1932

Abstract

Phillip L. Geissler made important contributions to the statistical mechanics of biological polymers, heterogeneous materials, and chemical dynamics in aqueous environments. He devised analytical and computational methods that revealed the underlying organization of complex systems at the frontiers of biology, chemistry, and materials science. In this retrospective we celebrate his work at these frontiers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-101422-030127
2023-04-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physchem/74/1/annurev-physchem-101422-030127.html?itemId=/content/journals/10.1146/annurev-physchem-101422-030127&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Geissler Research Group 2014. Home page. Geissler Research Group https://web.archive.org/web/20180713113556/http://www.cchem.berkeley.edu/plggrp/index.html
    [Google Scholar]
  2. 2.
    Geissler PL. 2013. Water interfaces, solvation, and spectroscopy. Annu. Rev. Phys. Chem. 64:31737
    [Google Scholar]
  3. 3.
    Eaves JD, Loparo JJ, Fecko CJ, Roberts ST, Tokmakoff A, Geissler PL. 2005. Hydrogen bonds in liquid water are broken only fleetingly. PNAS 102:371301922
    [Google Scholar]
  4. 4.
    Bolhuis PG, Dellago C, Geissler PL, Chandler D. 2000. Transition path sampling: throwing ropes over mountains in the dark. J. Phys. Condens. Matter 12:8AA14752
    [Google Scholar]
  5. 5.
    Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. 2000. Ab initio analysis of proton transfer dynamics in (H2O)3H+. Chem. Phys. Lett. 321:322530
    [Google Scholar]
  6. 6.
    Geissler PL, Dellago C, Chandler D. 1999. Chemical dynamics of the protonated water trimer analyzed by transition path sampling. Phys. Chem. Chem. Phys. 1:6131722
    [Google Scholar]
  7. 7.
    Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. 2001. Autoionization in liquid water. Science 291:5511212124
    [Google Scholar]
  8. 8.
    Geissler PL, Chandler D. 2000. Importance sampling and theory of nonequilibrium solvation dynamics in water. J. Chem. Phys. 113:21975965
    [Google Scholar]
  9. 9.
    Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL. 2003. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301:56401698702
    [Google Scholar]
  10. 10.
    Eaves JD, Tokmakoff A, Geissler PL. 2005. Electric field fluctuations drive vibrational dephasing in water. J. Phys. Chem. A 109:42942436
    [Google Scholar]
  11. 11.
    Smith JD, Cappa CD, Wilson KR, Cohen RC, Geissler PL, Saykally RJ. 2005. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. PNAS 102:401417174
    [Google Scholar]
  12. 12.
    Geissler PL. 2005. Temperature dependence of inhomogeneous broadening: on the meaning of isosbestic points. J. Am. Chem. Soc. 127:421493035
    [Google Scholar]
  13. 13.
    Smith JD, Saykally RJ, Geissler PL. 2007. The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129:451384756
    [Google Scholar]
  14. 14.
    Noah-Vanhoucke J, Smith JD, Geissler PL. 2009. Toward a simple molecular understanding of sum frequency generation at air-water interfaces. J. Phys. Chem. B 113:13406574
    [Google Scholar]
  15. 15.
    Noah-Vanhoucke J, Smith JD, Geissler PL. 2009. Statistical mechanics of sum frequency generation spectroscopy for the liquid–vapor interface of dilute aqueous salt solutions. Chem. Phys. Lett. 470:1–32127
    [Google Scholar]
  16. 16.
    Odendahl NL, Geissler PL. 2022. Local ice-like structure at the liquid water surface. J. Am. Chem. Soc. 144:251117888
    [Google Scholar]
  17. 17.
    Lum K, Chandler D, Weeks JD. 1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:22457077
    [Google Scholar]
  18. 18.
    Vaikuntanathan S, Geissler PL. 2014. Putting water on a lattice: the importance of long wavelength density fluctuations in theories of hydrophobic and interfacial phenomena. Phys. Rev. Lett. 112:2020603
    [Google Scholar]
  19. 19.
    Vaikuntanathan S, Rotskoff G, Hudson A, Geissler PL 2016. Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation. PNAS 113:16E222430
    [Google Scholar]
  20. 20.
    Noah-Vanhoucke J, Geissler PL. 2009. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. PNAS 106:361512530
    [Google Scholar]
  21. 21.
    Otten DE, Shaffer PR, Geissler PL, Saykally RJ. 2012. Elucidating the mechanism of selective ion adsorption to the liquid water surface. PNAS 109:37015
    [Google Scholar]
  22. 22.
    McCaffrey DL, Nguyen SC, Cox SJ, Weller H, Alivisatos AP et al. 2017. Mechanism of ion adsorption to aqueous interfaces: graphene/water versus air/water. PNAS 114:511336973
    [Google Scholar]
  23. 23.
    Vaikuntanathan S, Shaffer PR, Geissler PL. 2013. Adsorption of solutes at liquid–vapor interfaces: insights from lattice gas models. Faraday Discuss 160:6374
    [Google Scholar]
  24. 24.
    Byrnes SJ, Geissler PL, Shen Y. 2011. Ambiguities in surface nonlinear spectroscopy calculations. Chem. Phys. Lett. 516:4–611524
    [Google Scholar]
  25. 25.
    Cox SJ, Thorpe DG, Shaffer PR, Geissler PL. 2020. Assessing long-range contributions to the charge asymmetry of ion adsorption at the air–water interface. Chem. Sci. 11:4311791800
    [Google Scholar]
  26. 26.
    Cox SJ, Mandadapu KK, Geissler PL. 2021. Quadrupole-mediated dielectric response and the charge-asymmetric solvation of ions in water. J. Chem. Phys. 154:24244502
    [Google Scholar]
  27. 27.
    Cox SJ, Geissler PL. 2018. Interfacial ion solvation: obtaining the thermodynamic limit from molecular simulations. J. Chem. Phys. 148:22222823
    [Google Scholar]
  28. 28.
    Cox SJ, Geissler PL. 2022. Dielectric response of thin water films: a thermodynamic perspective. Chem. Sci. 13:31910211
    [Google Scholar]
  29. 29.
    Geissler PL, Shakhnovich EI, Grosberg AY. 2004. Solvation versus freezing in a heteropolymer globule. Phys. Rev. E 70:2021802
    [Google Scholar]
  30. 30.
    Geissler PL, Shakhnovich EI. 2002. Reversible stretching of random heteropolymers. Phys. Rev. E 65:5056110
    [Google Scholar]
  31. 31.
    Geissler PL, Shakhnovich EI. 2002. Mechanical response of random heteropolymers. Macromolecules 35:11442936
    [Google Scholar]
  32. 32.
    Whitelam S, Pronk S, Geissler PL. 2008. There and (slowly) back again: entropy-driven hysteresis in a model of DNA overstretching. Biophys. J. 94:7245269
    [Google Scholar]
  33. 33.
    Whitelam S, Pronk S, Geissler PL. 2008. Stretching chimeric DNA: a test for the putative S-form. J. Chem. Phys. 129:20205101
    [Google Scholar]
  34. 34.
    Whitelam S, Geissler PL, Pronk S. 2010. Microscopic implications of S-DNA. Phys. Rev. E 82:2021907
    [Google Scholar]
  35. 35.
    DuBay KH, Geissler PL. 2009. Calculation of proteins' total side-chain torsional entropy and its influence on protein–ligand interactions. J. Mol. Biol. 391:248497
    [Google Scholar]
  36. 36.
    DuBay KH, Bothma JP, Geissler PL. 2011. Long-range intra-protein communication can be transmitted by correlated side-chain fluctuations alone. PLOS Comput. Biol. 7:9e1002168
    [Google Scholar]
  37. 37.
    Bowman GR, Geissler PL. 2012. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. PNAS 109:291168186
    [Google Scholar]
  38. 38.
    Bowman GR, Geissler PL. 2014. Extensive conformational heterogeneity within protein cores. J. Phys. Chem. B 118:24641723
    [Google Scholar]
  39. 39.
    DuBay KH, Bowman GR, Geissler PL. 2015. Fluctuations within folded proteins: implications for thermodynamic and allosteric regulation. Acc. Chem. Res. 48:41098105
    [Google Scholar]
  40. 40.
    Smith SB, Cui Y, Bustamante C. 1996. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:525079599
    [Google Scholar]
  41. 41.
    Mao H, Arias-Gonzalez JR, Smith SB, Tinoco I Jr., Bustamante C 2005. Temperature control methods in a laser tweezers system. Biophys. J. 89:2130816
    [Google Scholar]
  42. 42.
    Wenner JR, Williams MC, Rouzina I, Bloomfield VA. 2002. Salt dependence of the elasticity and overstretching transition of single DNA molecules. Biophys. J. 82:6316069
    [Google Scholar]
  43. 43.
    Cocco S, Yan J, Léger JF, Chatenay D, Marko JF. 2004. Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70:1011910
    [Google Scholar]
  44. 44.
    Fu H, Chen H, Marko JF, Yan J 2010. Two distinct overstretched DNA states. Nucleic Acids Res 38:165594600
    [Google Scholar]
  45. 45.
    Zhang X, Chen H, Fu H, Doyle PS, Yan J 2012. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. PNAS 109:2181038
    [Google Scholar]
  46. 46.
    Garcia HG, Grayson P, Han L, Inamdar MM, Kondev J et al. 2007. Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85:211530
    [Google Scholar]
  47. 47.
    Trepagnier EH, Radenovic A, Sivak D, Geissler P, Liphardt J. 2007. Controlling DNA capture and propagation through artificial nanopores. Nano Lett 7:9282430
    [Google Scholar]
  48. 48.
    Sivak DA, Geissler PL. 2012. Consequences of local inter-strand dehybridization for large-amplitude bending fluctuations of double-stranded DNA. J. Chem. Phys. 136:4045102
    [Google Scholar]
  49. 49.
    Shroff H, Sivak D, Siegel JJ, McEvoy A, Siu M et al. 2008. Optical measurement of mechanical forces inside short DNA loops. Biophys. J. 94:6217986
    [Google Scholar]
  50. 50.
    Mastroianni AJ, Sivak DA, Geissler PL, Alivisatos AP. 2009. Probing the conformational distributions of subpersistence length DNA. Biophys. J. 97:5140817
    [Google Scholar]
  51. 51.
    N. 1983. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12:183210
    [Google Scholar]
  52. 52.
    Gin BC, Garrahan JP, Geissler PL. 2009. The limited role of nonnative contacts in the folding pathways of a lattice protein. J. Mol. Biol. 392:5130314
    [Google Scholar]
  53. 53.
    Faísca PFN, Nunes A, Travasso RD, Shakhnovich EI. 2010. Non-native interactions play an effective role in protein folding dynamics. Protein Sci 19:112196209
    [Google Scholar]
  54. 54.
    Best RB, Hummer G, Eaton WA. 2013. Native contacts determine protein folding mechanisms in atomistic simulations. PNAS 110:441787479
    [Google Scholar]
  55. 55.
    Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. 2011. How fast-folding proteins fold. Science 334:605551720
    [Google Scholar]
  56. 56.
    Mey ASJS, Geissler PL, Garrahan JP. 2014. Rare-event trajectory ensemble analysis reveals metastable dynamical phases in lattice proteins. Phys. Rev. E 89:3032109
    [Google Scholar]
  57. 57.
    Kussell E, Shimada J, Shakhnovich EI. 2001. Excluded volume in protein side-chain packing. J. Mol. Biol. 311:118393
    [Google Scholar]
  58. 58.
    Frederick KK, Marlow MS, Valentine KG, Wand AJ. 2007. Conformational entropy in molecular recognition by proteins. Nature 448:32529
    [Google Scholar]
  59. 59.
    Wankowicz SA, de Oliveira SH, Hogan DW, van den Bedem H, Fraser JS 2022. Ligand binding remodels protein side-chain conformational heterogeneity. eLife 11:e74114
    [Google Scholar]
  60. 60.
    Bowman GR, Bolin ER, Hart KM, Maguire BC, Marqusee S. 2015. Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. PNAS 112:9273439
    [Google Scholar]
  61. 61.
    Schwierz N, Frost CV, Geissler PL, Zacharias M. 2016. Dynamics of seeded Aβ40-fibril growth from atomistic molecular dynamics simulations: kinetic trapping and reduced water mobility in the locking step. J. Am. Chem. Soc. 138:252739
    [Google Scholar]
  62. 62.
    Schwierz N, Frost CV, Geissler PL, Zacharias M. 2017. From Aβ filament to fibril: molecular mechanism of surface-activated secondary nucleation from all-atom MD simulations. J. Phys. Chem. B 121:467182
    [Google Scholar]
  63. 63.
    Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA. 2008. Membrane-induced bundling of actin filaments. Nat. Phys. 4:1078993
    [Google Scholar]
  64. 64.
    Pronk S, Geissler PL, Fletcher DA. 2008. Limits of filopodium stability. Phys. Rev. Lett. 100:25258102
    [Google Scholar]
  65. 65.
    Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA. 2012. Actin filament curvature biases branching direction. PNAS 109:8291318
    [Google Scholar]
  66. 66.
    Fletcher DA, Geissler PL. 2009. Active biological materials. Annu. Rev. Phys. Chem. 60:46986
    [Google Scholar]
  67. 67.
    Pasqua A, Maibaum L, Oster G, Fletcher DA, Geissler PL. 2010. Large-scale simulations of fluctuating biological membranes. J. Chem. Phys. 132:15154107
    [Google Scholar]
  68. 68.
    Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Membrane bending by protein–protein crowding. Nat. Cell Biol. 14:994449
    [Google Scholar]
  69. 69.
    Schmid EM, Bakalar MH, Choudhuri K, Weichsel J, Ann HS et al. 2016. Size-dependent protein segregation at membrane interfaces. Nat. Phys. 12:770411
    [Google Scholar]
  70. 70.
    Rogers JR, Geissler PL. 2020. Breakage of hydrophobic contacts limits the rate of passive lipid exchange between membranes. J. Phys. Chem. B 124:28588498
    [Google Scholar]
  71. 71.
    Rogers JR, Espinoza Garcia G, Geissler PL 2021. Membrane hydrophobicity determines the activation free energy of passive lipid transport. Biophys. J. 120:17371831
    [Google Scholar]
  72. 72.
    Rosnik AM, Geissler PL. 2020. Lattice models for protein organization throughout thylakoid membrane stacks. Biophys. J. 118:11268093
    [Google Scholar]
  73. 73.
    Schneider AR, Geissler PL. 2014. Coarse-grained computer simulation of dynamics in thylakoid membranes: methods and opportunities. Front. Plant Sci. 4:555
    [Google Scholar]
  74. 74.
    Noriega R, Finley DT, Haberstroh J, Geissler PL, Francis MB, Ginsberg NS. 2015. Manipulating excited-state dynamics of individual light-harvesting chromophores through restricted motions in a hydrated nanoscale protein cavity. J. Phys. Chem. B 119:23696373
    [Google Scholar]
  75. 75.
    Delor M, Dai J, Roberts TD, Rogers JR, Hamed SM et al. 2018. Exploiting chromophore–protein interactions through linker engineering to tune photoinduced dynamics in a biomimetic light-harvesting platform. J. Am. Chem. Soc. 140:20627887
    [Google Scholar]
  76. 76.
    Rogers JR, Geissler PL. 2022. Ceramide-1-phosphate transfer protein enhances lipid transport by disrupting hydrophobic lipid–membrane contacts. bioRxiv 2022.09.10.507427. https://doi.org/10.1101/2022.09.10.507427
    [Crossref]
  77. 77.
    Amarnath K, Bennett DIG, Schneider AR, Fleming GR. 2016. Multiscale model of light harvesting by photosystem II in plants. PNAS 113:5115661
    [Google Scholar]
  78. 78.
    Bennett DIG, Fleming GR, Amarnath K. 2018. Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting. PNAS 115:41E952331
    [Google Scholar]
  79. 79.
    Wood WH, Johnson MP. 2020. Modeling the role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII interactions in state transitions. Biophys. J. 119:228799
    [Google Scholar]
  80. 80.
    Schneider AR, Geissler PL. 2013. Coexistence of fluid and crystalline phases of proteins in photosynthetic membranes. Biophys. J. 105:5116170
    [Google Scholar]
  81. 81.
    Miller RA, Stephanopoulos N, McFarland JM, Rosko AS, Geissler PL, Francis MB. 2010. Impact of assembly state on the defect tolerance of TMV-based light harvesting arrays. J. Am. Chem. Soc. 132:17606874
    [Google Scholar]
  82. 82.
    Hamerlynck LM, Bischoff AJ, Rogers JR, Roberts TD, Dai J et al. 2022. Static disorder has dynamic impact on energy transport in biomimetic light-harvesting complexes. J. Phys. Chem. B 126:40798191
    [Google Scholar]
  83. 83.
    Whitesides GM, Grzybowski B. 2002. Self-assembly at all scales. Science 295:5564241821
    [Google Scholar]
  84. 84.
    Whitelam S, Feng EH, Hagan MF, Geissler PL. 2009. The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5:6125162
    [Google Scholar]
  85. 85.
    Grünwald M, Geissler PL. 2014. Patterns without patches: hierarchical assembly of complex structures from simple building blocks. ACS Nano 8:6589197
    [Google Scholar]
  86. 86.
    Rabani E, Reichman DR, Geissler PL, Brus LE. 2003. Drying-mediated self-assembly of nanoparticles. Nature 426:696427174
    [Google Scholar]
  87. 87.
    Ku J, Aruguete DM, Alivisatos AP, Geissler PL. 2011. Self-assembly of magnetic nanoparticles in evaporating solution. J. Am. Chem. Soc. 133:483848
    [Google Scholar]
  88. 88.
    Whitelam S, Rogers C, Pasqua A, Paavola C, Trent J, Geissler PL. 2009. The impact of conformational fluctuations on self-assembly: cooperative aggregation of archaeal chaperonin proteins. Nano Lett 9:129297
    [Google Scholar]
  89. 89.
    Grünwald M, Tricard S, Whitesides GM, Geissler PL. 2016. Exploiting non-equilibrium phase separation for self-assembly. Soft Matter 12:5151724
    [Google Scholar]
  90. 90.
    Klymko K, Geissler PL, Whitelam S. 2016. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles. Phys. Rev. E 94:2022608
    [Google Scholar]
  91. 91.
    Hagan MF, Chandler D. 2006. Dynamic pathways for viral capsid assembly. Biophys. J. 91:14254
    [Google Scholar]
  92. 92.
    Tang J, Ge G, Brus LE. 2002. Gas–liquid–solid phase transition model for two-dimensional nanocrystal self-assembly on graphite. J. Phys. Chem. B 106:22565358
    [Google Scholar]
  93. 93.
    Park J, Zheng H, Lee WC, Geissler PL, Rabani E, Alivisatos AP. 2012. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6:3207885
    [Google Scholar]
  94. 94.
    Gordon OM, Hodgkinson JE, Farley SM, Hunsicker EL, Moriarty PJ. 2020. Automated searching and identification of self-organized nanostructures. Nano Lett 20:10768893
    [Google Scholar]
  95. 95.
    Whitelam S, Geissler PL. 2007. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. J. Chem. Phys. 127:15154101
    [Google Scholar]
  96. 96.
    Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. 2021. A primer on the oxDNA model of DNA: when to use it, how to simulate it and how to interpret the results. Front. Mol. Biosci. 8:693710
    [Google Scholar]
  97. 97.
    Henzie J, Grünwald M, Widmer-Cooper A, Geissler PL, Yang P 2012. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11:213137
    [Google Scholar]
  98. 98.
    Chai Y, Hasnain J, Bahl K, Wong M, Li D et al. 2020. Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface. Sci. Adv. 6:48eabb8675
    [Google Scholar]
  99. 99.
    Porter CL, Crocker JC. 2017. Directed assembly of particles using directional DNA interactions. Curr. Opin. Colloid Interface Sci. 30:3444
    [Google Scholar]
  100. 100.
    Vissers T, Wysocki A, Rex M, Löwen H, Royall CP et al. 2011. Lane formation in driven mixtures of oppositely charged colloids. Soft Matter 7:6235256
    [Google Scholar]
  101. 101.
    Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ. 2010. Organization, structure, and assembly of α-carboxysomes determined by electron cryotomography of intact cells. J. Mol. Biol. 396:110517
    [Google Scholar]
  102. 102.
    Rotskoff GM, Geissler PL. 2018. Robust nonequilibrium pathways to microcompartment assembly. PNAS 115:25634146
    [Google Scholar]
  103. 103.
    Cates ME, Tailleur J. 2015. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6:21944
    [Google Scholar]
  104. 104.
    Omar AK, Klymko K, GrandPre T, Geissler PL. 2021. Phase diagram of active Brownian spheres: crystallization and the metastability of motility-induced phase separation. Phys. Rev. Lett. 126:18188002
    [Google Scholar]
  105. 105.
    Geissler PL. 2021. How nanoscience changes the way chemists think: What's the difference between a phase transition and a chemical reaction? Uploaded to YouTube by BerkeleyChemistryLive. Sep. 27. https://youtu.be/4GQAfKIqJjo
  106. 106.
    Grünwald M, Lutker K, Alivisatos AP, Rabani E, Geissler PL. 2013. Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals. Nano Lett 13:4136772
    [Google Scholar]
  107. 107.
    Ye X, Jones MR, Frechette LB, Chen Q, Powers AS et al. 2016. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 354:631487477
    [Google Scholar]
  108. 108.
    Hauwiller MR, Frechette LB, Jones MR, Ondry JC, Rotskoff GM et al. 2018. Unraveling kinetically-driven mechanisms of gold nanocrystal shape transformations using graphene liquid cell electron microscopy. Nano Lett 18:9573137
    [Google Scholar]
  109. 109.
    Frechette LB, Dellago C, Geissler PL. 2019. Consequences of lattice mismatch for phase equilibrium in heterostructured solids. Phys. Rev. Lett. 123:13135701
    [Google Scholar]
  110. 110.
    Frechette LB, Dellago C, Geissler PL. 2020. Origin of mean-field behavior in an elastic Ising model. Phys. Rev. B 102:2024102
    [Google Scholar]
  111. 111.
    Frechette LB, Dellago C, Geissler PL. 2021. Elastic forces drive nonequilibrium pattern formation in a model of nanocrystal ion exchange. PNAS 118:52e2114551118
    [Google Scholar]
  112. 112.
    Widmer-Cooper A, Geissler P 2014. Orientational ordering of passivating ligands on CdS nanorods in solution generates strong rod–rod interactions. Nano Lett 14:15765
    [Google Scholar]
  113. 113.
    Widmer-Cooper A, Geissler PL 2016. Ligand-mediated interactions between nanoscale surfaces depend sensitively and nonlinearly on temperature, facet dimensions, and ligand coverage. ACS Nano 10:2187787
    [Google Scholar]
  114. 114.
    Grünwald M, Zayak A, Neaton JB, Geissler PL, Rabani E. 2012. Transferable pair potentials for CdS and ZnS crystals. J. Chem. Phys. 136:23234111
    [Google Scholar]
  115. 115.
    Grünwald M, Dellago C, Geissler PL. 2007. An efficient transition path sampling algorithm for nanoparticles under pressure. J. Chem. Phys. 127:15154718
    [Google Scholar]
  116. 116.
    Grünwald M, Dellago C, Geissler PL. 2008. Precision shooting: sampling long transition pathways. J. Chem. Phys. 129:19194101
    [Google Scholar]
  117. 117.
    Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP. 2010. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett 10:1195201
    [Google Scholar]
  118. 118.
    Satish P. 2019. Mapping the phase diagram of alkyl ligands on nanoparticle surfaces with molecular simulations and field theoretic models PhD Thesis, Univ. Calif. Berkeley:
  119. 119.
    Son DH, Hughes SM, Yin Y, Alivisatos AP 2004. Cation exchange reactions in ionic nanocrystals. 3065698100912
  120. 120.
    Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang LW, Alivisatos AP. 2007. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317:583635558
    [Google Scholar]
  121. 121.
    Dellago C, Bolhuis PG, Geissler PL. 2002. Transition path sampling. Advances in Chemical Physics, Vol. 123 I Prigogine, SA Rice 178. Hoboken, NJ: John Wiley & Sons, Ltd.
    [Google Scholar]
  122. 122.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL. 2002. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53:291318
    [Google Scholar]
  123. 123.
    Dellago C, Bolhuis P, Geissler P 2006. Transition path sampling methods. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol. 1 M Ferrario, G Ciccotti, K Binder 34991. Lect. Notes Phys. 703 Berlin: Springer
    [Google Scholar]
  124. 124.
    Dellago C, Geissler PL. 2003. Monte Carlo sampling in path space: calculating time correlation functions by transforming ensembles of trajectories. AIP Conf. Proc 690:9299
    [Google Scholar]
  125. 125.
    Geissler PL, Dellago C. 2004. Equilibrium time correlation functions from irreversible transformations in trajectory space. J. Phys. Chem. B 108:21666772
    [Google Scholar]
  126. 126.
    Geissler PL, Van Voorhis T, Dellago C. 2000. Potential energy landscape for proton transfer in (H2O)3H+: comparison of density functional theory and wavefunction-based methods. Chem. Phys. Lett. 324:114955
    [Google Scholar]
  127. 127.
    Gingrich TR, Geissler PL. 2015. Preserving correlations between trajectories for efficient path sampling. J. Chem. Phys. 142:23234104
    [Google Scholar]
  128. 128.
    Falkner S, Coretti A, Romano S, Geissler PL, Dellago C. 2022. Conditioning normalizing flows for rare event sampling. arXiv:2207.14530 [physics.comp-ph]
  129. 129.
    Coretti A, Falkner S, Geissler PL, Dellago C. 2022. Learning mappings between equilibrium states of liquid systems using normalizing flows. arXiv:2208.10420 [physics.comp-ph]
  130. 130.
    Pronk S, Geissler PL. 2009. Faster strain fluctuation methods through partial volume updates. J. Chem. Phys. 130:19194706
    [Google Scholar]
  131. 131.
    Vaikuntanathan S, Gingrich TR, Geissler PL. 2014. Dynamic phase transitions in simple driven kinetic networks. Phys. Rev. E 89:6062108
    [Google Scholar]
  132. 132.
    Gingrich TR, Vaikuntanathan S, Geissler PL. 2014. Heterogeneity-induced large deviations in activity and (in some cases) entropy production. Phys. Rev. E 90:4042123
    [Google Scholar]
  133. 133.
    Gingrich TR, Rotskoff GM, Vaikuntanathan S, Geissler PL. 2014. Efficiency and large deviations in time-asymmetric stochastic heat engines. N. J. Phys. 16:10102003
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-101422-030127
Loading
/content/journals/10.1146/annurev-physchem-101422-030127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error