1932

Abstract

Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms. SVs arise throughout the life history of cancer, and 55% of driver mutations uncovered by the Pan-Cancer Analysis of Whole Genomes project represent SVs. Leveraging the convergence of cell biology and genomics, we propose a mechanistic classification of somatic SVs, from simple to highly complex DNA rearrangement classes. The actions of DNA repair and DNA replication processes together with mitotic errors result in a rich spectrum of SV formation processes, with cascading effects mediating extensive structural diversity after an initiating DNA lesion has formed. Thanks to new sequencing technologies, including the sequencing of single-cell genomes, open questions about the molecular triggers and the biomolecules involved in SV formation as well as their mutational rates can now be addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120121-101149
2022-08-31
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-120121-101149.html?itemId=/content/journals/10.1146/annurev-genom-120121-101149&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Google Scholar]
  2. 2.
    Álvarez EG, Demeulemeester J, Otero P, Jolly C, García-Souto D et al. 2021. Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. Nat. Commun. 12:6910
    [Google Scholar]
  3. 3.
    Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77
    [Google Scholar]
  4. 4.
    Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–72
    [Google Scholar]
  5. 5.
    Baudoin NC, Cimini D. 2018. A guide to classifying mitotic stages and mitotic defects in fixed cells. Chromosoma 127:215–27
    [Google Scholar]
  6. 6.
    Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS et al. 2016. Mutational signatures of ionizing radiation in second malignancies. Nat. Commun. 7:12605
    [Google Scholar]
  7. 7.
    Ben-David U, Amon A 2020. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21:44–62
    [Google Scholar]
  8. 8.
    Beroukhim R, Zhang X, Meyerson M. 2016. Copy number alterations unmasked as enhancer hijackers. Nat. Genet. 49:5–6
    [Google Scholar]
  9. 9.
    Bhargava R, Sandhu M, Muk S, Lee G, Vaidehi N, Stark JM. 2018. C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat. Commun. 9:2484
    [Google Scholar]
  10. 10.
    Bill CA, Summers J. 2004. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. PNAS 101:11135–40
    [Google Scholar]
  11. 11.
    Bizard AH, Hickson ID. 2018. Anaphase: a fortune-teller of genomic instability. Curr. Opin. Cell Biol. 52:112–19
    [Google Scholar]
  12. 12.
    Bochtler T, Granzow M, Stölzel F, Kunz C, Mohr B et al. 2017. Marker chromosomes can arise from chromothripsis and predict adverse prognosis in acute myeloid leukemia. Blood 129:1333–42
    [Google Scholar]
  13. 13.
    Boveri T. 1914. Zur Frage der Entstehung maligner Tumoren Jena, Ger: Fischer
  14. 14.
    Brady SW, McQuerry JA, Qiao Y, Piccolo SR, Shrestha G et al. 2017. Combating subclonal evolution of resistant cancer phenotypes. Nat. Commun. 8:1231
    [Google Scholar]
  15. 15.
    Brambati A, Barry RM, Sfeir A. 2020. DNA polymerase theta (Polθ) – an error-prone polymerase necessary for genome stability. Curr. Opin. Genet. Dev. 60:119–26
    [Google Scholar]
  16. 16.
    Branzei D, Foiani M. 2008. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9:297–308
    [Google Scholar]
  17. 17.
    Carvalho CMB, Lupski JR. 2016. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17:224–38
    [Google Scholar]
  18. 18.
    Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62
    [Google Scholar]
  19. 19.
    Chen C, Xing D, Tan L, Li H, Zhou G et al. 2017. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356:189–94
    [Google Scholar]
  20. 20.
    Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. 2014. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers 6:2155–86
    [Google Scholar]
  21. 21.
    Chiang DY, Getz G, Jaffe DB, O'Kelly MJT, Zhao X et al. 2009. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6:99–103
    [Google Scholar]
  22. 22.
    Christie EL, Pattnaik S, Beach J, Copeland A, Rashoo N et al. 2019. Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer. Nat. Commun. 10:1295
    [Google Scholar]
  23. 23.
    Cooke SL, Shlien A, Marshall J, Pipinikas CP, Martincorena I et al. 2014. Processed pseudogenes acquired somatically during cancer development. Nat. Commun. 5:3644
    [Google Scholar]
  24. 24.
    Cortés-Ciriano I, Lee JJ-K, Xi R, Jain D, Jung YL et al. 2020. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52:331–41
    [Google Scholar]
  25. 25.
    Cosenza MR, Cazzola A, Rossberg A, Schieber NL, Konotop G et al. 2017. Asymmetric centriole numbers at spindle poles cause chromosome missegregation in cancer. Cell Rep 20:1906–20
    [Google Scholar]
  26. 26.
    Cosenza MR, Krämer A. 2016. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 24:105–26
    [Google Scholar]
  27. 27.
    Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E et al. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91
    [Google Scholar]
  28. 28.
    Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58
    [Google Scholar]
  29. 29.
    Dahiya R, Hu Q, Ly P. 2022. Mechanistic origins of diverse genome rearrangements in cancer. Semin. Cell Dev. Biol. 123:100–9
    [Google Scholar]
  30. 30.
    de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC et al. 2014. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346:251–56
    [Google Scholar]
  31. 31.
    Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM et al. 2019. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat. Commun. 10:392
    [Google Scholar]
  32. 32.
    Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Grönroos E et al. 2014. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4:175–85
    [Google Scholar]
  33. 33.
    Dewhurst SM, Yao X, Rosiene J, Tian H, Behr J et al. 2021. Structural variant evolution after telomere crisis. Nat. Commun. 12:2093
    [Google Scholar]
  34. 34.
    Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D et al. 2021. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372:eabf7117
    [Google Scholar]
  35. 35.
    Elango R, Osia B, Harcy V, Malc E, Mieczkowski PA et al. 2019. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res 47:9666–84
    [Google Scholar]
  36. 36.
    Ewing A, Meynert A, Churchman M, Grimes GR, Hollis RL et al. 2021. Structural variants at the BRCA1/2 loci are a common source of homologous repair deficiency in high-grade serous ovarian carcinoma. Clin. Cancer Res. 27:3201–14
    [Google Scholar]
  37. 37.
    Falconer E, Hills M, Naumann U, Poon SSS, Chavez EA et al. 2012. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods 9:1107–12
    [Google Scholar]
  38. 38.
    Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–67
    [Google Scholar]
  39. 39.
    Forsberg LA, Gisselsson D, Dumanski JP. 2017. Mosaicism in health and disease—clones picking up speed. Nat. Rev. Genet. 18:128–42
    [Google Scholar]
  40. 40.
    Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–47
    [Google Scholar]
  41. 41.
    Ganem NJ, Godinho SA, Pellman D. 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–82
    [Google Scholar]
  42. 42.
    Garsed DW, Marshall OJ, Corbin VDA, Hsu A, Di Stefano L et al. 2014. The architecture and evolution of cancer neochromosomes. Cancer Cell 26:653–67
    [Google Scholar]
  43. 43.
    Gawad C, Koh W, Quake SR. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88
    [Google Scholar]
  44. 44.
    Gebhart E. 2008. Ring chromosomes in human neoplasias. Cytogenet. Genome Res. 121:149–73
    [Google Scholar]
  45. 45.
    Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S et al. 2020. The evolutionary history of 2,658 cancers. Nature 578:122–28
    [Google Scholar]
  46. 46.
    Ghezraoui H, Piganeau M, Renouf B, Renaud J-B, Sallmyr A et al. 2014. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 55:829–42
    [Google Scholar]
  47. 47.
    Gisselsson D, Jin Y, Lindgren D, Persson J, Gisselsson L et al. 2010. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. PNAS 107:20489–93
    [Google Scholar]
  48. 48.
    Gonzalo Parra R, Przybilla MJ, Simovic M, Susak H, Ratnaparkhe M et al. 2021. Single cell multi-omics analysis of chromothriptic medulloblastoma highlights genomic and transcriptomic consequences of genome instability. bioRxiv 2021.06.25.449944. https://doi.org/10.1101/2021.06.25.449944
    [Crossref]
  49. 49.
    Gordon DJ, Resio B, Pellman D. 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13:189–203
    [Google Scholar]
  50. 50.
    Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K et al. 2018. The landscape of genomic alterations across childhood cancers. Nature 555:321–27
    [Google Scholar]
  51. 51.
    Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM et al. 2014. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157:369–81
    [Google Scholar]
  52. 52.
    Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC et al. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–57
    [Google Scholar]
  53. 53.
    Haber DA, Schimke RT. 1981. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell 26:355–62
    [Google Scholar]
  54. 54.
    Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C et al. 2020. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183:197–210.e32
    [Google Scholar]
  55. 55.
    Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R et al. 2010. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42:668–75
    [Google Scholar]
  56. 56.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  57. 57.
    Harris FR, Kovtun IV, Smadbeck J, Multinu F, Jatoi A et al. 2016. Quantification of somatic chromosomal rearrangements in circulating cell-free DNA from ovarian cancers. Sci. Rep. 6:29831
    [Google Scholar]
  58. 58.
    Hastings PJ, Ira G, Lupski JR 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLOS Genet 5:e1000327
    [Google Scholar]
  59. 59.
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10:551–64
    [Google Scholar]
  60. 60.
    Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. 2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60
    [Google Scholar]
  61. 61.
    Henssen AG, Koche R, Zhuang J, Jiang E, Reed C et al. 2017. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nat. Genet. 49:1005–14
    [Google Scholar]
  62. 62.
    Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC et al. 2014. Large inverted duplications in the human genome form via a fold-back mechanism. PLOS Genet 10:e1004139
    [Google Scholar]
  63. 63.
    Hintzsche H, Hemmann U, Poth A, Utesch D, Lott J et al. 2017. Fate of micronuclei and micronucleated cells. Mutat. Res. 771:85–98
    [Google Scholar]
  64. 64.
    Ho SS, Urban AE, Mills RE. 2020. Structural variation in the sequencing era. Nat. Rev. Genet. 21:171–89
    [Google Scholar]
  65. 65.
    Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS. 2004. Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–97
    [Google Scholar]
  66. 66.
    Holland AJ, Cleveland DW. 2012. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 18:1630–38
    [Google Scholar]
  67. 67.
    Hu Z, Zhu D, Wang W, Li W, Jia W et al. 2015. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat. Genet. 47:158–63
    [Google Scholar]
  68. 68.
    ICGC/TCGA Pan-Cancer Anal. Whole Genomes Consort. 2020. Pan-cancer analysis of whole genomes. Nature 578:82–93
    [Google Scholar]
  69. 69.
    Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F et al. 2021. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 12:1003
    [Google Scholar]
  70. 70.
    Jackson SP, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature 461:1071–78
    [Google Scholar]
  71. 71.
    Jeong H, Grimes K, Bruch P-M, Rausch T, Hasenfeld P et al. 2021. Haplotype-aware single-cell multiomics uncovers functional effects of somatic structural variation. bioRxiv 2021.11.11.468039. https://doi.org/10.1101/2021.11.11.468039
    [Crossref]
  72. 72.
    Kim H, Nguyen N-P, Turner K, Wu S, Gujar AD et al. 2020. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52:891–97
    [Google Scholar]
  73. 73.
    Koche RP, Rodriguez-Fos E, Helmsauer K, Burkert M, MacArthur IC et al. 2020. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52:29–34
    [Google Scholar]
  74. 74.
    Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. 2021. Repair of DNA breaks by break-induced replication. Annu. Rev. Biochem. 90:165–91
    [Google Scholar]
  75. 75.
    Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF. 2015. Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep 11:1703–13
    [Google Scholar]
  76. 76.
    Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA et al. 1983. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35:359–67
    [Google Scholar]
  77. 77.
    Korbel JO, Campbell PJ. 2013. Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–36
    [Google Scholar]
  78. 78.
    Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F et al. 2007. Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–26
    [Google Scholar]
  79. 79.
    Küppers R, Dalla-Favera R. 2001. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20:5580–94
    [Google Scholar]
  80. 80.
    Kuznetsova AY, Seget K, Moeller GK, de Pagter MS, de Roos JADM et al. 2015. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14:2810–20
    [Google Scholar]
  81. 81.
    Laks E, McPherson A, Zahn H, Lai D, Steif A et al. 2019. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179:1207–21.e22
    [Google Scholar]
  82. 82.
    Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG et al. 2015. Mutations driving CLL and their evolution in progression and relapse. Nature 526:525–30
    [Google Scholar]
  83. 83.
    Lee JA, Carvalho CMB, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–47
    [Google Scholar]
  84. 84.
    Lee JJ-K, Park S, Park H, Kim S, Lee J et al. 2019. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177:1842–57.e21
    [Google Scholar]
  85. 85.
    Leibowitz ML, Zhang C-Z, Pellman D. 2015. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49:183–211
    [Google Scholar]
  86. 86.
    Letouzé E, Shinde J, Renault V, Couchy G, Blanc J-F et al. 2017. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8:1315
    [Google Scholar]
  87. 87.
    Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE et al. 2020. Patterns of somatic structural variation in human cancer genomes. Nature 578:112–21
    [Google Scholar]
  88. 88.
    Li Y, Schwab C, Ryan S, Papaemmanuil E, Robinson HM et al. 2014. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102
    [Google Scholar]
  89. 89.
    Liskay RM, Letsou A, Stachelek JL. 1987. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115:161–67
    [Google Scholar]
  90. 90.
    Liu P, Carvalho CMB, Hastings PJ, Lupski JR. 2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22:211–20
    [Google Scholar]
  91. 91.
    Liu P, Erez A, Nagamani SCS, Dhar SU, Kołodziejska KE et al. 2011. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903
    [Google Scholar]
  92. 92.
    Liu S, Kwon M, Mannino M, Yang N, Renda F et al. 2018. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561:551–55
    [Google Scholar]
  93. 93.
    Ly P, Brunner SF, Shoshani O, Kim DH, Lan W et al. 2019. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51:705–15
    [Google Scholar]
  94. 94.
    Ly P, Cleveland DW. 2017. Rebuilding chromosomes after catastrophe: emerging mechanisms of chromothripsis. Trends Cell Biol 27:917–30
    [Google Scholar]
  95. 95.
    Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H et al. 2017. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by nonhomologous end joining. Nat. Cell Biol. 19:68–75
    [Google Scholar]
  96. 96.
    Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12:519–22
    [Google Scholar]
  97. 97.
    Maciejowski J, Chatzipli A, Dananberg A, Chu K, Toufektchan E et al. 2020. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 52:884–90
    [Google Scholar]
  98. 98.
    Maciejowski J, de Lange T. 2017. Telomeres in cancer: tumor suppression and genome instability. Nat. Rev. Mol. Cell Biol. 18:175–86
    [Google Scholar]
  99. 99.
    Maciejowski J, Imielinski M. 2017. Modeling cancer rearrangement landscapes. Curr. Opin. Syst. Biol. 1:54–61
    [Google Scholar]
  100. 100.
    Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T 2015. Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–54
    [Google Scholar]
  101. 101.
    Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–65
    [Google Scholar]
  102. 102.
    Magrangeas F, Avet-Loiseau H, Munshi NC, Minvielle S. 2011. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood 118:675–78
    [Google Scholar]
  103. 103.
    Mallard C, Johnston MJ, Bobyn A, Nikolic A, Argiropoulos B et al. 2022. Hi-C detects genomic structural variants in peripheral blood of pediatric leukemia patients. Cold Spring Harb. Mol. Case Stud. 8:a006157
    [Google Scholar]
  104. 104.
    Mani R-S, Tomlins SA, Callahan K, Ghosh A, Nyati MK et al. 2009. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230
    [Google Scholar]
  105. 105.
    Mardin BR, Drainas AP, Waszak SM, Weischenfeldt J, Isokane M et al. 2015. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11:828
    [Google Scholar]
  106. 106.
    Marteil G, Guerrero A, Vieira AF, de Almeida BP, Machado P et al. 2018. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 9:1258
    [Google Scholar]
  107. 107.
    Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. 2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254–57
    [Google Scholar]
  108. 108.
    Mazzagatti A, Shaikh N, Bakker B, Spierings DCJ, Wardenaar R et al. 2020. DNA replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. bioRxiv 10.1101/743658. https://doi.org/10.1101/743658
    [Crossref]
  109. 109.
    McClintock B. 1938. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–76
    [Google Scholar]
  110. 110.
    McClintock B. 1941. The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–82
    [Google Scholar]
  111. 111.
    Menghi F, Barthel FP, Yadav V, Tang M, Ji B et al. 2018. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34:197–210.e5
    [Google Scholar]
  112. 112.
    Mills RE, Walter K, Stewart C, Handsaker RE, Chen K et al. 2011. Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65
    [Google Scholar]
  113. 113.
    Minussi DC, Nicholson MD, Ye H, Davis A, Wang K et al. 2021. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592:302–8
    [Google Scholar]
  114. 114.
    Mitchell E, Chapman MS, Williams N, Dawson K, Mende N et al. 2021. Clonal dynamics of haematopoiesis across the human lifespan. bioRxiv 2021.08.16.456475. https://doi.org/10.1101/2021.08.16.456475
    [Crossref]
  115. 115.
    Mitchell TJ, Turajlic S, Rowan A, Nicol D, Farmery JHR et al. 2018. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx Renal. Cell 173:611–23.e17
    [Google Scholar]
  116. 116.
    Mitelman F, Johansson B, Mertens F, eds. 2022. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer https://mitelmandatabase.isb-cgc.org
  117. 117.
    Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N et al. 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12:2715–21
    [Google Scholar]
  118. 118.
    Mulqueen RM, Pokholok D, O'Connell BL, Thornton CA, Zhang F et al. 2021. High-content single-cell combinatorial indexing. Nat. Biotechnol. 39:1574–80
    [Google Scholar]
  119. 119.
    Murnane JP. 2012. Telomere dysfunction and chromosome instability. Mutat. Res. 730:28–36
    [Google Scholar]
  120. 120.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumor evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  121. 121.
    Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D et al. 2016. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47–54
    [Google Scholar]
  122. 122.
    Northcott PA, Lee C, Zichner T, Stütz AM, Erkek S et al. 2014. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511:428–34
    [Google Scholar]
  123. 123.
    Norton ME, Kuller JA, Dugoff L. 2019. Perinatal Genetics St. Louis, MO: Elsevier
  124. 124.
    Nowell PC. 1962. The minute chromosome (Ph1) in chronic granulocytic leukemia. Blut 8:65–66
    [Google Scholar]
  125. 125.
    Osia B, Alsulaiman T, Jackson T, Kramara J, Oliveira S, Malkova A. 2021. Cancer cells are highly susceptible to accumulation of templated insertions linked to MMBIR. Nucleic Acids Res 49:8714–31
    [Google Scholar]
  126. 126.
    Ottaviani D, LeCain M, Sheer D. 2014. The role of microhomology in genomic structural variation. Trends Genet 30:85–94
    [Google Scholar]
  127. 127.
    Pampalona J, Frías C, Genescà A, Tusell L. 2012. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLOS Genet 8:e1002679
    [Google Scholar]
  128. 128.
    Pampalona J, Roscioli E, Silkworth WT, Bowden B, Genescà A et al. 2016. Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLOS ONE 11:e0147420
    [Google Scholar]
  129. 129.
    Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J et al. 2015. Whole-genome characterization of chemoresistant ovarian cancer. Nature 521:489–94
    [Google Scholar]
  130. 130.
    Paulsen T, Kumar P, Koseoglu MM, Dutta A. 2018. Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet 34:270–78
    [Google Scholar]
  131. 131.
    Peek RM Jr., Crabtree JE. 2006. Helicobacter infection and gastric neoplasia. J. Pathol. 208:233–48
    [Google Scholar]
  132. 132.
    Pellestor F. 2019. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol. Cytogenet. 12:6
    [Google Scholar]
  133. 133.
    Péneau C, Imbeaud S, La Bella T, Hirsch TZ, Caruso S et al. 2022. Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 71:616–26
    [Google Scholar]
  134. 134.
    Piazza A, Heyer W-D. 2019. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol 29:135–49
    [Google Scholar]
  135. 135.
    Piazza A, Wright WD, Heyer W-D. 2017. Multi-invasions are recombination byproducts that induce chromosomal rearrangements. Cell 170:760–73.e15
    [Google Scholar]
  136. 136.
    Pinkel D, Segraves R, Sudar D, Clark S, Poole I et al. 1998. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20:207–11
    [Google Scholar]
  137. 137.
    Pino MS, Chung DC. 2010. The chromosomal instability pathway in colon cancer. Gastroenterology 138:2059–72
    [Google Scholar]
  138. 138.
    Popova T, Manié E, Boeva V, Battistella A, Goundiam O et al. 2016. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications. Cancer Res 76:1882–91
    [Google Scholar]
  139. 139.
    Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E et al. 2019. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575:210–16
    [Google Scholar]
  140. 140.
    Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R et al. 2018. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174:758–69.e9
    [Google Scholar]
  141. 141.
    Quinton RJ, DiDomizio A, Vittoria MA, Kotýnková K, Ticas CJ et al. 2021. Whole-genome doubling confers unique genetic vulnerabilities on tumor cells. Nature 590:492–97
    [Google Scholar]
  142. 142.
    Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D et al. 2019. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 33:1851–67
    [Google Scholar]
  143. 143.
    Rahman N. 2014. Realizing the promise of cancer predisposition genes. Nature 505:302–8
    [Google Scholar]
  144. 144.
    Rai R, Zheng H, He H, Luo Y, Multani A et al. 2010. The function of classical and alternative nonhomologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J 29:2598–2610
    [Google Scholar]
  145. 145.
    Rausch T, Jones DTW, Zapatka M, Stütz AM, Zichner T et al. 2012. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71
    [Google Scholar]
  146. 146.
    Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. 2012. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–39
    [Google Scholar]
  147. 147.
    Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O et al. 2020. Analyses of noncoding somatic drivers in 2,658 cancer whole genomes. Nature 578:102–11
    [Google Scholar]
  148. 148.
    Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F et al. 2020. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52:306–19
    [Google Scholar]
  149. 149.
    Rosswog C, Bartenhagen C, Welte A, Kahlert Y, Hemstedt N et al. 2021. Chromothripsis followed by circular recombination drives oncogene amplification in human cancer. Nat. Genet. 53:1673–85
    [Google Scholar]
  150. 150.
    Rowe LR, Lee J-Y, Rector L, Kaminsky EB, Brothman AR et al. 2009. U-type exchange is the most frequent mechanism for inverted duplication with terminal deletion rearrangements. J. Med. Genet. 46:694–702
    [Google Scholar]
  151. 151.
    Sabatier L, Ricoul M, Pottier G, Murnane JP. 2005. The loss of a single telomere can result in instability of multiple chromosomes in a human tumor cell line. Mol. Cancer Res. 3:139–50
    [Google Scholar]
  152. 152.
    Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y et al. 2013. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–92
    [Google Scholar]
  153. 153.
    Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep 7:1640–48
    [Google Scholar]
  154. 154.
    Sanders AD, Meiers S, Ghareghani M, Porubsky D, Jeong H et al. 2019. Single-cell analysis of structural variations and complex rearrangements with tri-channel processing. Nat. Biotechnol. 38:343–54
    [Google Scholar]
  155. 155.
    Sansregret L, Vanhaesebroeck B, Swanton C. 2018. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 15:139–50
    [Google Scholar]
  156. 156.
    Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. 2019. Templated insertions: a smoking gun for polymerase theta-mediated end joining. Trends Genet 35:632–44
    [Google Scholar]
  157. 157.
    Shi Q, King RW. 2005. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–42
    [Google Scholar]
  158. 158.
    Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y et al. 2021. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591:137–41
    [Google Scholar]
  159. 159.
    Simsek D, Brunet E, Wong SY-W, Katyal S, Gao Y et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLOS Genet 7:e1002080
    [Google Scholar]
  160. 160.
    Simsek D, Jasin M. 2010. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4–ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol. 17:410–16
    [Google Scholar]
  161. 161.
    Smith CE, Llorente B, Symington LS. 2007. Template switching during break-induced replication. Nature 447:102–5
    [Google Scholar]
  162. 162.
    Sokol ES, Pavlick D, Frampton GM, Ross JS, Miller VA et al. 2019. Pan-cancer analysis of CDK12 loss-of-function alterations and their association with the focal tandem-duplicator phenotype. Oncologist 24:1526–33
    [Google Scholar]
  163. 163.
    Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A et al. 1997. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:399–407
    [Google Scholar]
  164. 164.
    Sotillo R, Hernando E, Díaz-Rodríguez E, Teruya-Feldstein J, Cordón-Cardo C et al. 2007. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23
    [Google Scholar]
  165. 165.
    Spielmann M, Lupiáñez DG, Mundlos S. 2018. Structural variation in the 3D genome. Nat. Rev. Genet. 19:453–67
    [Google Scholar]
  166. 166.
    Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40
    [Google Scholar]
  167. 167.
    Stewénius Y, Gorunova L, Jonson T, Larsson N, Höglund M et al. 2005. Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. PNAS 102:5541–46
    [Google Scholar]
  168. 168.
    Stok C, Kok YP, van den Tempel N, van Vugt MATM. 2021. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 49:4239–57
    [Google Scholar]
  169. 169.
    Storchova Z, Pellman D. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5:45–54
    [Google Scholar]
  170. 170.
    Stratton MR, Campbell PJ, Futreal PA. 2009. The cancer genome. Nature 458:719–24
    [Google Scholar]
  171. 171.
    Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247–71
    [Google Scholar]
  172. 172.
    Taylor AM, Shih J, Ha G, Gao GF, Zhang X et al. 2018. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33:676–89.e3
    [Google Scholar]
  173. 173.
    Terradas M, Martín M, Genescà A. 2018. Detection of impaired DNA replication and repair in micronuclei as indicators of genomic instability and chromothripsis. Methods Mol. Biol. 1769:197–208
    [Google Scholar]
  174. 174.
    Tomlins SA, Laxman B, Varambally S, Cao X, Yu J et al. 2008. Role of the TMPRSS2:ERG gene fusion in prostate cancer. Neoplasia 10:177–88
    [Google Scholar]
  175. 175.
    Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL et al. 2014. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345:1251343
    [Google Scholar]
  176. 176.
    Turner KM, Deshpande V, Beyter D, Koga T, Rusert J et al. 2017. Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity. Nature 543:122–25
    [Google Scholar]
  177. 177.
    Umbreit NT, Zhang C-Z, Lynch LD, Blaine LJ, Cheng AM et al. 2020. Mechanisms generating cancer genome complexity from a single cell division error. Science 368:eaba0712
    [Google Scholar]
  178. 178.
    Verhaak RGW, Bafna V, Mischel PS. 2019. Extrachromosomal oncogene amplification in tumor pathogenesis and evolution. Nat. Rev. Cancer 19:283–88
    [Google Scholar]
  179. 179.
    Vietri M, Schultz SW, Bellanger A, Jones CM, Petersen LI et al. 2020. Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat. Cell Biol. 22:856–67
    [Google Scholar]
  180. 180.
    Viswanathan SR, Ha G, Hoff AM, Wala JA, Carrot-Zhang J et al. 2018. Structural alterations driving castration-resistant prostate cancer revealed by linked-read genome sequencing. Cell 174:433–47.e19
    [Google Scholar]
  181. 181.
    Wala JA, Shapira O, Li Y, Craft D, Schumacher SE et al. 2017. Selective and mechanistic sources of recurrent rearrangements across the cancer genome. bioRxiv 10.1101/187609. https://doi.org/10.1101/10.1101/187609
    [Crossref]
  182. 182.
    Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS et al. 2017. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49:856–65
    [Google Scholar]
  183. 183.
    Wang Z, Song Y, Li S, Kurian S, Xiang R et al. 2019. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse. J. Biol. Chem. 294:3909–19
    [Google Scholar]
  184. 184.
    Waszak SM, Robinson GW, Gudenas BL, Smith KS, Forget A et al. 2020. Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature 580:396–401
    [Google Scholar]
  185. 185.
    Weckselblatt B, Rudd MK. 2015. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet 31:587–99
    [Google Scholar]
  186. 186.
    Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y et al. 2016. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49:65–74
    [Google Scholar]
  187. 187.
    Willis NA, Frock RL, Menghi F, Duffey EE, Panday A et al. 2017. Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 551:590–95
    [Google Scholar]
  188. 188.
    Wolff DJ, Miller AP, Van Dyke DL, Schwartz S, Willard HF. 1996. Molecular definition of breakpoints associated with human Xq isochromosomes: implications for mechanisms of formation. Am. J. Hum. Genet. 58:154–60
    [Google Scholar]
  189. 189.
    Wu S, Turner KM, Nguyen N, Raviram R, Erb M et al. 2019. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:699–703
    [Google Scholar]
  190. 190.
    Yi K, Ju YS. 2018. Patterns and mechanisms of structural variations in human cancer. Exp. Mol. Med. 50:1–11
    [Google Scholar]
  191. 191.
    Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G et al. 2013. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45:1134–40
    [Google Scholar]
  192. 192.
    Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A et al. 2020. The landscape of viral associations in human cancers. Nat. Genet. 52:320–30
    [Google Scholar]
  193. 193.
    Zeman MK, Cimprich KA. 2013. Causes and consequences of replication stress. Nat. Cell Biol. 16:2–9
    [Google Scholar]
  194. 194.
    Zhang C-Z, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84
    [Google Scholar]
  195. 195.
    Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H et al. 2016. Identification of focally amplified lineage-specific superenhancers in human epithelial cancers. Nat. Genet. 48:176–82
    [Google Scholar]
  196. 196.
    Zhang Y, Jasin M. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 18:80–84
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120121-101149
Loading
/content/journals/10.1146/annurev-genom-120121-101149
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error