
    Gavira JM, Hernanz A, Bratu I. 2003. Dehydration of β-cyclodextrin: an IR ν(OH) band profile analysis. Vib. Spectrosc. 32:2137–46
    [Google Scholar]
  135. 135. 
    Liang J, Guo P, Qin X, Gao X, Ma K et al. 2020. Hierarchically chiral lattice self-assembly induced circularly polarized luminescence. ACS Nano 14:33190–98
    [Google Scholar]
  136. 136. 
    Singh PC, Inoue KI, Nihonyanagi S, Yamaguchi S, Tahara T. 2016. Femtosecond hydrogen bond dynamics of bulk-like and bound water at positively and negatively charged lipid interfaces revealed by 2D HD-VSFG spectroscopy. Angew. Chem. Int. Ed. 55:3610621–25
    [Google Scholar]
  137. 137. 
    Livingstone RA, Nagata Y, Bonn M, Backus EHG. 2015. Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. J. Am. Chem. Soc. 137:4714912–19
    [Google Scholar]
  138. 138. 
    Jiang L, Peng Y, Yan Y, Huang J 2011. Aqueous self-assembly of SDS@2β-CD complexes: lamellae and vesicles. Soft Matter 7:51726–31
    [Google Scholar]
  139. 139. 
    Lawrence CP, Skinner JL. 2003. Vibrational spectroscopy of HOD in liquid D2O. III. Spectral diffusion, and hydrogen-bonding and rotational dynamics. J. Chem. Phys. 118:264–72
    [Google Scholar]
  140. 140. 
    Staib A, Hynes JT. 1993. Vibrational predissociation in hydrogen-bonded OH…O complexes via OH stretch-OO stretch energy transfer. Chem. Phys. Lett. 204:1–2197–205
    [Google Scholar]
  141. 141. 
    Piatkowski L, Eisenthal KB, Bakker HJ. 2009. Ultrafast intermolecular energy transfer in heavy water. Phys. Chem. Chem. Phys. 11:409033–38
    [Google Scholar]
  142. 142. 
    Li Y, Wang J, Clark ML, Kubiak CP, Xiong W. 2016. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy. Chem. Phys. Lett. 650:1–6
    [Google Scholar]
  143. 143. 
    Vanselous H, Stingel AM, Petersen PB. 2017. Interferometric 2D sum frequency generation spectroscopy reveals structural heterogeneity of catalytic monolayers on transparent materials. J. Phys. Chem. Lett. 8:4825–30
    [Google Scholar]
  144. 144. 
    Hutson WO, Spencer AP, Harel E. 2018. Ultrafast four-dimensional coherent spectroscopy by projection reconstruction. J. Phys. Chem. Lett. 9:51034–40
    [Google Scholar]
  145. 145. 
    Hansen K, Biegler F, Ramakrishnan R, Pronobis W, Von Lilienfeld OA et al. 2015. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6:122326–31
    [Google Scholar]
  146. 146. 
    Tetko IV, Engkvist O, Koch U, Reymond JL, Chen H. 2016. BIGCHEM: challenges and opportunities for big data analysis in chemistry. Mol. Inform. 35:11–12615–21
    [Google Scholar]
  147. 147. 
    Rey NG, Dlott DD. 2017. Studies of electrochemical interfaces by broadband sum frequency generation. J. Electroanal. Chem. 800:114–25
    [Google Scholar]
  148. 148. 
    Jiang J, Eisenthal KB, Yuste R. 2007. Second harmonic generation in neurons: electro-optic mechanism of membrane potential sensitivity. Biophys. J. 93:526–28
    [Google Scholar]
  149. 149. 
    Ni M, Zhuo S, Iliescu C, So PTC, Mehta JS et al. 2019. Self-assembling amyloid-like peptides as exogenous second harmonic probes for bioimaging applications. J. Biophotonics 12:12e201900065
    [Google Scholar]
  150. 150. 
    Ebben CJ, Ault AP, Ruppel MJ, Ryder OS, Bertram TH et al. 2013. Size-resolved sea spray aerosol particles studied by vibrational sum frequency generation. J. Phys. Chem. A 117:306589–601
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-050510
Loading
/content/journals/10.1146/annurev-physchem-090519-050510
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error