1932

Abstract

Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification–based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021621-115027
2022-08-26
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021621-115027.html?itemId=/content/journals/10.1146/annurev-phyto-021621-115027&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abd-Elsalam K, Bahkali A, Moslem M, Amin OE, Niessen L. 2011. An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int. J. Mol. Sci. 12:3459–72
    [Google Scholar]
  2. 2.
    Ali Z, Aman R, Mahas A, Rao GS, Tehseen M et al. 2020. iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res 288:198129
    [Google Scholar]
  3. 3.
    Alvarez AM. 2004. Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu. Rev. Phytopathol. 42:339–66
    [Google Scholar]
  4. 4.
    Aman R, Mahas A, Marsic T, Hassan N, Mahfouz MM. 2020. Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA-CRISPR/Cas12a assay. Front. Microbiol. 11:610872
    [Google Scholar]
  5. 5.
    An LX, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong HM. 2005. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J. Biol. Chem. 280:28952–58
    [Google Scholar]
  6. 6.
    Andryukov BG. 2020. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 6:280–304
    [Google Scholar]
  7. 7.
    Bao YJ, Jiang YZ, Xiong EH, Tian T, Zhang ZZ et al. 2020. CUT-LAMP: contamination-free loop-mediated isothermal amplification based on the CRISPR/Cas9 cleavage. ACS Sens 5:1082–91
    [Google Scholar]
  8. 8.
    Barreda-Garcia S, Miranda-Castro R, de-los-Santos-Alvarez N, Miranda-Ordieres AJ, Lobo-Castanon MJ. 2018. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal. Bioanal. Chem. 410:679–93
    [Google Scholar]
  9. 9.
    Berensmeier S. 2006. Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73:495–504
    [Google Scholar]
  10. 10.
    Blaser S, Diem H, von Felten A, Gueuning M, Andreou M et al. 2018. From laboratory to point of entry: development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest Manag. Sci. 74:1504–12
    [Google Scholar]
  11. 11.
    Boluk G, Dobhal S, Crockford AB, Melzer M, Alvarez AM, Arif M. 2020. Genome-informed recombinase polymerase amplification assay coupled with a lateral flow device for in-field detection of Dickeya species. Plant Dis 104:2217–24
    [Google Scholar]
  12. 12.
    Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-van Dillen PME, van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495–503
    [Google Scholar]
  13. 13.
    Boyle DS, Lehman DA, Lillis L, Peterson D, Singhal M et al. 2013. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. mBio 4:e00135–13
    [Google Scholar]
  14. 14.
    Buddhachat K, Ritbamrung O, Sripairoj N, Inthima P, Ratanasut K et al. 2021. One-step colorimetric LAMP (cLAMP) assay for visual detection of Xanthomonas oryzae pv. oryzae in rice. Crop Prot 150:105809
    [Google Scholar]
  15. 15.
    Chander Y, Koelbl J, Puckett J, Moser MJ, Klingele AJ et al. 2014. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol. 5:395
    [Google Scholar]
  16. 16.
    Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR et al. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–39
    [Google Scholar]
  17. 17.
    Chen SY, Wang F, Beaulieu JC, Stein RE, Ge BL. 2011. Rapid detection of viable salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl. Environ. Microbiol. 77:4008–16
    [Google Scholar]
  18. 18.
    Choudhary P, Rai P, Yadav J, Verma S, Chakdar H et al. 2020. A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice. Sci. Rep. 10:19
    [Google Scholar]
  19. 19.
    Compton J. 1991. Nucleic acid sequence-based amplification. Nature 350:91–92
    [Google Scholar]
  20. 20.
    Congdon B, Matson P, Begum F, Kehoe M, Coutts B. 2019. Application of loop-mediated isothermal amplification in an early warning system for epidemics of an externally sourced plant virus. Plants 8:5139
    [Google Scholar]
  21. 21.
    Congdon BS, Kehoe MA, Filardo FF, Coutts BA. 2019. In-field capable loop-mediated isothermal amplification detection of Turnip yellows virus in plants and its principal aphid vector Myzus persicae. J. Virol. Methods 265:15–21
    [Google Scholar]
  22. 22.
    Crannell ZA, Rohrman B, Richards-Kortum R. 2014. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLOS ONE 9:11e112146
    [Google Scholar]
  23. 23.
    Daher RK, Stewart G, Boissinot M, Boudreau DK, Bergeron MG. 2015. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol. Cell. Probes 29:116–21
    [Google Scholar]
  24. 24.
    Dai TT, Hu T, Yang X, Shen DY, Jiao BB et al. 2019. A recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalis. PeerJ 7:e8083
    [Google Scholar]
  25. 25.
    Dai TT, Yang X, Hu T, Jiao BB, Xu Y et al. 2019. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Front. Microbiol. 10:1884
    [Google Scholar]
  26. 26.
    DeShields JB, Moroz N, Braley LE, Mora-Romero GA, Tanaka K. 2019. Recombinase polymerase amplification (RPA) for the rapid isothermal detection of Spongospora subterranea f. sp. subterranea and potato mop-top virus. Am. J. Potato Res. 96:617–24
    [Google Scholar]
  27. 27.
    Doseeva V, Forbes T, Wolff J, Khripin Y, O'Neil D et al. 2011. Multiplex isothermal helicase-dependent amplification assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Diagn. Microbiol. Infect. Dis. 71:354–65
    [Google Scholar]
  28. 28.
    Edgu G, Freund LJ, Hartje S, Tacke E, Hofferbert HR et al. 2020. Fast, precise, and reliable multiplex detection of potato viruses by loop-mediated isothermal amplification. Int. J. Mol. Sci. 21:228741
    [Google Scholar]
  29. 29.
    Esser KH, Marx WH, Lisowsky T. 2006. DNA decontamination: DNA-ExitusPlus in comparison with conventional reagents. Nat. Methods 3:i–ii
    [Google Scholar]
  30. 30.
    Fang RD, Li X, Hu L, You QM, Li J et al. 2009. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens. J. Clin. Microbiol. 47:845–47
    [Google Scholar]
  31. 31.
    FAO 2019. New standards to curb the global spread of plant pests and diseases. FAO https://www.fao.org/news/story/en/item/1187738/icode/
    [Google Scholar]
  32. 32.
    Fire A, Xu SQ. 1995. Rolling replication of short DNA circles. PNAS 92:4641–45
    [Google Scholar]
  33. 33.
    Fischbach J, Xander NC, Frohme M, Glokler JF. 2015. Shining a light on LAMP assays: a comparison of LAMP visualization methods including the novel use of berberine. BioTechniques 58:189–94
    [Google Scholar]
  34. 34.
    Foo PC, Najian ABN, Muhamad NA, Ahamad M, Mohamed M et al. 2020. Loop-mediated isothermal amplification (LAMP) reaction as viable PCR substitute for diagnostic applications: a comparative analysis study of LAMP, conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR) based on Entamoeba histolytica DNA derived from faecal sample. BMC Biotechnol 20:134
    [Google Scholar]
  35. 35.
    Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC et al. 2011. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 62:41–48
    [Google Scholar]
  36. 36.
    Gawande SP, Raghavendra KP, Monga D, Nagrale DT, Kranthi S. 2019. Rapid detection of Tobacco streak virus (TSV) in cotton (Gossypium hirsutum) based on reverse transcription loop mediated isothermal amplification (RT-LAMP). J. Virol. Methods 270:21–25
    [Google Scholar]
  37. 37.
    George G, Mony P, Kenneth J. 2011. Comparison of the efficacies of loop-mediated isothermal amplification, fluorescence smear microscopy and culture for the diagnosis of tuberculosis. PLOS ONE 6:6e21007
    [Google Scholar]
  38. 38.
    Goto M, Honda E, Ogura A, Nomoto A, Hanaki KI. 2009. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 46:167–72
    [Google Scholar]
  39. 39.
    Hansen ZR, Knaus BJ, Tabima JF, Press CM, Judelson HS et al. 2016. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthora infestans. J. Appl. Microbiol. 120:1010–20
    [Google Scholar]
  40. 40.
    He QC, Wang DW, Tang B, Wang J, Zhang DY et al. 2021. Rapid and sensitive detection of Meloidogyne graminicola in soil using conventional PCR, loop-mediated isothermal amplification, and real-time PCR methods. Plant Dis. 105:456–63
    [Google Scholar]
  41. 41.
    Hieno A, Li MZ, Otsubo K, Suga H, Kageyama K. 2021. Multiplex LAMP detection of the genus Phytophthora and four Phytophthora species P. ramorum, P. lateralis, P kernoviae, and P. nicotianae, with a plant internal control. Microbes Environ 36:2ME21019
    [Google Scholar]
  42. 42.
    Incerti O, Dakroub H, Khasib M, Cavalieri V, Elbeaino T. 2020. Comparison of conventional and novel molecular diagnostic methods for detection of Xylella fastidiosa from insect vectors. Phytopathol. Mediterr. 59:261–67
    [Google Scholar]
  43. 43.
    Ishiguro N, Koseki N, Kaiho M, Kikuta H, Togashi T et al. 2015. Sensitivity and specificity of a loop-mediated isothermal amplification assay for the detection of mycoplasma pneumonia from nasopharyngeal swab samples compared with those of real-time PCR. Clin. Lab 61:603–6
    [Google Scholar]
  44. 44.
    Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. 2020. Nucleic acid lateral flow assay with recombinase polymerase amplification: solutions for highly sensitive detection of RNA virus. Talanta 210:120616
    [Google Scholar]
  45. 45.
    Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. 2021. The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plants 10:112424
    [Google Scholar]
  46. 46.
    Jiang M, Pan W, Arasthfer A, Fang W, Ling L et al. 2020. Development and validation of a rapid, single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. Front. Cell. Infect. Microbiol. 10:331
    [Google Scholar]
  47. 47.
    Jiao YB, Jiang JY, An MN, Xia ZH, Wu YH. 2019. Recombinase polymerase amplification assay for rapid detection of maize chlorotic mottle virus in maize. Arch. Virol. 164:2581–84
    [Google Scholar]
  48. 48.
    Jung C, Chung JW, Kim UO, Kim MH, Park HG. 2010. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology. Anal. Chem. 82:5937–43
    [Google Scholar]
  49. 49.
    Kaltenboeck B, Wang CM 2005. Advances in real-time PCR: application to clinical laboratory diagnostics. Advances in Clinical Chemistry, Vol. 40 GS Makowski 219–59 San Diego: Elsevier
    [Google Scholar]
  50. 50.
    Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14:2986–3012
    [Google Scholar]
  51. 51.
    Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M 2014. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim. Acta 181:1715–23
    [Google Scholar]
  52. 52.
    Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M 2014. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar. J. 13:99
    [Google Scholar]
  53. 53.
    Khan M, Wang R, Li B, Liu P, Weng Q, Chen Q 2018. Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front. Microbiol. 9:2089
    [Google Scholar]
  54. 54.
    Khan WA, Barney RE, Tsongalis GJ. 2021. CRISPR-cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting. J. Clin. Virol. 145:105019
    [Google Scholar]
  55. 55.
    Kim HR, Lim DR, Chae HG, Park JY, Kim SH et al. 2020. Advanced target-specific probe-based real-time loop-mediated isothermal amplification assay for the rapid and specific detection of porcine circovirus 3. Transbound. Emerg. Dis. 67:2336–44
    [Google Scholar]
  56. 56.
    Kim J, Mauk M, Chen DF, Qiu XB, Kim J et al. 2010. A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst 135:2408–14
    [Google Scholar]
  57. 57.
    Kim NY, Lee HJ, Jeong RD. 2019. A portable detection assay for Apple stem pitting virus using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 274:113747
    [Google Scholar]
  58. 58.
    Kokkinos PA, Ziros PG, Bellou M, Vantarakis A. 2014. Loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in food. Food Anal. Methods 7:512–26
    [Google Scholar]
  59. 59.
    Kovalskaya N, Hammond RW. 2022. Rapid diagnostic detection of tomato apical stunt viroid based on isothermal reverse transcription-recombinase polymerase amplification. J. Virol. Methods 300:114353
    [Google Scholar]
  60. 60.
    Kralik P, Ricchi M. 2017. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front. Microbiol. 8:108
    [Google Scholar]
  61. 61.
    Lang JM, Langlois P, Nguyen MHR, Triplett LR, Purdie L et al. 2014. Sensitive detection of Xanthomonas oryzae pathovars oryzae and oryzicola by loop-mediated isothermal amplification. Appl. Environ. Microbiol. 80:4519–30
    [Google Scholar]
  62. 62.
    Larrea-Sarmiento A, Stack JP, Alvarez AM, Arif M. 2021. Multiplex recombinase polymerase amplification assay developed using unique genomic regions for rapid on-site detection of genus Clavibacter and C. nebraskensis. Sci. Rep. 11:12017
    [Google Scholar]
  63. 63.
    Lau HY, Botella JR. 2017. Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Front. Plant Sci. 8:2016
    [Google Scholar]
  64. 64.
    Lau HY, Wang YL, Wee EJH, Botella JR, Trau M. 2016. Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Anal. Chem. 88:8074–81
    [Google Scholar]
  65. 65.
    Lau HY, Wu HQ, Wee EJH, Trau M, Wang YL, Botella JR. 2017. Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci. Rep. 7:38896
    [Google Scholar]
  66. 66.
    Le DT, Netsu O, Uehara-Ichiki T, Shimizu T, Choi IR et al. 2010. Molecular detection of nine rice viruses by a reverse-transcription loop-mediated isothermal amplification assay. J. Virol. Methods 170:90–93
    [Google Scholar]
  67. 67.
    Le DT, Vu NT. 2017. Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl. Biol. Chem. 60:169–80
    [Google Scholar]
  68. 68.
    Lee HJ, Cho IS, Ju HJ, Jeong RD. 2021. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol. Cell. Probes 57:101727
    [Google Scholar]
  69. 69.
    Leggate J, Allain R, Isaac L, Blais BW. 2006. Microplate fluorescence assay for the quantification of double stranded DNA using SYBR green I dye. Biotechnol. Lett. 28:1587–94
    [Google Scholar]
  70. 70.
    Leslie DC, Li JY, Strachan BC, Begley MR, Finkler D et al. 2012. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. J. Am. Chem. Soc. 134:5689–96
    [Google Scholar]
  71. 71.
    Li L, Zhang SY, Zhang CQ. 2019. Establishment of a rapid detection method for rice blast fungus based on one-step loop-mediated isothermal amplification (LAMP). Plant Dis 103:1967–73
    [Google Scholar]
  72. 72.
    Li LX, Li SY, Wu N, Wu JC, Wang G et al. 2019. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8:2228–37
    [Google Scholar]
  73. 73.
    Lillis L, Siverson J, Lee A, Cantera J, Parker M et al. 2016. Factors influencing recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol. Cell. Probes 30:74–78
    [Google Scholar]
  74. 74.
    Lim DR, Kim HR, Park MJ, Chae HG, Ku BK et al. 2018. An improved reverse transcription loop-mediated isothermal amplification assay for sensitive and specific detection of serotype O foot-and-mouth disease virus. J. Virol. Methods 260:6–13
    [Google Scholar]
  75. 75.
    Lin CQ, Zhang YX, Zhou X, Yao B, Fang Q. 2013. Naked-eye detection of nucleic acids through rolling circle amplification and magnetic particle mediated aggregation. Biosens. Bioelectron. 47:515–19
    [Google Scholar]
  76. 76.
    Liu CC, Geva E, Mauk M, Qiu XB, Abrams WR et al. 2011. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136:2069–76
    [Google Scholar]
  77. 77.
    Liu W, Dong DR, Yang Z, Zou DY, Chen ZL et al. 2015. Polymerase spiral reaction (PSR): a novel isothermal nucleic acid amplification method. Sci. Rep. 5:12723
    [Google Scholar]
  78. 78.
    Lobato IM, O'Sullivan CK 2018. Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal. Chem. 98:19–35
    [Google Scholar]
  79. 79.
    Lu C, Zhang H, Wang Y, Zheng X. 2015. Rapid diagnosis of Fusarium root rot in soybean caused by Fusarium equiseti or Fusarium graminearum using loop-mediated isothermal amplification (LAMP) assays. Australas. Plant Pathol. 44:437–43
    [Google Scholar]
  80. 80.
    Lu XY, Xu H, Song W, Yang ZT, Yu J et al. 2021. Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification-lateral flow strip assay. Phytopathol. Res. 3:112
    [Google Scholar]
  81. 81.
    Ma CP, Wang YF, Zhang PS, Shi C. 2017. Accelerated isothermal nucleic acid amplification in betaine-free reaction. Anal. Biochem. 530:1–4
    [Google Scholar]
  82. 82.
    Manjunatha C, Sharma S, Kulshreshtha D, Gupta S, Singh K et al. 2018. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification. PLOS ONE 13:4e0196409
    [Google Scholar]
  83. 83.
    Martineau RL, Murray SA, Ci S, Gao W, Chao SH, Meldrum DR. 2017. Improved performance of loop-mediated isothermal amplification assays via swarm priming. Anal. Chem. 89:625–32
    [Google Scholar]
  84. 84.
    Mason MG, Blackall PJ, Botella JR, Templeton JM. 2020. An easy-to-perform, culture-free Campylobacter point-of-management assay for processing plant applications. J. Appl. Microbiol. 128:620–29
    [Google Scholar]
  85. 85.
    Mason MG, Botella JR. 2019. A simple, robust and equipment-free DNA amplification readout in less than 30 seconds. RSC Adv. 9:24440–50
    [Google Scholar]
  86. 86.
    Mason MG, Botella JR. 2020. Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat. Protoc. 15:3663–77
    [Google Scholar]
  87. 87.
    Mitsunaga S, Shimizu S, Okudaira Y, Oka A, Tanaka M et al. 2013. Improved loop-mediated isothermal amplification for HLA-DRB1 genotyping using RecA and a restriction enzyme for enhanced amplification specificity. Immunogenetics 65:405–15
    [Google Scholar]
  88. 88.
    Mori Y, Nagamine K, Tomita N, Notomi T. 2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289:150–54
    [Google Scholar]
  89. 89.
    Moser MJ, DiFrancesco RA, Gowda K, Klingele AJ, Sugar DR et al. 2012. Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLOS ONE 7:6e38371
    [Google Scholar]
  90. 90.
    Nagamine K, Hase T, Notomi T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16:223–29
    [Google Scholar]
  91. 91.
    Naidoo N, Ghai M, Moodley K, Mkize L, Martin L et al. 2017. Modified RS-LAMP assay and use of lateral flow devices for rapid detection of Leifsonia xyli subsp. xyli. Lett. Appl. Microbiol. 65:496–503
    [Google Scholar]
  92. 92.
    Nargessi D, Ou CY. 2010. MagaZorb: a simple tool for rapid isolation of viral nucleic acids. J. Infect. Dis. 201:S37–S41
    [Google Scholar]
  93. 93.
    Niessen L, Bechtner J, Fodil S, Taniwaki MH, Vogel RF. 2018. LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. Int. J. Food Microbiol. 266:241–50
    [Google Scholar]
  94. 94.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:12e63
    [Google Scholar]
  95. 95.
    Oscorbin IP, Belousova EA, Zakabunin AI, Boyarskikh UA, Filipenko ML. 2016. Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP). BioTechniques 61:20–25
    [Google Scholar]
  96. 96.
    Panorgias A, Kulikowski JJ, Parry NRA, McKeefry DJ, Murray IJ. 2012. Phases of daylight and the stability of color perception in the near peripheral human retina. J. Vision 12:31
    [Google Scholar]
  97. 97.
    Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombination proteins. PLOS Biol. 4:1115–21
    [Google Scholar]
  98. 98.
    Rigano LA, Malamud F, Orce IG, Filippone MP, Marano MR et al. 2014. Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiol 14:86
    [Google Scholar]
  99. 99.
    Rigano LA, Marano MR, Castagnaro AP, Do Amaral AM, Vojnov AA 2010. Rapid and sensitive detection of citrus bacterial canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiol 10:176
    [Google Scholar]
  100. 100.
    Rojas JA, Miles TD, Coffey MD, Martin FN, Chilvers MI. 2017. Development and application of qPCR and RPA genus- and species-specific detection of Phytophthora sojae and P. sansomeana root rot pathogens of soybean. Plant Dis 101:1171–81
    [Google Scholar]
  101. 101.
    Rolando JC, Jue E, Barlow JT, Ismagilov RF. 2020. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res 48:7e42
    [Google Scholar]
  102. 102.
    Sagcan H, Kara NT. 2019. Detection of Potato ring rot pathogen Clavibacter michiganensis subsp. sepedonicus by loop-mediated isothermal amplification (LAMP) assay. Sci. Rep. 9:20393
    [Google Scholar]
  103. 103.
    Sahoo PR, Sethy K, Mohapatra S, Panda D. 2016. Loop mediated isothermal amplification: an innovative gene amplification technique for animal diseases. Vet. World 9:465–69
    [Google Scholar]
  104. 104.
    Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D 2008. Assembly of viral metagenomes from Yellowstone hot springs. Appl. Environ. Microbiol. 74:4164–74
    [Google Scholar]
  105. 105.
    Schwenkbier L, Pollok S, Rudloff A, Sailer S, Cialla-May D et al. 2015. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst 140:6610–18
    [Google Scholar]
  106. 106.
    Shi C, Shang FJ, Zhou ML, Zhang PS, Wangb YF, Ma CP. 2016. Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification. Chem. Commun. 52:11551–54
    [Google Scholar]
  107. 107.
    Shin K, Kwon SH, Lee SC, Moon YE. 2021. Sensitive and rapid detection of citrus scab using an RPA-CRISPR/Cas12a system combined with a lateral flow assay. Plants 10:102132
    [Google Scholar]
  108. 108.
    Slawiak M, van Doorn R, Szemes M, Speksnijder A, Waleron M et al. 2013. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes. Ann. Appl. Biol. 163:378–93
    [Google Scholar]
  109. 109.
    Sowmya N, Thakur MS, Manonmani HK. 2012. Rapid and simple DNA extraction method for the detection of enterotoxigenic Staphylococcus aureus directly from food samples: comparison of PCR and LAMP methods. J. Appl. Microbiol. 113:106–13
    [Google Scholar]
  110. 110.
    Strange R. 2012. Almost 40 per cent of worldwide crops lost to diseases. The Crop Site. http://www.thecropsite.com/articles/1202/almost-40-per-cent-of-worldwide-crops-lost-to-diseases/
    [Google Scholar]
  111. 111.
    Szemes M, Bonants P, de Weerdt M, Baner J, Landegren U, Schoen CD. 2005. Diagnostic application of padlock probes—multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33:8e70
    [Google Scholar]
  112. 112.
    Tanimoto Y, Mori A, Miyamoto S, Ito E, Arikawa K, Iwamoto T. 2022. Comparison of RT-PCR, RT-LAMP, and antigen quantification assays for the detection of SARS-CoV-2. Jpn. J. Infect. Dis. 75:324953
    [Google Scholar]
  113. 113.
    Tanner NA, Zhang YH, Evans TC. 2015. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques 58:59–68
    [Google Scholar]
  114. 114.
    Tegli S, Biancalani C, Ignatov AN, Osdaghi E. 2020. A powerful LAMP weapon against the threat of the quarantine plant pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms 8:111705
    [Google Scholar]
  115. 115.
    Tembo M, Adediji AO, Bouvaine S, Chikoti PC, Seal SE, Silva G. 2020. A quick and sensitive diagnostic tool for detection of Maize streak virus. Sci. Rep. 10:19633
    [Google Scholar]
  116. 116.
    Thekisoe OM, Bazie RS, Coronel-Servian AM, Sugimoto C, Kawazu S, Inoue N. 2009. Stability of loop-mediated isothermal amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates. J. Vet. Med. Sci. 71:471–75
    [Google Scholar]
  117. 117.
    Thierry M, Chatet A, Fournier E, Tharreau D, Ioos R. 2020. A PCR, qPCR, and LAMP toolkit for the detection of the wheat blast pathogen in seeds. Plants 9:2277
    [Google Scholar]
  118. 118.
    Tian YL, Zhao YQ, Xu R, Liu FQ, Hu BS, Walcott RR. 2014. Simultaneous detection of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola in rice seed using a padlock probe-based assay. Phytopathology 104:1130–37
    [Google Scholar]
  119. 119.
    Tomlinson JA, Boonham N, Dickinson M. 2010. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol 59:465–71
    [Google Scholar]
  120. 120.
    Tomlinson JA, Ostoja-Starzewska S, Adams IP, Miano DW, Abidrabo P et al. 2013. Loop-mediated isothermal amplification for rapid detection of the causal agents of cassava brown streak disease. J. Virol. Methods 191:148–54
    [Google Scholar]
  121. 121.
    Uke A, Khin S, Kobayashi K, Satou T, Kim OK et al. 2022. Detection of Sri Lankan cassava mosaic virus by loop-mediated isothermal amplification using dried reagents. J. Virol. Methods 299:114336
    [Google Scholar]
  122. 122.
    Valentini P, Fiammengo R, Sabella S, Gariboldi M, Maiorano G et al. 2013. Gold-nanoparticle-based colorimetric discrimination of cancer-related point mutations with picomolar sensitivity. ACS Nano 7:5530–38
    [Google Scholar]
  123. 123.
    Vincent M, Xu Y, Kong HM. 2004. Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800
    [Google Scholar]
  124. 124.
    Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. 1992. Strand displacement amplification: an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–96
    [Google Scholar]
  125. 125.
    Wambua L, Schneider B, Olcvvaro A, Wanga JO, Imali O et al. 2017. Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae. Mol. Cell. Probes 35:44–56
    [Google Scholar]
  126. 126.
    Wang DG, Brewster JD, Paul M, Tomasula PM. 2015. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20:6048–59
    [Google Scholar]
  127. 127.
    Wang X, Seo DJ, Lee MH, Choi C. 2014. Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species. J. Clin. Microbiol. 52:557–63
    [Google Scholar]
  128. 128.
    Wang YC, Wang XH, Li J. 2017. Color appearance phenomena under high ambient illumination. Optik 145:22–29
    [Google Scholar]
  129. 129.
    Wee EJH, Lau HY, Botella JR, Trau M. 2015. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun. 51:5828–31
    [Google Scholar]
  130. 130.
    Wong YP, Othman S, Lau YL, Radu S, Chee HY. 2018. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J. Appl. Microbiol. 124:626–43
    [Google Scholar]
  131. 131.
    World Bank. 2021. Health, nutrition and population. World Bank. https://datatopics.worldbank.org/health/
    [Google Scholar]
  132. 132.
    Wu XH, Chen CF, Xiao XZ, Deng MJ. 2016. Development of reverse transcription thermostable helicase-dependent DNA amplification for the detection of tomato spotted wilt virus. J. AOAC Int. 99:1596–99
    [Google Scholar]
  133. 133.
    Yang B, Kong JL, Fang XE. 2019. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204:685–92
    [Google Scholar]
  134. 134.
    Yang JE, Yu GY. 2019. A loop-mediated isothermal amplification assay for the plant-parasitic nematode Aphelenchoides besseyi in rice seedlings. J. Nematol. 51:1–11
    [Google Scholar]
  135. 135.
    Yu J, Shen D, Dai T, Lu X, Xu H, Dou D. 2019. Rapid and equipment-free detection of Phytophthora capsici using lateral flow strip-based recombinase polymerase amplification assay. Lett. Appl. Microbiol. 69:64–70
    [Google Scholar]
  136. 136.
    Zhang JX, Borth W, Lin B, Melzer M, Shen HF et al. 2018. Multiplex detection of three banana viruses by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Trop. Plant Pathol. 43:543–51
    [Google Scholar]
  137. 137.
    Zhang Y, Ren G, Buss J, Barry AJ, Patton GC, Tanner NA. 2020. Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. BioTechniques 69:178–85
    [Google Scholar]
  138. 138.
    Zhao C, Sun F, Li XJ, Lan Y, Du LL et al. 2019. Reverse transcription-recombinase polymerase amplification combined with lateral flow strip for detection of rice black-streaked dwarf virus in plants. J. Virol. Methods 263:96–100
    [Google Scholar]
  139. 139.
    Zheng CJ, Wang K, Zheng W, Cheng YM, Li TG et al. 2021. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 146:1514–28
    [Google Scholar]
  140. 140.
    Zhou DG, Guo JL, Xu LP, Gao SW, Lin QL et al. 2014. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane. Sci. Rep. 4:4912
    [Google Scholar]
  141. 141.
    Zhou WH, Hu L, Ying LM, Zhao Z, Chu PK, Yu XF. 2018. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 9:5012
    [Google Scholar]
  142. 142.
    Zou YP, Mason MG, Botella JR. 2020. Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics. PLOS ONE 15:6e0235216
    [Google Scholar]
  143. 143.
    Zou YP, Mason MG, Wang YL, Wee E, Turni C et al. 2017. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLOS Biol. 15:11e2003916
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021621-115027
Loading
/content/journals/10.1146/annurev-phyto-021621-115027
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error