1932

Abstract

Chemical reaction and optical dynamics in the liquid phase are strongly affected by specific solute-solvent interactions. The dynamical part of this coupling leads to energy fluctuations. The associated energy gap dynamics can be probed by using various nonlinear optical spectroscopies. We discuss various forms of photon echo—time-integrated, time-gated, and heterodyne-detected photon echo—as well as Fourier transform spectral interferometry. It is shown that for solutions of the dye molecule DTTCI, a system-bath correlation function can be acquired that provides a quantitative description of all (non)linear spectroscopic experiments. The deduced correlation function is projected onto the multimode Brownian oscillator model, which allows for a physical interpretation of the multiple-time correlation function and a determination of the spectral density relevant to the solvation process. The following applications of photon echo to condensed phase dynamics are discussed: enhanced vibrational mode suppression, Liouville pathways interference, and dynamical Stokes shift. Recent results of echo-peak shift experiments on the hydrated electron are also presented. The review concludes that photon echo should be useful as a novel tool to explore transition state dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.49.1.99
1998-10-01
2024-04-28
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.physchem.49.1.99
Loading
/content/journals/10.1146/annurev.physchem.49.1.99
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error