1932

Abstract

Coughing is a dynamic physiological process resulting from input of vagal sensory neurons innervating the airways and perceived airway irritation. Although cough serves to protect and clear the airways, it can also be exploited by respiratory pathogens to facilitate disease transmission. Microbial components or infection-induced inflammatory mediators can directly interact with sensory nerve receptors to induce a cough response. Analysis of cough-generated aerosols and transmission studies have further demonstrated how infectious disease is spread through coughing. This review summarizes the neurophysiology of cough, cough induction by respiratory pathogens and inflammation, and cough-mediated disease transmission.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031422-092315
2023-02-10
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-031422-092315.html?itemId=/content/journals/10.1146/annurev-physiol-031422-092315&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chang AB. 2006. The physiology of cough. Paediatr. Respir. Rev. 7:2–8
    [Google Scholar]
  2. 2.
    Mazzone SB, Undem BJ. 2016. Vagal afferent innervation of the airways in health and disease. Physiol. Rev. 96:975–1024
    [Google Scholar]
  3. 3.
    Reynolds SM, Mackenzie AJ, Spina D, Page CP. 2004. The pharmacology of cough. Trends Pharmacol. Sci. 25:569–76
    [Google Scholar]
  4. 4.
    Zaccone EJ, Lieu T, Muroi Y, Potenzieri C, Undem BE et al. 2016. Parainfluenza 3-induced cough hypersensitivity in the guinea pig airways. PLOS ONE 11:e0155526
    [Google Scholar]
  5. 5.
    Ruhl CR, Pasko BL, Khan HS, Kindt LM, Stamm CE et al. 2020. Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough. Cell 181:293–305.e11
    [Google Scholar]
  6. 6.
    Wang K, Harnden A. 2011. Pertussis-induced cough. Pulm. Pharmacol. Ther. 24:304–7
    [Google Scholar]
  7. 7.
    McGovern AE, Short KR, Moe AAK, Mazzone SB. 2018. Translational review: neuroimmune mechanisms in cough and emerging therapeutic targets. J. Allergy Clin. Immunol. 142:1392–402
    [Google Scholar]
  8. 8.
    Jones RM, Brosseau LM. 2015. Aerosol transmission of infectious disease. J. Occup. Environ. Med. 57:501–8
    [Google Scholar]
  9. 9.
    Lindsley WG, Noti JD, Blachere FM, Szalajda JV, Beezhold DH. 2014. Efficacy of face shields against cough aerosol droplets from a cough simulator. J. Occup. Environ. Hyg. 11:509–18
    [Google Scholar]
  10. 10.
    McCool FD. 2006. Global physiology and pathophysiology of cough: ACCP evidence-based clinical practice guidelines. Chest 129:48S–53S
    [Google Scholar]
  11. 11.
    Oldenburg FA Jr., Dolovich MB, Montgomery JM, Newhouse MT. 1979. Effects of postural drainage, exercise, and cough on mucus clearance in chronic bronchitis. Am. Rev. Respir. Dis. 120:739–45
    [Google Scholar]
  12. 12.
    Mazzone SB, Cole LJ, Ando A, Egan GF, Farrell MJ. 2011. Investigation of the neural control of cough and cough suppression in humans using functional brain imaging. J. Neurosci. 31:2948–58
    [Google Scholar]
  13. 13.
    Mazzone SB, Farrell MJ. 2019. Heterogeneity of cough neurobiology: clinical implications. Pulm. Pharmacol. Ther. 55:62–66
    [Google Scholar]
  14. 14.
    Davenport PW 2009. Clinical cough I: the urge-to-cough: a respiratory sensation. Pharmacology and Therapeutics of Cough KF Chung, JG Widdicome 263–76 Berlin: Springer-Verlag
    [Google Scholar]
  15. 15.
    Kupari J, Haring M, Agirre E, Castelo-Branco G, Ernfors P. 2019. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 27:2508–23.e4
    [Google Scholar]
  16. 16.
    Prescott SL, Liberles SD. 2022. Internal senses of the vagus nerve. Neuron 110:579–99
    [Google Scholar]
  17. 17.
    Mazzone SB, Canning BJ. 2002. Central nervous system control of the airways: pharmacological implications. Curr. Opin. Pharmacol. 2:220–28
    [Google Scholar]
  18. 18.
    Lee LY, Pisarri TE. 2001. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir. Physiol. 125:47–65
    [Google Scholar]
  19. 19.
    Widdicombe J. 2003. Functional morphology and physiology of pulmonary rapidly adapting receptors (RARs). Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 270:2–10
    [Google Scholar]
  20. 20.
    Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ. 2004. Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J. Physiol. 557:543–58
    [Google Scholar]
  21. 21.
    Coleridge HM, Coleridge JC. 1994. Pulmonary reflexes: neural mechanisms of pulmonary defense. Annu. Rev. Physiol. 56:69–91
    [Google Scholar]
  22. 22.
    Coleridge HM, Coleridge JC. 1977. Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir. Physiol. 29:125–42
    [Google Scholar]
  23. 23.
    Mazzone SB, Tian L, Moe AAK, Trewella MW, Ritchie ME, McGovern AE. 2020. Transcriptional profiling of individual airway projecting vagal sensory neurons. Mol. Neurobiol. 57:949–63
    [Google Scholar]
  24. 24.
    Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. 2020. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181:574–89.e14
    [Google Scholar]
  25. 25.
    Chou YL, Mori N, Canning BJ. 2018. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314:R489–98
    [Google Scholar]
  26. 26.
    Mutolo D. 2017. Brainstem mechanisms underlying the cough reflex and its regulation. Respir. Physiol. Neurobiol. 243:60–76
    [Google Scholar]
  27. 27.
    Canning BJ, Mori N. 2010. An essential component to brainstem cough gating identified in anesthetized guinea pigs. FASEB J. 24:3916–26
    [Google Scholar]
  28. 28.
    Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. 2020. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J. Physiol. 598:2257–75
    [Google Scholar]
  29. 29.
    Farrell MJ, Bautista TG, Liang E, Azzollini D, Egan GF, Mazzone SB. 2020. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans. J. Physiol. 598:5771–87
    [Google Scholar]
  30. 30.
    Ando A, Smallwood D, McMahon M, Irving L, Mazzone SB, Farrell MJ. 2016. Neural correlates of cough hypersensitivity in humans: evidence for central sensitisation and dysfunctional inhibitory control. Thorax 71:323–29
    [Google Scholar]
  31. 31.
    Bonham AC, Sekizawa S, Chen CY, Joad JP. 2006. Plasticity of brainstem mechanisms of cough. Respir. Physiol. Neurobiol. 152:312–19
    [Google Scholar]
  32. 32.
    Audrit KJ, Delventhal L, Aydin O, Nassenstein C. 2017. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res. 367:571–90
    [Google Scholar]
  33. 33.
    McLeod RL, Fernandez X, Correll CC, Phelps TP, Jia Y et al. 2006. TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea pigs. Cough 2:10
    [Google Scholar]
  34. 34.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  35. 35.
    Michael GJ, Priestley JV. 1999. Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J. Neurosci. 19:1844–54
    [Google Scholar]
  36. 36.
    Ni D, Lee LY. 2008. Effect of increasing temperature on TRPV1-mediated responses in isolated rat pulmonary sensory neurons. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L563–71
    [Google Scholar]
  37. 37.
    Carr MJ, Kollarik M, Meeker SN, Undem BJ. 2003. A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J. Pharmacol. Exp. Ther. 304:1275–79
    [Google Scholar]
  38. 38.
    Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, MacGlashan DM et al. 2008. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J. Physiol. 586:1595–604
    [Google Scholar]
  39. 39.
    Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S et al. 2009. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med. 180:1042–47
    [Google Scholar]
  40. 40.
    Brozmanova M, Mazurova L, Ru F, Tatar M, Kollarik M. 2012. Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs. Eur. J. Pharmacol. 689:211–18
    [Google Scholar]
  41. 41.
    Lin YJ, Lin RL, Ruan T, Khosravi M, Lee LY. 2015. A synergistic effect of simultaneous TRPA1 and TRPV1 activations on vagal pulmonary C-fiber afferents. J. Appl. Physiol. 118:273–81
    [Google Scholar]
  42. 42.
    Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA et al. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705–15
    [Google Scholar]
  43. 43.
    McKemy DD, Neuhausser WM, Julius D 2002. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58
    [Google Scholar]
  44. 44.
    Xing H, Ling JX, Chen M, Johnson RD, Tominaga M et al. 2008. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway. Mol. Pain 4:22
    [Google Scholar]
  45. 45.
    Yu X, Hu Y, Ru F, Kollarik M, Undem BJ, Yu S 2015. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 308:G489–96
    [Google Scholar]
  46. 46.
    Canning BJ, Farmer DG, Mori N. 2006. Mechanistic studies of acid-evoked coughing in anesthetized guinea pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R454–63
    [Google Scholar]
  47. 47.
    Hunt JF, Fang K, Malik R, Snyder A, Malhotra N et al. 2000. Endogenous airway acidification. Implications for asthma pathophysiology. Am. J. Respir. Crit. Care Med. 161:694–99
    [Google Scholar]
  48. 48.
    Forsberg K, Karlsson JA, Theodorsson E, Lundberg JM, Persson CG. 1988. Cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig. Pulm. Pharmacol. 1:33–39
    [Google Scholar]
  49. 49.
    Kollarik M, Undem BJ. 2004. Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1−/− mice. J. Physiol. 555:115–23
    [Google Scholar]
  50. 50.
    Kollarik M, Undem BJ. 2002. Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J. Physiol. 543:591–600
    [Google Scholar]
  51. 51.
    Gu Q, Lee LY. 2010. Regulation of acid signaling in rat pulmonary sensory neurons by protease-activated receptor-2. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L454–61
    [Google Scholar]
  52. 52.
    Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ. 2008. P2X2 receptors differentiate placodal versus neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am. J. Physiol. Lung Cell. Mol. Physiol. 295:L858–65
    [Google Scholar]
  53. 53.
    Coutinho-Silva R, Savio LEB 2021. Purinergic signalling in host innate immune defence against intracellular pathogens. Biochem. Pharmacol. 187:114405
    [Google Scholar]
  54. 54.
    Burnstock G, Brouns I, Adriaensen D, Timmermans JP. 2012. Purinergic signaling in the airways. Pharmacol. Rev. 64:834–68
    [Google Scholar]
  55. 55.
    Morice AH, Kitt MM, Ford AP, Tershakovec AM, Wu WC et al. 2019. The effect of gefapixant, a P2X3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study. Eur. Respir. J. 54:1900439
    [Google Scholar]
  56. 56.
    Mazzone SB, McGarvey L. 2021. Mechanisms and rationale for targeted therapies in refractory and unexplained chronic cough. Clin. Pharmacol. Ther. 109:619–36
    [Google Scholar]
  57. 57.
    Kenakin T. 2010. A holistic view of GPCR signaling. Nat. Biotechnol. 28:928–29
    [Google Scholar]
  58. 58.
    Choudry NB, Fuller RW, Pride NB. 1989. Sensitivity of the human cough reflex: effect of inflammatory mediators prostaglandin E2, bradykinin, and histamine. Am. Rev. Respir. Dis. 140:137–41
    [Google Scholar]
  59. 59.
    LY Lee, Widdicombe JG. 2001. Modulation of airway sensitivity to inhaled irritants: role of inflammatory mediators. Environ. Health Perspect. 109:Suppl. 4585–89
    [Google Scholar]
  60. 60.
    Al-Shamlan F, El-Hashim AZ. 2019. Bradykinin sensitizes the cough reflex via a B2 receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase. Respir. Res. 20:110
    [Google Scholar]
  61. 61.
    Roberts AM, Schultz HD, Green JF, Armstrong DJ, Kaufman MP et al. 1985. Reflex tracheal contraction evoked in dogs by bronchodilator prostaglandins E2 and I2. J. Appl. Physiol. 1985 58:1823–31
    [Google Scholar]
  62. 62.
    Maher SA, Birrell MA, Belvisi MG. 2009. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am. J. Respir. Crit. Care Med. 180:923–28
    [Google Scholar]
  63. 63.
    Deng Z, Zhou W, Sun J, Li C, Zhong B, Lai K. 2018. IFN-γ enhances the cough reflex sensitivity via calcium influx in vagal sensory neurons. Am. J. Respir. Crit. Care Med. 198:868–79
    [Google Scholar]
  64. 64.
    Sun J, Zhan C, Deng Z, Luo W, Chen Q et al. 2022. Expression of interferon-γ and its effect on cough hypersensitivity in chronic refractory cough patients. Thorax 77:621–24
    [Google Scholar]
  65. 65.
    Patil MJ, Ru F, Sun H, Wang J, Kolbeck RR et al. 2020. Acute activation of bronchopulmonary vagal nociceptors by type I interferons. J. Physiol. 598:5541–54
    [Google Scholar]
  66. 66.
    Kovarik P, Castiglia V, Ivin M, Ebner F. 2016. Type I interferons in bacterial infections: a balancing act. Front. Immunol. 7:652
    [Google Scholar]
  67. 67.
    Teijaro JR. 2016. Type I interferons in viral control and immune regulation. Curr. Opin. Virol. 16:31–40
    [Google Scholar]
  68. 68.
    Abdullah H, Heaney LG, Cosby SL, McGarvey LP. 2014. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. Thorax 69:46–54
    [Google Scholar]
  69. 69.
    Omar S, Clarke R, Abdullah H, Brady C, Corry J et al. 2017. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLOS ONE 12:e0171681
    [Google Scholar]
  70. 70.
    Taylor SJ, Mann TS, Henry PJ. 2012. Influence of influenza A infection on capsaicin-induced responses in murine airways. J. Pharmacol. Exp. Ther. 340:377–85
    [Google Scholar]
  71. 71.
    Hamid K, Sathyanarayanan SP, Naim T, Hamza M, Mahmood Baig MO, Sitta EA 2021. Hantavirus cardiopulmonary syndrome and diffuse alveolar hemorrhage in the era of COVID-19. Case Rep. Infect. Dis. 2021:8800500
    [Google Scholar]
  72. 72.
    Maleki KT, Garcia M, Iglesias A, Alonso D, Ciancaglini M et al. 2019. Serum markers associated with severity and outcome of hantavirus pulmonary syndrome. J. Infect. Dis. 219:1832–40
    [Google Scholar]
  73. 73.
    Huang D, Lian X, Song F, Ma H, Lian Z et al. 2020. Clinical features of severe patients infected with 2019 novel coronavirus: a systematic review and meta-analysis. Ann. Transl. Med. 8:576
    [Google Scholar]
  74. 74.
    Song WJ, Hui CKM, Hull JH, Birring SS, McGarvey L et al. 2021. Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 9:533–44
    [Google Scholar]
  75. 75.
    Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C et al. 2021. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24:168–75
    [Google Scholar]
  76. 76.
    Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K et al. 2020. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6:eabc5801
    [Google Scholar]
  77. 77.
    Moutal A, Martin LF, Boinon L, Gomez K, Ran D et al. 2021. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain 162:243–52
    [Google Scholar]
  78. 78.
    Solomon T. 2021. Neurological infection with SARS-CoV-2—the story so far. Nat. Rev. Neurol. 17:65–66
    [Google Scholar]
  79. 79.
    Jaffal SM, Abbas MA. 2021. TRP channels in COVID-19 disease: potential targets for prevention and treatment. Chem. Biol. Interact. 345:109567
    [Google Scholar]
  80. 80.
    Niimi A, Matsumoto H, Ueda T, Takemura M, Suzuki K et al. 2003. Impaired cough reflex in patients with recurrent pneumonia. Thorax 58:152–53
    [Google Scholar]
  81. 81.
    Gallucci M, Pedretti M, Giannetti A, di Palmo E, Bertelli L et al. 2020. When the cough does not improve: a review on protracted bacterial bronchitis in children. Front. Pediatr. 8:433
    [Google Scholar]
  82. 82.
    Marchant JM, Masters IB, Taylor SM, Cox NC, Seymour GJ, Chang AB. 2006. Evaluation and outcome of young children with chronic cough. Chest 129:1132–41
    [Google Scholar]
  83. 83.
    Goyal V, Grimwood K, Marchant J, Masters IB, Chang AB. 2014. Does failed chronic wet cough response to antibiotics predict bronchiectasis?. Arch. Dis. Child. 99:522–25
    [Google Scholar]
  84. 84.
    Sondergaard MJ, Friis MB, Hansen DS, Jorgensen IM. 2018. Clinical manifestations in infants and children with Mycoplasma pneumoniae infection. PLOS ONE 13:e0195288
    [Google Scholar]
  85. 85.
    Ding Y, Chu C, Li Y, Li G, Lei X et al. 2018. High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia. BMC Infect. Dis. 18:439
    [Google Scholar]
  86. 86.
    Hall E, Parton R, Wardlaw AC. 1994. Cough production, leucocytosis and serology of rats infected intrabronchially with Bordetella pertussis. J. Med. Microbiol. 40:205–13
    [Google Scholar]
  87. 87.
    Warfel JM, Beren J, Kelly VK, Lee G, Merkel TJ. 2012. Nonhuman primate model of pertussis. Infect. Immun. 80:1530–36
    [Google Scholar]
  88. 88.
    Parton R, Hall E, Wardlaw AC. 1994. Responses to Bordetella pertussis mutant strains and to vaccination in the coughing rat model of pertussis. J. Med. Microbiol. 40:307–12
    [Google Scholar]
  89. 89.
    Kapil P, Papin JF, Wolf RF, Zimmerman LI, Wagner LD, Merkel TJ. 2018. Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J. Infect. Dis. 217:1231–36
    [Google Scholar]
  90. 90.
    Nakamura K, Shinoda N, Hiramatsu Y, Ohnishi S, Kamitani S et al. 2019. BspR/BtrA, an anti-σ factor, regulates the ability of Bordetella bronchiseptica to cause cough in rats. mSphere 4:e00093–19
    [Google Scholar]
  91. 91.
    Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ et al. 2021. Reinvestigating the coughing rat model of pertussis to understand Bordetella pertussis pathogenesis. Infect. Immun. 89:e0030421
    [Google Scholar]
  92. 92.
    Hall JM, Bitzer GJ, DeJong MA, Kang J, Wong TY et al. 2021. Mucosal immunization with DTaP confers protection against Bordetella pertussis infection and cough in Sprague-Dawley rats. Infect. Immun. 89:e0034621
    [Google Scholar]
  93. 93.
    Hiramatsu Y, Suzuki K, Nishida T, Onoda N, Satoh T et al. 2022. The mechanism of pertussis cough revealed by the mouse-coughing model. mBio 13:e0319721
    [Google Scholar]
  94. 94.
    Fennelly KP, Jones-Lopez EC. 2015. Quantity and quality of inhaled dose predicts immunopathology in tuberculosis. Front. Immunol. 6:313
    [Google Scholar]
  95. 95.
    Fennelly KP, Martyny JW, Fulton KE, Orme IM, Cave DM, Heifets LB. 2004. Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am. J. Respir. Crit. Care Med. 169:604–9
    [Google Scholar]
  96. 96.
    Jones-Lopez EC, White LF, Kirenga B, Mumbowa F, Ssebidandi M et al. 2015. Cough aerosol cultures of Mycobacterium tuberculosis: insights on TST/IGRA discordance and transmission dynamics. PLOS ONE 10:e0138358
    [Google Scholar]
  97. 97.
    Turner RD. 2019. Cough in pulmonary tuberculosis: existing knowledge and general insights. Pulm. Pharmacol. Ther. 55:89–94
    [Google Scholar]
  98. 98.
    Vayr F, Martin-Blondel G, Savall F, Soulat JM, Deffontaines G, Herin F. 2018. Occupational exposure to human Mycobacterium bovis infection: a systematic review. PLOS Negl. Trop. Dis. 12:e0006208
    [Google Scholar]
  99. 99.
    Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C et al. 2014. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. PNAS 111:11491–96
    [Google Scholar]
  100. 100.
    Gonzalo Asensio J, Maia C, Ferrer NL, Barilone N, Laval F et al. 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 281:1313–16
    [Google Scholar]
  101. 101.
    Garcia EA, Blanco FC, Bigi MM, Vazquez CL, Forrellad MA et al. 2018. Characterization of the two component regulatory system PhoPR in Mycobacterium bovis. Vet. Microbiol. 222:30–38
    [Google Scholar]
  102. 102.
    Chiner-Oms A, Sanchez-Buso L, Corander J, Gagneux S, Harris SR et al. 2019. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci. Adv. 5:eaaw3307
    [Google Scholar]
  103. 103.
    Broset E, Martin C, Gonzalo-Asensio J. 2015. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 6:e01289–15
    [Google Scholar]
  104. 104.
    Samper S, Martin C, Pinedo A, Rivero A, Blazquez J et al. 1997. Transmission between HIV-infected patients of multidrug-resistant tuberculosis caused by Mycobacterium bovis. AIDS 11:1237–42
    [Google Scholar]
  105. 105.
    Rivero A, Marquez M, Santos J, Pinedo A, Sanchez MA et al. 2001. High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin. Infect. Dis. 32:159–61
    [Google Scholar]
  106. 106.
    Soto CY, Menendez MC, Perez E, Samper S, Gomez AB et al. 2004. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42:212–19
    [Google Scholar]
  107. 107.
    Dailloux M, Abalain ML, Laurain C, Lebrun L, Loos-Ayav C et al. 2006. Respiratory infections associated with nontuberculous mycobacteria in non-HIV patients. Eur. Respir. J. 28:1211–15
    [Google Scholar]
  108. 108.
    Ogawa H, Fujimura M, Takeuchi Y, Makimura K. 2009. Efficacy of itraconazole in the treatment of patients with chronic cough whose sputa yield basidiomycetous fungi-fungus-associated chronic cough (FACC). J. Asthma 46:407–12
    [Google Scholar]
  109. 109.
    Ogawa H, Fujimura M, Takeuchi Y, Makimura K. 2009. Is Bjerkandera adusta important to fungus-associated chronic cough as an allergen? Eight cases’ reports. J. Asthma 46:849–55
    [Google Scholar]
  110. 110.
    Ogawa H, Fujimura M, Takeuchi Y, Makimura K. 2009. The importance of basidiomycetous fungi cultured from the sputum of chronic idiopathic cough: a study to determine the existence of recognizable clinical patterns to distinguish CIC from non-CIC. Respir. Med. 103:1492–97
    [Google Scholar]
  111. 111.
    Ogawa H, Fujimura M, Takeuchi Y, Makimura K. 2013. Clinical experience with low-dose itraconazole in chronic idiopathic cough. Cough 9:1
    [Google Scholar]
  112. 112.
    Hope WW, Walsh TJ, Denning DW. 2005. The invasive and saprophytic syndromes due to Aspergillus spp. Med. Mycol. 43:Suppl. 1S207–38
    [Google Scholar]
  113. 113.
    Ide H, Yamaji Y, Tobino K, Okahisa M, Murakami K et al. 2019. Pneumocystis jirovecii pneumonia in an immunocompetent Japanese man: a case report and literature review. Case Rep. Pulmonol. 2019:3981681
    [Google Scholar]
  114. 114.
    Benedict K, Kobayashi M, Garg S, Chiller T, Jackson BR. 2021. Symptoms in blastomycosis, coccidioidomycosis, and histoplasmosis versus other respiratory illnesses in commercially insured adult outpatients—United States, 2016–2017. Clin. Infect. Dis. 73:e4336–44
    [Google Scholar]
  115. 115.
    Setianingrum F, Rautemaa-Richardson R, Denning DW. 2019. Pulmonary cryptococcosis: a review of pathobiology and clinical aspects. Med. Mycol. 57:133–50
    [Google Scholar]
  116. 116.
    Lai K, Lin L, Liu B, Chen R, Tang Y et al. 2016. Eosinophilic airway inflammation is common in subacute cough following acute upper respiratory tract infection. Respirology 21:683–88
    [Google Scholar]
  117. 117.
    den Hartog G, Schijf MA, Berbers GAM, van der Klis FRM, Buisman AM. 2020. Bordetella pertussis induces IFN-γ production by NK cells resulting in chemo-attraction by respiratory epithelial cells. J. Infect. Dis. 225:1248–60
    [Google Scholar]
  118. 118.
    Grunberg K, Timmers MC, Smits HH, de Klerk EP, Dick EC et al. 1997. Effect of experimental rhinovirus 16 colds on airway hyperresponsiveness to histamine and interleukin-8 in nasal lavage in asthmatic subjects in vivo. Clin. Exp. Allergy 27:36–45
    [Google Scholar]
  119. 119.
    Lin RL, Gu Q, Lee LY. 2017. Hypersensitivity of vagal pulmonary afferents induced by tumor necrosis factor alpha in mice. Front. Physiol. 8:411
    [Google Scholar]
  120. 120.
    Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T et al. 2016. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron Med 3:7–17
    [Google Scholar]
  121. 121.
    Hewitt MM, Adams G Jr., Mazzone SB, Mori N, Yu L, Canning BJ 2016. Pharmacology of bradykinin-evoked coughing in guinea pigs. J. Pharmacol. Exp. Ther. 357:620–28
    [Google Scholar]
  122. 122.
    Hewitt M, Canning BJ. 2010. Coughing precipitated by Bordetella pertussis infection. Lung 188:Suppl. 1S73–79
    [Google Scholar]
  123. 123.
    Baral P, Umans BD, Li L, Wallrapp A, Bist M et al. 2018. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24:417–26
    [Google Scholar]
  124. 124.
    Verzele NAJ, Chua BY, Law CW, Zhang A, Ritchie ME et al. 2021. The impact of influenza pulmonary infection and inflammation on vagal bronchopulmonary sensory neurons. FASEB J. 35:e21320
    [Google Scholar]
  125. 125.
    Mazzone SB, Yang SK, Keller JA, Simanauskaite J, Arikkatt J et al. 2021. Modulation of vagal sensory neurons via high mobility group box-1 and receptor for advanced glycation end products: implications for respiratory viral infections. Front. Physiol. 12:744812
    [Google Scholar]
  126. 126.
    Kaelberer MM, Caceres AI, Jordt SE. 2020. Activation of a nerve injury transcriptional signature in airway-innervating sensory neurons after lipopolysaccharide-induced lung inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 318:L953–64
    [Google Scholar]
  127. 127.
    Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA et al. 2017. Central mechanisms of airway sensation and cough hypersensitivity. Pulm. Pharmacol. Ther. 47:9–15
    [Google Scholar]
  128. 128.
    Shiloh MU. 2016. Mechanisms of mycobacterial transmission: how does Mycobacterium tuberculosis enter and escape from the human host. Future Microbiol 11:1503–6
    [Google Scholar]
  129. 129.
    Jones-Lopez EC, Namugga O, Mumbowa F, Ssebidandi M, Mbabazi O et al. 2013. Cough aerosols of Mycobacterium tuberculosis predict new infection: a household contact study. Am. J. Respir. Crit. Care Med. 187:1007–15
    [Google Scholar]
  130. 130.
    Loudon RG, Romans WE. 1967. Cough-monitoring equipment. Med. Res. Eng. 6:25–27
    [Google Scholar]
  131. 131.
    Loudon RG, Brown LC. 1967. Cough frequency in patients with respiratory disease. Am. Rev. Respir. Dis. 96:1137–43
    [Google Scholar]
  132. 132.
    Loudon RG, Spohn SK. 1969. Cough frequency and infectivity in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 99:109–11
    [Google Scholar]
  133. 133.
    Acuna-Villaorduna C, Schmidt-Castellani LG, Marques-Rodrigues P, White LF, Hadad DJ et al. 2018. Cough-aerosol cultures of Mycobacterium tuberculosis in the prediction of outcomes after exposure. A household contact study in Brazil. PLOS ONE 13:e0206384
    [Google Scholar]
  134. 134.
    Proano A, Bui DP, Lopez JW, Vu NM, Bravard MA et al. 2018. Cough frequency during treatment associated with baseline cavitary volume and proximity to the airway in pulmonary TB. Chest 153:1358–67
    [Google Scholar]
  135. 135.
    Lee GO, Comina G, Hernandez-Cordova G, Naik N, Gayoso O et al. 2020. Cough dynamics in adults receiving tuberculosis treatment. PLOS ONE 15:e0231167
    [Google Scholar]
  136. 136.
    Theron G, Limberis J, Venter R, Smith L, Pietersen E et al. 2020. Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nat. Med. 26:1435–43
    [Google Scholar]
  137. 137.
    Wainwright CE, France MW, O'Rourke P, Anuj S, Kidd TJ et al. 2009. Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative bacteria from patients with cystic fibrosis. Thorax 64:926–31
    [Google Scholar]
  138. 138.
    Wood ME, Stockwell RE, Johnson GR, Ramsay KA, Sherrard LJ et al. 2019. Cystic fibrosis pathogens survive for extended periods within cough-generated droplet nuclei. Thorax 74:87–90
    [Google Scholar]
  139. 139.
    Knibbs LD, Johnson GR, Kidd TJ, Cheney J, Grimwood K et al. 2014. Viability of Pseudomonas aeruginosa in cough aerosols generated by persons with cystic fibrosis. Thorax 69:740–45
    [Google Scholar]
  140. 140.
    Stockwell RE, Chin M, Johnson GR, Wood ME, Sherrard LJ et al. 2019. Transmission of bacteria in bronchiectasis and chronic obstructive pulmonary disease: low burden of cough aerosols. Respirology 24:980–87
    [Google Scholar]
  141. 141.
    Elahi S, Holmstrom J, Gerdts V. 2007. The benefits of using diverse animal models for studying pertussis. Trends Microbiol. 15:462–68
    [Google Scholar]
  142. 142.
    Warfel JM, Beren J, Merkel TJ. 2012. Airborne transmission of Bordetella pertussis. J. Infect. Dis. 206:902–6
    [Google Scholar]
  143. 143.
    Lindsley WG, Noti JD, Blachere FM, Thewlis RE, Martin SB et al. 2015. Viable influenza A virus in airborne particles from human coughs. J. Occup. Environ. Hyg. 12:107–13
    [Google Scholar]
  144. 144.
    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E et al. 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–41
    [Google Scholar]
  145. 145.
    Lowen AC, Bouvier NM, Steel J. 2014. Transmission in the guinea pig model. Curr. Top. Microbiol. Immunol. 385:157–83
    [Google Scholar]
  146. 146.
    Thangavel RR, Bouvier NM. 2014. Animal models for influenza virus pathogenesis, transmission, and immunology. J. Immunol. Methods 410:60–79
    [Google Scholar]
  147. 147.
    Kim YI, Kim SG, Kim SM, Kim EH, Park SJ et al. 2020. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27:704–9.e2
    [Google Scholar]
  148. 148.
    Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM et al. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 11:3496
    [Google Scholar]
  149. 149.
    Wang Y, Xu G, Huang YW. 2020. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLOS ONE 15:e0241539
    [Google Scholar]
  150. 150.
    Madas BG, Furi P, Farkas A, Nagy A, Czitrovszky A et al. 2020. Deposition distribution of the new coronavirus (SARS-CoV-2) in the human airways upon exposure to cough-generated droplets and aerosol particles. Sci. Rep. 10:22430
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031422-092315
Loading
/content/journals/10.1146/annurev-physiol-031422-092315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error