1932

Abstract

Mobile health technologies offer great promise for reducing healthcare costs and improving patient care. Wearable and implantable technologies are contributing to a transformation in the mobile health era in terms of improving healthcare and health outcomes and providing real-time guidance on improved health management and tracking. In this article, we review the biomedical applications of wearable and implantable medical devices and sensors, ranging from monitoring to prevention of diseases, as well as the materials used in the fabrication of these devices and the standards for wireless medical devices and mobile applications. We conclude by discussing some of the technical challenges in wearable and implantable technology and possible solutions for overcoming these difficulties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125956
2018-06-12
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125956.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125956&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Elenko E, Underwood L, Zoha D 2015. Defining digital medicine. Nat. Biotechnol. 3:5456–61
    [Google Scholar]
  2. 2.  Jeong JW, Jang YW, Lee I, Shin S, Kim S 2009. Wearable respiratory rate monitoring using piezo-resistive fabric sensor. Proc. World Congr. Med. Phys. Biomed. Eng. Munich, Ger 282–84
    [Google Scholar]
  3. 3.  Kreuzer J 2012. Sensor for measuring vital parameters in the ear canal US Patent No. CA 2875901
    [Google Scholar]
  4. 4.  Kwak MK, Jeong HE, Suh KY 2011. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv. Mater. 23:343949–53
    [Google Scholar]
  5. 5.  Melzer M, Mönch JI, Makarov D, Zabila Y, Bermúdez GSC, Karnaushenko D 2015. Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27:71274–80
    [Google Scholar]
  6. 6.  Nayak R, Wang L, Padhye R 2015. Electronic textiles for military personnel. Electronic Textiles: Smart Fabrics and Wearable Technology T Dias 239–56 Cambridge, MA: Woodhead
    [Google Scholar]
  7. 7.  Cima MJ 2014. Next-generation wearable electronics. Nat. Biotechnol. 32:642–43
    [Google Scholar]
  8. 8.  Greenspon AJ, Patel JD, Lau E, Ochoa JA, Frisch DR et al. 2012. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. J. Am. Coll. Cardiol. 60:161540–45
    [Google Scholar]
  9. 9.  Lyons MK 2011. Deep brain stimulation: current and future clinical applications. Mayo Clin. Proc. 86:7662–72
    [Google Scholar]
  10. 10.  Patel S, Park H, Bonato P, Chan L, Rodgers M 2012. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9:121
    [Google Scholar]
  11. 11. ITU (Int. Telecomm. Union). 2016. 2016 ICT facts and figures Rep., ICT, Geneva. https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
    [Google Scholar]
  12. 12.  Ozcan A 2014. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 17:3187–94
    [Google Scholar]
  13. 13.  Vashist SK, Mudanyali O, Schneidere EM, Zengerle R, Ozcan A 2014. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406:143263–77
    [Google Scholar]
  14. 14.  Chan M, Estève D, Fourniols JY, Escriba C, Campo E 2012. Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56:137–56
    [Google Scholar]
  15. 15. Biosensive Tech. 2015. Ear-O-Smart http://earosmart.com/
    [Google Scholar]
  16. 16. Bragi. 2015. Dash Pro https://www.bragi.com/thedashpro/
    [Google Scholar]
  17. 17. Wearable Tech. 2018. Basis Band B1–Health Tracker https://www.wearable-technologies.com/gadgets-of-the-month/12dec-basis
    [Google Scholar]
  18. [Google Scholar]
  19. 19.  Stahl SE, An H-S, Dinkel DM, Noble JM, Lee J-M 2016. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough?. BMJ Open Sport Exerc. Med. 2:1e000106
    [Google Scholar]
  20. 20. Cosinuss. 2015. Cosinuss One https://www.cosinuss.com/products/fitness/
    [Google Scholar]
  21. [Google Scholar]
  22. 22. Wearable Tech. 2018. Phyode–W/ME Wristband https://www.wearable-technologies.com/store/phyode-w-me-wristband.html
    [Google Scholar]
  23. [Google Scholar]
  24. 24. Omron. 2015. 3 Series Wrist Blood Pressure Monitor http://omronhealthcare.com/products/3-series-wrist-blood-pressure-monitor-bp629/
    [Google Scholar]
  25. 25. Nonin Med. 2015. Go2 Fingertip Pulse Oximeter http://go2pulseoximeter.com/
    [Google Scholar]
  26. 26.  Goode L 2015. Ralph Lauren's ‘smart’ shirt is the ultimate preppy tech Aug. 20. https://www.theverge.com/2015/8/20/9178923/ralph-laurens-polotech-smart-shirt-is-the-ultimate-preppy-tech
    [Google Scholar]
  27. 27.  Terbizan DJ, Dolezal BA, Albano C 2002. Validity of seven commercially available heart rate monitors. Meas. Phys. Educ. Exerc. Sci. 6:4243–47
    [Google Scholar]
  28. 28.  Lochner CM, Khan Y, Pierre A, Arias AC 2014. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5:5745
    [Google Scholar]
  29. 29. VivaLNK. 2015. Fever Scout http://www.vivalnk.com/feverscout/
    [Google Scholar]
  30. 30.  Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S 2011. Respiration rate monitoring methods: a review. Pediatr. Pulmonol. 46:6523–29
    [Google Scholar]
  31. 31. Spire. 2015. Spire Health Tag https://www.spire.io/pages/healthtag
    [Google Scholar]
  32. 32.  Hernande J, Li Y, Rehg JM, Picar R 2014. BioGlass: physiological parameter estimation using a head-mounted wearable device Presented at EAI Int. Conf. Wireless Mobile Comm. Healthcare (Mobihealth), 4th, Athens, Greece
    [Google Scholar]
  33. 33. Am. Assoc. Respir. Care. 2015. Current treatments.. YourLungHealth.Org Blog http://www.yourlunghealth.org/lung_disease/sleep_apnea/treatment/index.cfm
    [Google Scholar]
  34. 34. Braebon. 2015. DentiTrac https://www.braebon.com/products/dentitrac/
    [Google Scholar]
  35. 35.  Bradley DC 2015. Method and apparatus for verifying compliance with dental appliance therapy US Patent No. 2015169845 (A1)
    [Google Scholar]
  36. 36. WHO (World Health Org.). 2007. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach Rep., WHO, Geneva
    [Google Scholar]
  37. 37.  Belza B, Steele BG, Hunziker J, Lakshminaryan S, Holt L, Buchner DM 2001. Correlates of physical activity in chronic obstructive pulmonary disease. Nurs. Res. 50:4195–202
    [Google Scholar]
  38. 38.  Moy ML, Mentzer SJ, Reilly JJ 2003. Ambulatory monitoring of cumulative free-living activity. IEEE Eng. Med. Biol. Mag. 22:389–95
    [Google Scholar]
  39. 39.  Sherrill DM, Moy ML, Reilly JJ, Bonato P 2005. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data. J. Neuroeng. Rehabil. 2:16
    [Google Scholar]
  40. 40.  Steele BG, Holt L, Belza B, Ferris S, Lakshminaryan S, Buchner DM 2000. Quantitating physical activity in COPD using a triaxial accelerometer. Chest 117:51359–67
    [Google Scholar]
  41. 41.  Atallah L, Zhang J, Lo BPL, Shrinkrishna D, Kelly JL et al. 2010. Validation of an ear worn sensor for activity monitoring in COPD. Am. J. Respir. Crit. Care Med. 181:A1211
    [Google Scholar]
  42. 42. Natl. Inst. Health Res. 2017. Implantable and wearable medical devices for chronic obstructive pulmonary disease Rep., Natl. Inst. Health Res., London. https://www.nihr.ac.uk/news-and-events/documents/copd_report_2017.pdf
    [Google Scholar]
  43. 43. Pancreum. 2015. Wearable pancreas http://pancreum.com/index.html
    [Google Scholar]
  44. 44. WHO (World Health Org.). 2013. Cardiovascular diseases (CVDs) Fact sheet, updated May, 2017, WHO, Geneva. http://www.who.int/mediacentre/factsheets/fs317/en/
    [Google Scholar]
  45. 45.  Reiter H, Muehlsteff J, Sipilä A 2011. Medical application and clinical validation for reliable and trustworthy physiological monitoring using functional textiles: experience from the HeartCycle and MyHeart project Presented at IEEE Eng. Med. Biol. Soc Boston, MA:
    [Google Scholar]
  46. 46.  Gura V, Ronco C, Nalesso F, Brendolan A, Beizai M et al. 2008. A wearable hemofilter for continuous ambulatory ultrafiltration. Kidney Int 73:4497–502
    [Google Scholar]
  47. 47.  Wang Q, Zhao H, Chen W, Li N, Wan Y 2014. Validation of the iHealth BP7 wrist blood pressure monitor for self-measurement, according to the European Society of Hypertension International Protocol revision 2010. Blood Pressure Monit 19:154–57
    [Google Scholar]
  48. 48.  Jimison HB, Pavel M, Pavel J, McKanna J 2004. Home monitoring of computer interactions for the early detection of dementia. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6:4533–36
    [Google Scholar]
  49. 49.  Wang H, Zheng H, Augusto JC, Martin S, Mulvenna M et al. 2010. Monitoring and analysis of sleep pattern for people with early dementia Presented at IEEE Int. Conf. Bioinf. Biomed., Hong Kong
    [Google Scholar]
  50. 50.  Mazilu S, Blanke U, Hardegger M, Troster G 2014. GaitAssist: a wearable assistant for gait training and rehabilitation in Parkinson's disease Presented at IEEE Int. Conf. Pervasive Comput. Comm., Budapest
    [Google Scholar]
  51. 51.  Biessels GJ, Stakenborg S, Brunner E, Brayne C, Scheltens P 2006. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:164–74
    [Google Scholar]
  52. [Google Scholar]
  53. 53. Empatica. 2015. Embrace https://www.empatica.com/
    [Google Scholar]
  54. 54. KitePatch. 2018. Kite Patch http://www.kitepatch.com/kite-patch/
    [Google Scholar]
  55. 55.  Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A 2011. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474:734987–91
    [Google Scholar]
  56. [Google Scholar]
  57. 57.  Gura V, Beizai M, Ezon C, Polaschegg H-D 2005. Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib. Nephrol. 149:325–33
    [Google Scholar]
  58. 58. Enso. 2015. Cur http://www.ensorelief.com/
    [Google Scholar]
  59. 59. Valedo. 2015. http://www.valedotherapy.com/
  60. 60. Lumo. 2018. Lumo Lift https://www.lumobodytech.com/lumo-lift/
    [Google Scholar]
  61. 61. WHO (World Health Org.). 2015. Skin cancers www.who.int/uv/faq/skincancer/en/index1.html
    [Google Scholar]
  62. 62. Evena Med. 2015. Eyes-On Glasses 3.0 https://evenamed.com/eyes-on-glasses/
    [Google Scholar]
  63. 63. Airo. 2015. Airo WristBand https://www.airohealth.com/home
    [Google Scholar]
  64. 64.  Nair AG, Kamal S, Dave TV, Mishra K, Reddy HS et al. 2015. Surgeon point-of-view recording: using a high-definition head-mounted video camera in the operating room. Indian J. Ophthalmol. 63:10771–74
    [Google Scholar]
  65. 65.  Feng S, Caire R, Cortazar B, Turan M, Wong A, Ozcan A 2014. Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano 8:33069–79
    [Google Scholar]
  66. 66. Google. 2014. Introducing our smart contact lens project. Google Blog Jan. 16. http://googleblog.blogspot.com.tr/2014/01/introducing-our-smart-contact-lens.html
    [Google Scholar]
  67. 67. Columbia Univ. Med. Cent. 2015. New ‘smart’ contact lens could improve vision, predict glaucoma risk Mar. 14. http://newsroom.cumc.columbia.edu/blog/headline/new-smart-contact-lens-improve-vision-predict-glaucoma-risk/
    [Google Scholar]
  68. 68. Spree Wearables. 2015. SmartCap http://spreewearables.com/
    [Google Scholar]
  69. [Google Scholar]
  70. 70. SmartCap Tech. 2015. www.smartcaptech.com
  71. 71.  Dodson B 2013. Melon Headband aims to measure mental focus. New Atlas May 21. https://newatlas.com/melon-headband-eeg-mental-focus/27518/
    [Google Scholar]
  72. [Google Scholar]
  73. 73. X2 Biosyst. 2015. X2 Ice http://www.x2biosystems.com/
    [Google Scholar]
  74. 74.  Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G et al. 2015. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74:1061–68
    [Google Scholar]
  75. 75.  Coosemans J, Hermans B, Puers R 2006. Integrating wireless ECG monitoring in textiles. Sens. Actuators A 130–131:48–53
    [Google Scholar]
  76. 76.  Baker CR, Armijo K, Belka S, Benhabib M, Bhargava V et al. 2007. Wireless sensor networks for home health care Presented at Int. Conf. Adv. Inf. Netw. Appl., 21st, Niagara Falls, Can.
    [Google Scholar]
  77. 77.  Bouwstra S, Chen W, Feijs L, Oetomo SB 2009. Smart jacket design for neonatal monitoring with wearable sensors. IEEE Body Sens. Netw. 40:162–67
    [Google Scholar]
  78. 78.  Berzowska J 2005. Electronic textiles: wearable computers, reactive fashion, and soft computation. Text. J. Cloth Cult. 3:158–75
    [Google Scholar]
  79. 79. Spinali Design. 2016. https://www.spinali-design.com
  80. 80. Gentag. 2017. NFC and optical skin patches http://gentag.com/nfc-skin-patches/
    [Google Scholar]
  81. 81.  Berglin L 2013. Smart textiles and wearable technology—a study of smart textiles in fashion and clothing Rep. Baltic Fashion Proj., Univ. Borås
    [Google Scholar]
  82. 82.  Kent L, O'Neill B, Davison G, Nevill A, Elborn J, Bradley J 2009. Validity and reliability of cardiorespiratory measurement recorded by the Lifeshirt during exercise tests. Respir. Physiol. Neurobiol. 167:2162–67
    [Google Scholar]
  83. 83. Smartex. 2012. Wearable Wellness System (WWS) http://www.smartex.it/en/our-products/232-wearable-wellness-system-wws
    [Google Scholar]
  84. 84. Oura. 2015. Oura smart ring http://ouraring.com/
    [Google Scholar]
  85. 85. Biovotion. 2017. http://www.biovotion.com/
  86. 86.  Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:7587509–14
    [Google Scholar]
  87. 87. Raymio. 2017. Your personal suncoach http://raymio.com/
    [Google Scholar]
  88. 88. Alphafit. 2015. Smart sock http://www.alpha-fit.de/en/products/smartsock.html
    [Google Scholar]
  89. 89.  Munro B, Campbell T, Wallace G, Steele J 2008. The intelligent knee sleeve: a wearable biofeedback device. Sens. Actuators B 131:2541–47
    [Google Scholar]
  90. 90. Proteus Digit. Health. 2015. U.S. FDA accepts first digital medicine new drug application for otsuka and proteus digital health. Sept. 10. http://www.proteus.com/press-releases/u-s-fda-accepts-first-digital-medicine-new-drug-application-for-otsuka-and-proteus-digital-health/
    [Google Scholar]
  91. [Google Scholar]
  92. 92. NIH (Natl. Inst. Health). 2017. What is an implantable cardioverter defibrillator? NIH, Washington, DC. http://www.nhlbi.nih.gov/health/health-topics/topics/icd
    [Google Scholar]
  93. 93. NIH (Natl. Inst. Health). 2017. Deep brain stimulation for Parkinson's disease NIH, Washington, DC. https://www.ninds.nih.gov/Disorders/All-Disorders/Deep-Brain-Stimulation-Parkinsons-Disease-Information-Page
    [Google Scholar]
  94. 94.  Cork CR 2015. Conductive fibres for electronic textiles: an overview. Electronic Textiles: Smart Fabrics and Wearable Technology T Dias 3–20 Cambridge, MA: Woodhead
    [Google Scholar]
  95. 95.  Lee J, Kwon H, Seo J, Shin S, Koo JH et al. 2015. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27:152433–39
    [Google Scholar]
  96. 96.  Perumalraj R, Dasaradan BS 2010. Electromagnetic shielding effectiveness of doubled copper-cotton yarn woven materials. Fibres Text. East. Eur. 80:374–80
    [Google Scholar]
  97. 97.  Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X et al. 2013. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:6116182–86
    [Google Scholar]
  98. 98.  Stoppa M, Chiolerio A 2014. Wearable electronics and smart textiles: a critical review. Sensors 14:711957–92
    [Google Scholar]
  99. 99.  Devaux E, Koncar V, Kim B, Campagne C, Roux C et al. 2007. Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29:355–76
    [Google Scholar]
  100. 100.  Yu Y, Zhang J, Liu J 2013. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLOS ONE 8:3e58771
    [Google Scholar]
  101. 101.  Dias T, Ratnayake A 2015. Integration of micro-electronics with yarns for smart textiles. Electronic Textiles: Smart Fabrics and Wearable Technology T Dias 109–16 Cambridge, MA: Woodhead
    [Google Scholar]
  102. 102.  Löfuede J, Seoane F, Thordstein M 2010. Soft textile electrodes for EEG monitoring Presented at IEEE Int. Conf. Inf. Tech. Appl. Biomed., 10th, Corfu, Greece
    [Google Scholar]
  103. 103.  Bosowski P, Hoerr M, Mecnika V, Gries T, Jockenhovel S 2015. Design and manufacture of textile-based sensors. Electronic Textiles: Smart Fabrics and Wearable Technology75–107 Cambridge, MA: Woodhead
    [Google Scholar]
  104. 104.  Kim DH, Rogers JA 2008. Stretchable electronics: materials strategies and devices. Adv. Mater. 20:244887–92
    [Google Scholar]
  105. 105.  Kim D-H, Kim Y-S, Liu Z, Song J, Kim H-S et al. 2010. Stretchable silicon electronics and their integration with rubber, plastic, paper, vinyl, leather and fabric substrates. Mater. Res. Soc. Proc. 2009:1196–C0103
    [Google Scholar]
  106. 106.  Kim D-H, Lu N, Ma R, Kim Y-S, Kim R-H et al. 2011. Epidermal electronics. Science 333:6044838–43
    [Google Scholar]
  107. 107.  Zang Y, Zhang F, Huang D, Gao X, Di C, Zhu D 2015. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 3:66269
    [Google Scholar]
  108. 108.  Hong Y, Chung S, Kattamis A, Cheng I-C, Wagner S 2007. Technical issues of stainless steel foil substrates for OLED display applications. Proc. SPIE 6655 Organ. Light Emitting Mater. Devices XI 665501
    [Google Scholar]
  109. 109.  Guo CF, Sun T, Liu Q, Suo Z, Ren Z 2014. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5:3121
    [Google Scholar]
  110. [Google Scholar]
  111. 111.  Kim KS, Zhao Y, Jang H, Lee SY, Kim JM et al. 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:7230706–10
    [Google Scholar]
  112. 112.  Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ 2010. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 22:323558–63
    [Google Scholar]
  113. 113.  Hecht DS, Hu L, Irvin G 2011. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23:131482–513
    [Google Scholar]
  114. 114.  Fan JA, Yeo W-H, Su Y, Hattori Y, Lee W et al. 2014. Fractal design concepts for stretchable electronics. Nat. Commun. 5:3266
    [Google Scholar]
  115. 115. Blue Spark Tech. 2017. TempTraq http://bluesparktechnologies.com/
    [Google Scholar]
  116. 116. FDA (US Food Drug Admin.). 2014. Wireless medical devices https://www.fda.gov/medicaldevices/digitalhealth/wirelessmedicaldevices/default.htm
    [Google Scholar]
  117. 117. ISO (Intl. Org. Stand.). 2015. http://www.iso.org/iso/home.html
  118. 118. IEC (Int. Electrotech. Comm.). 2015. http://www.iec.ch/
  119. 119. IEEE Stand. Assoc. 2015. http://standards.ieee.org/
  120. 120. ANSI (Am. Natl. Stand. Inst.). 2015. http://ansi.org/
  121. 121. AAMI (Assoc. Adv. Med. Instrum.). 2015. http://www.aami.org/
  122. 122. FDA (US Food Drug Admin.). 2013. Guidance, compliance & regulatory information (biologics) http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/default.htm
    [Google Scholar]
  123. 123. ISO (Intl. Org. Stand.). 2012. ISO 14117:2012. Active implantable devices—electromagnetic compatibility—EMC test protocols for implantable cardiac pacemakers, implantable cardioverter defibrillators and cardiac resynchronization devices. https://www.iso.org/standard/54472.html
    [Google Scholar]
  124. 124. AAMI (Assoc. Adv. Med. Instrum.). 2010. AAMI TIR18:2010. Guidance on electromagnetic compatibility of medical devices in healthcare facilities. Tech. Inf. Rep., AAMI, Arlington, VA. http://my.aami.org/aamiresources/previewfiles/TIR181003_preview.pdf
    [Google Scholar]
  125. 125. ANSI (Am. Natl. Standards Inst.). 2014. IEEE/ANSI C63.18–2014. American National Standard Recommended practice for an on-site, ad hoc test method for estimating electromagnetic immunity of medical devices to radiated radio-frequency (RF) emissions from RF transmitters. Rep., Am. Natl. Standards Inst., New York
    [Google Scholar]
  126. 126. AAMI. (Assoc. Adv. Med. Instrum.). 2010. AAMI TIR18/Ed.2 (2010). Guidance on electromagnetic compatibility of medical devices in healthcare facilities. https://infostore.saiglobal.com/en-us/Standards/AAMI-TIR-18-Ed-2-2010–1411361/
    [Google Scholar]
  127. 127.  Hoolihan D 1998. Protecting devices from radio frequency transmitters. Medical Device and Diagnostic Industry Magazine Apr. 1. https://www.mddionline.com/protecting-devices-radio-frequency-transmitters
    [Google Scholar]
  128. 128. FDA (US Food Drug Admin.). 2013. Electromagnetic compatibility—documents available to help resolve medical device EMC problems Rep., FDA, Washington, DC. https://www.fda.gov/Radiation-EmittingProducts/RadiationSafety/ElectromagneticCompatibilityEMC/ucm116592.htm
    [Google Scholar]
  129. 129. IEEE Stand. Assoc. 2015. PHD—Personal Health Device https://standards.ieee.org/develop/wg/PHD.html
    [Google Scholar]
  130. 130.  Clarke M, Bogia D, Hassing K, Steubesand L, Chan T, Ayyagari D 2007. Developing a standard for personal health devices based on 11073 Presented at IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 29th, Lyon, France. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4353764
    [Google Scholar]
  131. 131. FDA (US Food Drug Admin.). 2015. Mobile medical applications: guidance for industry and FDA staff Rep., FDA, Washington, DC. http://www.fda.gov/downloads/MedicalDevices/.../UCM263366.pdf
    [Google Scholar]
  132. 132.  Mavandadi S, Dimitrov S, Feng S, Yu F, Sikora U et al. 2012. Distributed medical image analysis and diagnosis through crowd-sourced games: a malaria case study. PLOS ONE 7:5e37245
    [Google Scholar]
  133. 133.  Imani S, Bandodkar AJ, Mohan AMV, Kumar R, Yu S et al. 2016. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7:11650
    [Google Scholar]
  134. 134.  Ma Z 2011. An electronic second skin. Science 333:6044830–31
    [Google Scholar]
  135. 136.  Noh S, Yoon C, Hyun E, Yoon HN, Chung TJ et al. 2014. Ferroelectret film-based patch-type sensor for continuous blood pressure monitoring. Electron. Lett. 50:143–44
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125956
Loading
/content/journals/10.1146/annurev-anchem-061417-125956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error