1932

Abstract

High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022522-102832
2023-02-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-022522-102832.html?itemId=/content/journals/10.1146/annurev-physiol-022522-102832&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Minamiyama Y, Takemura S, Kodai S, Shinkawa H, Tsukioka T et al. 2010. Iron restriction improves type 2 diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Am. J. Physiol. Endocrinol. Metab. 298:E1140–49
    [Google Scholar]
  2. 2.
    Puig S, Askeland E, Thiele DJ. 2005. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110
    [Google Scholar]
  3. 3.
    Nemeth E, Ganz T. 2021. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int. J. Mol. Sci. 22:6493
    [Google Scholar]
  4. 4.
    Philpott CC, Patel SJ, Protchenko O. 2020. Management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones. Biochim. Biophys. Acta Mol. Cell. Res. 1867:118830
    [Google Scholar]
  5. 5.
    Denic S, Agarwal MM. 2007. Nutritional iron deficiency: an evolutionary perspective. Nutrition 23:603–14
    [Google Scholar]
  6. 6.
    USDA (US Dep. Agric.) 2014. Nutrient content of the US food supply Cent. Nutr. Policy Promot., Food Nutr. Serv., US Dep. Agric Alexandria, VA: https://www.fns.usda.gov/USfoodsupply
  7. 7.
    Fargion S, Mattioli M, Fracanzani AL, Sampietro M, Tavazzi D et al. 2001. Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis. Am. J. Gastroenterol. 96:2448–55
    [Google Scholar]
  8. 8.
    Altamura S, Muckenthaler MU. 2009. Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis. J. Alzheimer's Dis. 16:879–95
    [Google Scholar]
  9. 9.
    Toyokuni S. 2009. Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100:9–16
    [Google Scholar]
  10. 10.
    Zhang W, Iso H, Ohira T, Date OC, Tanabe N et al. 2012. Associations of dietary iron intake with mortality from cardiovascular disease: the JACC study. J. Epidemiol. 22:484–93
    [Google Scholar]
  11. 11.
    Liu B, Sun Y, Xu G, Snetselaar LG, Ludewig G et al. 2019. Association between body iron status and leukocyte telomere length, a biomarker of biological aging, in a nationally representative sample of US adults. J. Acad. Nutr. Diet. 119:617–25
    [Google Scholar]
  12. 12.
    Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J et al. 2019. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol. Psychiatry 25:2932–941
    [Google Scholar]
  13. 13.
    Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. 2016. Metformin as a tool to target aging. Cell Metab 23:1060–65Reveals similarities of diabetes to other conditions associated with aging, iron, nutrition, and metformin responsiveness.
    [Google Scholar]
  14. 14.
    Stynen B, Abd-Rabbo D, Kowarzyk J, Miller-Fleming L, Aulakh SK et al. 2018. Changes of cell biochemical states are revealed in protein homomeric complex dynamics. Cell 175:1418–29.e9Very innovative, tour de force study that links iron metabolism and metformin action in yeast.
    [Google Scholar]
  15. 15.
    Buysschaert M, Paris I, Selvais P, Hermans MP. 1997. Clinical aspects of diabetes secondary to idiopathic haemochromatosis in French-speaking Belgium. Diabetes Metab 23:308–13
    [Google Scholar]
  16. 16.
    McClain D, Abraham D, Rogers J, Brady R, Gault P et al. 2006. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis. Diabetologia 49:1661–69
    [Google Scholar]
  17. 17.
    Abraham D, Rogers J, Gault P, Kushner JP, McClain DA. 2006. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia 49:2546–51
    [Google Scholar]
  18. 18.
    Dmochowski K, Finegood DT, Francombe W, Tyler B, Zinman B. 1993. Factors determining glucose tolerance in patients with thalassemia major. J. Clin. Endocrinol. Metab. 77:478–83One of the first reports to examine mechanisms of diabetes in iron overload.
    [Google Scholar]
  19. 19.
    De Sanctis V, Soliman AT, Elsedfy H, Pepe A, Kattamis C et al. 2016. Diabetes and glucose metabolism in thalassemia major: an update. Expert Rev. Hematol. 9:401–8
    [Google Scholar]
  20. 20.
    Baker KS, Ness KK, Steinberger J, Carter A, Francisco L et al. 2007. Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood 109:1765–72
    [Google Scholar]
  21. 21.
    Ford ES, Cogswell ME. 1999. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 22:1978–83
    [Google Scholar]
  22. 22.
    Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. 2004. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. JAMA 291:711–17
    [Google Scholar]
  23. 23.
    Simcox JA, McClain DA. 2013. Iron and diabetes risk. Cell Metab 17:329–41
    [Google Scholar]
  24. 24.
    Fernandez-Real JM, McClain D, Manco M. 2015. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 38:2169–76
    [Google Scholar]
  25. 25.
    Liu J, Li Q, Yang Y, Ma L 2020. Iron metabolism and type 2 diabetes mellitus: a meta-analysis and systematic review. J. Diabetes Investig. 11:946–55
    [Google Scholar]
  26. 26.
    Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA et al. 2010. Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell function in the obese (ob/ob lep−/−) mouse. Am. J. Physiol. Endocrinol. Metab. 298:E1236–43
    [Google Scholar]
  27. 27.
    Houschyar KS, Ludtke R, Dobos GJ, Kalus U, Brocker-Preuss M et al. 2012. Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial. BMC Med 10:54
    [Google Scholar]
  28. 28.
    Facchini FS, Hua NW, Stoohs RA. 2002. Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology 122:931–39
    [Google Scholar]
  29. 29.
    Fernandez-Real JM, Lopez-Bermejo A, Ricart W. 2005. Iron stores, blood donation, and insulin sensitivity and secretion. Clin. Chem. 51:1201–5
    [Google Scholar]
  30. 30.
    Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D et al. 2012. Adipocyte iron regulates adiponectin and insulin sensitivity. J. Clin. Investig. 122:3529–40
    [Google Scholar]
  31. 31.
    Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Hernandez-Aguado I, Ricart W. 2002. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and β-cell function. Diabetes 51:1000–4
    [Google Scholar]
  32. 32.
    Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PW, Wood RJ. 2002. Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am. J. Clin. Nutr. 76:1375–84
    [Google Scholar]
  33. 33.
    Beaton MD, Chakrabarti S, Adams PC. 2014. Inflammation is not the cause of an elevated serum ferritin in non-alcoholic fatty liver disease. Ann. Hepatol. 13:353–56
    [Google Scholar]
  34. 34.
    Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA et al. 2012. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 55:77–85
    [Google Scholar]
  35. 35.
    Nelson JE, Wilson L, Brunt EM, Yeh MM, Kleiner DE et al. 2011. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 53:448–57
    [Google Scholar]
  36. 36.
    Ryan JD, Armitage AE, Cobbold JF, Banerjee R, Borsani O et al. 2018. Hepatic iron is the major determinant of serum ferritin in NAFLD patients. Liver Int 38:164–73
    [Google Scholar]
  37. 37.
    Valenti L, Swinkels DW, Burdick L, Dongiovanni P, Tjalsma H et al. 2011. Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 21:568–75
    [Google Scholar]
  38. 38.
    Ausk KJ, Ioannou GN. 2008. Is obesity associated with anemia of chronic disease? A population-based study. Obesity 16:2356–61
    [Google Scholar]
  39. 39.
    Wenzel BJ, Stults HB, Mayer J. 1962. Hypoferraemia in obese adolescents. Lancet 2:327–28
    [Google Scholar]
  40. 40.
    Sandri B, Lubach G, Lock E, Georgieff M, Kling P, Rao R. 2020. Effects of iron deficiency anemia and its rapid correction on the serum metabolomic profile of rhesus infants. Curr. Dev. Nutr. 4:1070
    [Google Scholar]
  41. 41.
    Akohoue SA, Shankar S, Milne GL, Morrow J, Chen KY et al. 2007. Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr. Res. 61:233–38
    [Google Scholar]
  42. 42.
    Huang J, Jones D, Luo B, Sanderson M, Soto J et al. 2011. Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60:80–87
    [Google Scholar]
  43. 43.
    Abbas MA, Abraham D, Kushner JP, McClain DA. 2014. Anti-obesity and pro-diabetic effects of hemochromatosis. Obesity 22:2120–22
    [Google Scholar]
  44. 44.
    del Giudice EM, Santoro N, Amato A, Brienza C, Calabro P et al. 2009. Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J. Clin. Endocrinol. Metab. 94:5102–7
    [Google Scholar]
  45. 45.
    Gonzalez-Dominguez A, Visiedo-Garcia FM, Dominguez-Riscart J, Gonzalez-Dominguez R, Mateos RM, Lechuga-Sancho AM. 2020. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci. 21:5529
    [Google Scholar]
  46. 46.
    Varghese J, James JV, Anand R, Narayanasamy M, Rebekah G et al. 2020. Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet. J. Nutr. Biochem. 84:108441
    [Google Scholar]
  47. 47.
    Salaye L, Bychkova I, Sink S, Kovalic AJ, Bharadwaj MS et al. 2019. A low iron diet protects from steatohepatitis in a mouse model. Nutrients 11:2172
    [Google Scholar]
  48. 48.
    Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. 2016. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu. Rev. Nutr 36:241–73Outstanding review with a special focus on iron and insulin secretion.
    [Google Scholar]
  49. 49.
    Krümmel B, Plötz T, Jörns A, Lenzen S, Mehmeti I. 2021. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated β-cell death. Biochim. Biophys. Acta Mol. Basis Dis. 1867:166114
    [Google Scholar]
  50. 50.
    Sampaio AF, Silva M, Dornas WC, Costa DC, Silva ME et al. 2014. Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals 27:349–61
    [Google Scholar]
  51. 51.
    Berndt C, Lillig CH. 2017. Glutathione, glutaredoxins, and iron. Antioxid. Redox Signal. 27:1235–51
    [Google Scholar]
  52. 52.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72
    [Google Scholar]
  53. 53.
    Masaldan S, Belaidi AA, Ayton S, Bush AI. 2019. Cellular senescence and iron dyshomeostasis in Alzheimer's disease. Pharmaceuticals 12:93
    [Google Scholar]
  54. 54.
    Thompson PJ, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. 2019. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab 29:1045–60.e10
    [Google Scholar]
  55. 55.
    Hansen JB, Dos Santos LRB, Liu Y, Prentice KJ, Teudt F et al. 2018. Glucolipotoxic conditions induce β-cell iron import, cytosolic ROS formation and apoptosis. J. Mol. Endocrinol. 61:69–77
    [Google Scholar]
  56. 56.
    Li D, Jiang C, Mei G, Zhao Y, Chen L et al. 2020. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 12:2954
    [Google Scholar]
  57. 57.
    Bruni A, Bornstein S, Linkermann A, Shapiro AMJ. 2018. Regulated cell death seen through the lens of islet transplantation. Cell Transplant 27:890–901
    [Google Scholar]
  58. 58.
    Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. 1998. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. PNAS 95:1148–53
    [Google Scholar]
  59. 59.
    Lortz S, Tiedge M. 2003. Sequential inactivation of reactive oxygen species by combined overexpression of SOD isoforms and catalase in insulin-producing cells. Free Radic. Biol. Med. 34:683–88
    [Google Scholar]
  60. 60.
    Hansen JB, Tonnesen MF, Madsen AN, Hagedorn PH, Friberg J et al. 2012. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokines. Cell Metab 16:449–61
    [Google Scholar]
  61. 61.
    Ramey G, Faye A, Durel B, Viollet B, Vaulont S. 2007. Iron overload in Hepc1−/− mice is not impairing glucose homeostasis. FEBS Lett 581:1053–57
    [Google Scholar]
  62. 62.
    Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL et al. 2004. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 145:5305–12
    [Google Scholar]
  63. 63.
    Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS et al. 2015. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Investig. 125:3847–60
    [Google Scholar]
  64. 64.
    Rouault TA, Hentze MW, Caughman SW, Harford JB, Klausner RD. 1988. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241:1207–10
    [Google Scholar]
  65. 65.
    Harrison-Findik DD. 2007. Role of alcohol in the regulation of iron metabolism. World J. Gastroenterol. 13:4925–30
    [Google Scholar]
  66. 66.
    Santos M, Anderson CP, Neschen S, Zumbrennen-Bullough KB, Romney SJ et al. 2020. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat. Commun. 11:296
    [Google Scholar]
  67. 67.
    Sogaard KL, Ellervik C, Svensson J, Thorsen SU. 2017. The role of iron in type 1 diabetes etiology: a systematic review of new evidence on a long-standing mystery. Rev. Diabet. Stud. 14:269–78
    [Google Scholar]
  68. 68.
    Lee YS, Olefsky J. 2021. Chronic tissue inflammation and metabolic disease. Genes Dev 35:307–28
    [Google Scholar]
  69. 69.
    Scherer PE. 2019. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62:223–32
    [Google Scholar]
  70. 70.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–32
    [Google Scholar]
  71. 71.
    Hu E, Liang P, Spiegelman BM. 1996. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271:10697–703
    [Google Scholar]
  72. 72.
    Munzberg H, Singh P, Heymsfield SB, Yu S, Morrison CD 2020. Recent advances in understanding the role of leptin in energy homeostasis. F1000Res 9:F1000
    [Google Scholar]
  73. 73.
    Straub LG, Scherer PE. 2019. Metabolic messengers: adiponectin. Nat. Metab. 1:334–39
    [Google Scholar]
  74. 74.
    Gao Y, Li Z, Gabrielsen JS, Simcox JA, Lee SH et al. 2015. Adipocyte iron regulates leptin and food intake. J. Clin. Investig. 125:3681–91
    [Google Scholar]
  75. 75.
    Tang Y, Wang D, Zhang H, Zhang Y, Wang J et al. 2021. Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin. J. Cell Physiol. 236:7544–53
    [Google Scholar]
  76. 76.
    Coimbra S, Catarino C, Santos-Silva A. 2013. The role of adipocytes in the modulation of iron metabolism in obesity. Obes. Rev. 14:771–79
    [Google Scholar]
  77. 77.
    Gotardo EM, dos Santos AN, Miyashiro RA, Gambero S, Rocha T et al. 2013. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. J. Nutr. Sci. Vitaminol. 59:454–61
    [Google Scholar]
  78. 78.
    Das SK, Sharma NK. 2014. Expression quantitative trait analyses to identify causal genetic variants for type 2 diabetes susceptibility. World J. Diabetes 5:97–114Study linking expression of iron-related genes to human genetic variations that determine glucose homeostasis.
    [Google Scholar]
  79. 79.
    Britton L, Jaskowski LA, Bridle K, Secondes E, Wallace D et al. 2018. Ferroportin expression in adipocytes does not contribute to iron homeostasis or metabolic responses to a high calorie diet. Cell. Mol. Gastroenterol. Hepatol. 5:319–31
    [Google Scholar]
  80. 80.
    Zhang Z, Funcke JB, Zi Z, Zhao S, Straub LG et al. 2021. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metab 33:1624–39.e9Evidence that adipocytes sense nutritional status but also iron to control whole-body fuel utilization.
    [Google Scholar]
  81. 81.
    Wlazlo N, van Greevenbroek MM, Ferreira I, Jansen EH, Feskens EJ et al. 2013. Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study. Diabetes Care 36:309–15
    [Google Scholar]
  82. 82.
    Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A et al. 2012. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 55:2613–21
    [Google Scholar]
  83. 83.
    Pihan-Le Bars F, Bonnet F, Loreal O, Le Loupp AG, Ropert M et al. 2016. Indicators of iron status are correlated with adiponectin expression in adipose tissue of patients with morbid obesity. Diabetes Metab 42:105–11
    [Google Scholar]
  84. 84.
    Ma X, Pham VT, Mori H, MacDougald OA, Shah YM, Bodary PF. 2017. Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLOS ONE 12:e0179889
    [Google Scholar]
  85. 85.
    Kusminski CM, Ghaben AL, Morley TS, Samms RJ, Adams AC et al. 2020. A novel model of diabetic complications: adipocyte mitochondrial dysfunction triggers massive β-cell hyperplasia. Diabetes 69:313–30
    [Google Scholar]
  86. 86.
    Briones L, Andrews M, Pizarro F, Arredondo-Olguin M. 2018. Expression of genes associated with inflammation and iron metabolism in 3T3-L1 cells induced with macrophages-conditioned medium, glucose and iron. Biometals 31:595–604
    [Google Scholar]
  87. 87.
    Yan HF, Liu ZY, Guan ZA, Guo C. 2018. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr. Connect. 7:604–16
    [Google Scholar]
  88. 88.
    Dongiovanni P, Ruscica M, Rametta R, Recalcati S, Steffani L et al. 2013. Dietary iron overload induces visceral adipose tissue insulin resistance. Am. J. Pathol. 182:2254–63
    [Google Scholar]
  89. 89.
    Moreno-Navarrete JM, Ortega F, Rodriguez A, Latorre J, Becerril S et al. 2017. HMOX1 as a marker of iron excess-induced adipose tissue dysfunction, affecting glucose uptake and respiratory capacity in human adipocytes. Diabetologia 60:915–26
    [Google Scholar]
  90. 90.
    Rumberger JM, Peters T Jr., Burrington C, Green A. 2004. Transferrin and iron contribute to the lipolytic effect of serum in isolated adipocytes. Diabetes 53:2535–41
    [Google Scholar]
  91. 91.
    Ma W, Jia L, Xiong Q, Feng Y, Du H. 2021. The role of iron homeostasis in adipocyte metabolism. Food Funct 12:4246–53
    [Google Scholar]
  92. 92.
    Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB et al. 2012. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18:1539–49
    [Google Scholar]
  93. 93.
    Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME et al. 2007. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Investig. 117:2621–37
    [Google Scholar]
  94. 94.
    Kusminski CM, Park J, Scherer PE. 2014. MitoNEET-mediated effects on browning of white adipose tissue. Nat. Commun. 5:3962
    [Google Scholar]
  95. 95.
    Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM et al. 2021. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 33:1853–68.e11
    [Google Scholar]
  96. 96.
    Chen JJ, London IM. 1981. Hemin enhances the differentiation of mouse 3T3 cells to adipocytes. Cell 26:117–22
    [Google Scholar]
  97. 97.
    Moreno-Navarrete JM, Ortega F, Moreno M, Ricart W, Fernandez-Real JM. 2014. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis. Diabetologia 57:1957–67
    [Google Scholar]
  98. 98.
    McClain DA, Sharma NK, Jain S, Harrison A, Salaye LN et al. 2018. Adipose tissue transferrin and insulin resistance. J. Clin. Endocrinol. Metab. 103:4197–208
    [Google Scholar]
  99. 99.
    Moreno M, Ortega F, Xifra G, Ricart W, Fernandez-Real JM, Moreno-Navarrete JM. 2015. Cytosolic aconitase activity sustains adipogenic capacity of adipose tissue connecting iron metabolism and adipogenesis. FASEB J 29:1529–39
    [Google Scholar]
  100. 100.
    Moriya M. 1994. Nutritional adaptation in brown adipose tissue thermogenesis–with special reference to overfeeding and iron deficiency. Hokkaido Igaku Zasshi 69:1115–31
    [Google Scholar]
  101. 101.
    Lukaski HC, Hall CB, Nielsen FH. 1990. Thermogenesis and thermoregulatory function of iron-deficient women without anemia. Aviat. Space Environ. Med. 61:913–20
    [Google Scholar]
  102. 102.
    Yook JS, You M, Kim Y, Zhou M, Liu Z et al. 2021. The thermogenic characteristics of adipocytes are dependent on the regulation of iron homeostasis. J. Biol. Chem. 296:100452
    [Google Scholar]
  103. 103.
    Yook JS, You M, Kim J, Toney AM, Fan R et al. 2021. Essential role of systemic iron mobilization and redistribution for adaptive thermogenesis through HIF2-α/hepcidin axis. PNAS 118:e2109186118
    [Google Scholar]
  104. 104.
    Winn NC, Volk KM, Hasty AH. 2020. Regulation of tissue iron homeostasis: the macrophage “ferrostat. .” JCI Insight 5:e132964
    [Google Scholar]
  105. 105.
    Hubler MJ, Peterson KR, Hasty AH. 2015. Iron homeostasis: a new job for macrophages in adipose tissue?. Trends Endocrinol. Metab. 26:101–9
    [Google Scholar]
  106. 106.
    Orr JS, Kennedy A, Anderson-Baucum EK, Webb CD, Fordahl SC et al. 2014. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 63:421–32
    [Google Scholar]
  107. 107.
    Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J. 2017. New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease. Front. Mol. Neurosci. 10:455
    [Google Scholar]
  108. 108.
    Mendler MH, Turlin B, Moirand R, Jouanolle AM, Sapey T et al. 1999. Insulin resistance-associated hepatic iron overload. Gastroenterology 117:1155–63
    [Google Scholar]
  109. 109.
    Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. 2011. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J. Hepatol. 55:920–32A seminal early description of the dysmetabolic iron overload syndrome, illustrating cross talk between iron and metabolism in liver.
    [Google Scholar]
  110. 110.
    Deugnier Y, Bardou-Jacquet E, Lainé F 2017. Dysmetabolic iron overload syndrome (DIOS). La Presse Méd 46:e306–11
    [Google Scholar]
  111. 111.
    Mehta KJ, Farnaud SJ, Sharp PA. 2019. Iron and liver fibrosis: mechanistic and clinical aspects. World J. Gastroenterol. 25:521–38
    [Google Scholar]
  112. 112.
    Rametta R, Fracanzani AL, Fargion S, Dongiovanni P. 2020. Dysmetabolic hyperferritinemia and dysmetabolic iron overload syndrome (DIOS): two related conditions or different entities?. Curr. Pharm. Des. 26:1025–35
    [Google Scholar]
  113. 113.
    Pitchika A, Kuhn JP, Schipf S, Nauck M, Dorr M et al. 2021. Hepatic steatosis and hepatic iron overload modify the association of iron markers with glucose metabolism disorders and metabolic syndrome. Liver Int 41:1841–52
    [Google Scholar]
  114. 114.
    Altamura S, Müdder K, Schlotterer A, Fleming T, Heidenreich E et al. 2021. Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload. Mol. Metab. 51:101235
    [Google Scholar]
  115. 115.
    Liao W, Yang W, Shen Z, Ai W, Pan Q et al. 2021. Heme oxygenase-1 regulates ferrous iron and Foxo1 in control of hepatic gluconeogenesis. Diabetes 70:696–709
    [Google Scholar]
  116. 116.
    Nam H, Jones D, Cooksey RC, Gao Y, Sink S et al. 2016. Synergistic inhibitory effects of hypoxia and iron deficiency on hepatic glucose response in mouse liver. Diabetes 65:1521–33
    [Google Scholar]
  117. 117.
    Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R et al. 2015. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes 64:1108–19
    [Google Scholar]
  118. 118.
    Li W, Chen Z, Ruan W, Yi G, Wang D, Lu Z 2019. A meta-analysis of cohort studies including dose-response relationship between shift work and the risk of diabetes mellitus. Eur. J. Epidemiol. 34:1013–24
    [Google Scholar]
  119. 119.
    LaMoia TE, Shulman GI. 2021. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 42:77–96
    [Google Scholar]
  120. 120.
    Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. 2016. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur. J. Heart Fail. 18:762–73
    [Google Scholar]
  121. 121.
    Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. 2016. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12:633–45
    [Google Scholar]
  122. 122.
    Pedersen BK, Åkerström TC, Nielsen AR, Fischer CP. 2007. Role of myokines in exercise and metabolism. J. Appl. Physiol. 1985 103:1093–98
    [Google Scholar]
  123. 123.
    Huang J, Simcox J, Mitchell TC, Jones D, Cox J et al. 2013. Iron regulates glucose homeostasis in liver and muscle via AMP-activated protein kinase in mice. FASEB J 27:2845–54
    [Google Scholar]
  124. 124.
    Sonnenburg JL, Bäckhed F. 2016. Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64
    [Google Scholar]
  125. 125.
    Mayneris-Perxachs J, Cardellini M, Hoyles L, Latorre J, Davato F et al. 2021. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome 9:104
    [Google Scholar]
  126. 126.
    Fernandez Real JM, Moreno-Navarrete JM, Manco M. 2019. Iron influences on the Gut-Brain axis and development of type 2 diabetes. Crit. Rev. Food Sci. Nutr. 59:443–49
    [Google Scholar]
  127. 127.
    Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–85
    [Google Scholar]
  128. 128.
    Cohen N, Breker M, Bakunts A, Pesek K, Chas A et al. 2017. Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling. J. Cell Sci. 130:3222–33
    [Google Scholar]
  129. 129.
    Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y et al. 2012. Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am. J. Physiol. Endocrinol. Metab. 302:E77–86
    [Google Scholar]
  130. 130.
    Rohm TV, Meier DT, Olefsky JM, Donath MY. 2022. Inflammation in obesity, diabetes, and related disorders. Immunity 55:31–55
    [Google Scholar]
  131. 131.
    Majmundar AJ, Wong WJ, Simon MC. 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:294–309
    [Google Scholar]
  132. 132.
    Woolcott OO, Gutierrez C, Castillo OA, Elashoff RM, Stefanovski D, Bergman RN. 2016. Inverse association between altitude and obesity: a prevalence study among Andean and low-altitude adult individuals of Peru. Obesity 24:929–37
    [Google Scholar]
  133. 133.
    McClain DA, Abuelgasim KA, Nouraie M, Salomon-Andonie J, Niu X et al. 2013. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism. J. Mol. Med. 91:59–67
    [Google Scholar]
  134. 134.
    Semenza GL. 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408
    [Google Scholar]
  135. 135.
    Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ et al. 2012. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep 13:251–57
    [Google Scholar]
  136. 136.
    Sun K, Tordjman J, Clement K, Scherer PE 2013. Fibrosis and adipose tissue dysfunction. Cell Metab 18:470–77
    [Google Scholar]
  137. 137.
    Mooli RGR, Mukhi D, Pasupulati AK, Evers SS, Sipula IJ et al. 2021. Intestinal HIF-2α regulates GLP-1 secretion via lipid sensing in L-cells. Cell. Mol. Gastroenterol. Hepatol. 13:1057–72
    [Google Scholar]
  138. 138.
    Dongiovanni P, Valenti L, Ludovica Fracanzani A, Gatti S, Cairo G, Fargion S 2008. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol. 172:738–47
    [Google Scholar]
  139. 139.
    Maassen JA, Janssen GM, Lemkes HH. 2002. Mitochondrial diabetes mellitus. J. Endocrinol. Investig. 25:477–84
    [Google Scholar]
  140. 140.
    Jouihan HA, Cobine PA, Cooksey RC, Hoagland EA, Boudina S et al. 2008. Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis. Mol. Med. 14:98–108
    [Google Scholar]
  141. 141.
    Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ et al. 2013. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 154:1029–38
    [Google Scholar]
  142. 142.
    Parrow NL, Fleming RE. 2014. Bone morphogenetic proteins as regulators of iron metabolism. Annu. Rev. Nutr. 34:77–94
    [Google Scholar]
  143. 143.
    Khan RS, Newsome PN. 2018. NAFLD in 2017: novel insights into mechanisms of disease progression. Nat. Rev. Gastroenterol. Hepatol. 15:71–72
    [Google Scholar]
  144. 144.
    Kolakshyapati M, Ikawa F, Abiko M, Mitsuhara T, Kinoshita Y et al. 2018. Multivariate risk factor analysis and literature review of postoperative deterioration in Karnofsky Performance Scale score in elderly patients with skull base meningioma. Neurosurg. Focus 44:E14
    [Google Scholar]
  145. 145.
    Ziyadeh FN, Sharma K, Ericksen M, Wolf G. 1994. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J. Clin. Investig. 93:536–42
    [Google Scholar]
  146. 146.
    Gao Y, Liu J, Bai Z, Sink S, Zhao C et al. 2019. Iron down-regulates leptin by suppressing protein O-GlcNAc modification in adipocytes, resulting in decreased levels of O-glycosylated CREB. J. Biol. Chem. 294:P5487–95
    [Google Scholar]
  147. 147.
    Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. 1998. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684–88
    [Google Scholar]
  148. 148.
    Considine RV, Cooksey RC, Williams LB, Fawcett RL, Zhang P et al. 2000. Hexosamines regulate leptin production in human subcutaneous adipocytes. J. Clin. Endocrinol. Metab. 85:3551–56
    [Google Scholar]
  149. 149.
    Zachara N, Akimoto Y, Hart GW 2015. The O-GlcNAc modification. Essentials of Glycobiology A Varki, RD Cummings, JD Esko, P Stanley, GW Hart et al.239–51 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
    [Google Scholar]
  150. 150.
    Ruan HB, Singh JP, Li MD, Wu J, Yang X 2013. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol. Metab. 24:301–9
    [Google Scholar]
  151. 151.
    Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J et al. 2008. O-GlcNAc regulates FoxO activation in response to glucose. J. Biol. Chem. 283:16283–92
    [Google Scholar]
  152. 152.
    Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP et al. 2014. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell 54:820–31
    [Google Scholar]
  153. 153.
    Ji S, Park SY, Roth J, Kim HS, Cho JW. 2012. O-GlcNAc modification of PPARγ reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 417:1158–63
    [Google Scholar]
  154. 154.
    Zachara NE, Molina H, Wong KY, Pandey A, Hart GW. 2011. The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:793–808
    [Google Scholar]
  155. 155.
    Daniels MC, McClain DA, Crook ED. 2000. Transcriptional regulation of transforming growth factor β1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am. J. Med. Sci. 319:138–42
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-022522-102832
Loading
/content/journals/10.1146/annurev-physiol-022522-102832
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error