1932

Abstract

Chromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-114854
2019-06-12
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-114854.html?itemId=/content/journals/10.1146/annurev-anchem-061318-114854&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    van Deemter JJ, Zuiderweg FJ, Klinkenberg A 1956. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5:271–89
    [Google Scholar]
  2. 2.
    Lapidus L, Amundson NR 1952. Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J. Phys. Chem. 56:984–88
    [Google Scholar]
  3. 3.
    Giddings J 1965. Dynamics of Chromatography: Principles and Theory New York: Marcel Dekker, 1st ed..
    [Google Scholar]
  4. 4.
    Snyder LR, Kirkland JJ, Dolan JW 2010. Introduction to Modern Liquid Chromatography Hoboken, NJ: John Wiley & Sons, 3rd ed..
    [Google Scholar]
  5. 5.
    Ahmed A, Skinley K, Herodotou S, Zhang H 2018. Core–shell microspheres with porous nanostructured shells for liquid chromatography. J. Sep. Sci. 41:99–124
    [Google Scholar]
  6. 6.
    Hayes R, Ahmed A, Edge T, Zhang H 2014. Core–shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 1357:36–52
    [Google Scholar]
  7. 7.
    Fekete S, Guillarme D 2013. Kinetic evaluation of new generation of column packed with 1.3 μm core–shell particles. J. Chromatogr. A 1308:104–13
    [Google Scholar]
  8. 8.
    Langsi VK, Ashu-Arrah BA, Glennon JD 2015. Sub-2-μm seeded growth mesoporous thin shell particles for high-performance liquid chromatography: synthesis, functionalisation and characterisation. J. Chromatogr. A 1402:17–26
    [Google Scholar]
  9. 9.
    Chen W, Jiang K, Mack A, Sachok B, Zhu X et al. 2015. Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies. J. Chromatogr. A 1414:147–57
    [Google Scholar]
  10. 10.
    Schuster SA, Wagner BM, Boyes BE, Kirkland JJ 2013. Optimized superficially porous particles for protein separations. J. Chromatogr. A 1315:118–26
    [Google Scholar]
  11. 11.
    Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Chankvetadze L, Chity M et al. 2017. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 1482:32–38
    [Google Scholar]
  12. 12.
    Min Y, Jiang B, Wu C, Xia S, Zhang X et al. 2014. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. J. Chromatogr. A 1356:148–56
    [Google Scholar]
  13. 13.
    Ahmed A, Myers P, Zhang H 2014. Synthesis of nanospheres-on-microsphere silica with tunable shell morphology and mesoporosity for improved HPLC. Langmuir 30:12190–99
    [Google Scholar]
  14. 14.
    Fekete S, Rodriguez-Aller M, Cusumano A, Hayes R, Zhang H et al. 2016. Prototype sphere-on-sphere silica particles for the separation of large biomolecules. J. Chromatogr. A 1431:94–102
    [Google Scholar]
  15. 15.
    Ahmed A, Abdelmagid W, Ritchie H, Myers P, Zhang H 2012. Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications. J. Chromatogr. A 1270:194–203
    [Google Scholar]
  16. 16.
    Hayes R, Myers P, Edge T, Zhang H 2014. Monodisperse sphere-on-sphere silica particles for fast HPLC separation of peptides and proteins. Analyst 139:5674–77
    [Google Scholar]
  17. 17.
    Ahmed A, Ritchie H, Myers P, Zhang H 2012. One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv. Mater. 24:6042–48
    [Google Scholar]
  18. 18.
    Qu Q, Min Y, Zhang L, Xu Q, Yin Y 2015. Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal. Chem. 87:9631–38
    [Google Scholar]
  19. 19.
    Qu Q, Si Y, Xuan H, Zhang K, Chen X et al. 2018. Dendritic core-shell silica spheres with large pore size for separation of biomolecules. J. Chromatogr. A 1540:31–37
    [Google Scholar]
  20. 20.
    Xia H, Wan G, Chen G, Bai Q 2017. Preparation of superficially porous core-shell silica particle with controllable mesopore by a dual-templating approach for fast HPLC of small molecules. Mater. Lett. 192:5–8
    [Google Scholar]
  21. 21.
    Schuster SA, Boyes BE, Wagner BM, Kirkland JJ 2012. Fast high performance liquid chromatography separations for proteomic applications using Fused-Core® silica particles. J. Chromatogr. A 1228:232–41
    [Google Scholar]
  22. 22.
    Wagner BM, Schuster SA, Boyes BE, Shields TJ, Miles WL et al. 2017. Superficially porous particles with 1000 Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography. J. Chromatogr. A 1489:75–85
    [Google Scholar]
  23. 23.
    Bobály B, Lauber M, Beck A, Guillarme D, Fekete S 2018. Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. J. Chromatogr. A 1549:63–76
    [Google Scholar]
  24. 24.
    Wei B, Zhang B, Boyes B, Zhang YT 2017. Reversed-phase chromatography with large pore superficially porous particles for high throughput immunoglobulin G2 disulfide isoform separation. J. Chromatogr. A 1526:104–11
    [Google Scholar]
  25. 25.
    Rogers BJ, Wirth MJ 2013. Obstructed diffusion in silica colloidal crystals. J. Phys. Chem. A 117:6244–49
    [Google Scholar]
  26. 26.
    Birdsall RE, Koshel BM, Yimin H, Ratnayaka SN, Wirth MJ 2013. Modeling of protein electrophoresis in silica colloidal crystals having brush layers of polyacrylamide. Electrophoresis 34:753–60
    [Google Scholar]
  27. 27.
    Rogers BA, Wu Z, Wei B, Zhang X, Cao X et al. 2015. Submicrometer particles and slip flow in liquid chromatography. Anal. Chem. 87:2520–26
    [Google Scholar]
  28. 28.
    Cong HL, Yu B, Tang JG, Li ZJ, Liu XS 2013. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 42:7774–800
    [Google Scholar]
  29. 29.
    Zharov I, Khabibullin A 2014. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport. Acc. Chem. Res. 47:440–49
    [Google Scholar]
  30. 30.
    Park J, Lee D, Kim W, Horiike S, Nishimoto T et al. 2007. Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads. Anal. Chem. 79:3214–19
    [Google Scholar]
  31. 31.
    Zheng S, Ross E, Legg MA, Wirth MJ 2006. High-speed electroseparations inside silica colloidal crystals. J. Am. Chem. Soc. 128:9016–17
    [Google Scholar]
  32. 32.
    Zeng Y, Harrison DJ 2007. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal. Chem. 79:2289–95
    [Google Scholar]
  33. 33.
    Malkin DS, Wei B, Fogiel AJ, Staats SL, Wirth MJ 2010. Submicrometer plate heights for capillaries packed with silica colloidal crystals. Anal. Chem. 82:2175–77
    [Google Scholar]
  34. 34.
    Wei B, Malkin DS, Wirth MJ 2010. Plate heights below 50 nm for protein electrochromatography using silica colloidal crystals. Anal. Chem. 82:10216–21
    [Google Scholar]
  35. 35.
    Wei B, Rogers BJ, Wirth MJ 2012. Slip flow in colloidal crystals for ultraefficient chromatography. J. Am. Chem. Soc. 134:10780–82
    [Google Scholar]
  36. 36.
    Rogers BJ, Wirth MJ 2013. Slip flow through colloidal crystals of varying particle diameter. ACS Nano 7:725–31
    [Google Scholar]
  37. 37.
    Wu Z, Rogers BJ, Wei B, Wirth MJ 2013. Insights from theory and experiments on slip flow in chromatography. J. Sep. Sci. 36:1871–76
    [Google Scholar]
  38. 38.
    Patel KD, Jerkovich AD, Link JC, Jorgenson JW 2004. In-depth characterization of slurry packed capillary columns with 1.0-μm nonporous particles using reversed-phase isocratic ultrahigh-pressure liquid chromatography. Anal. Chem. 76:5777–86
    [Google Scholar]
  39. 39.
    Rogers BJ, Birdsall RE, Wu Z, Wirth MJ 2013. RPLC of intact proteins using sub-0.5 μm particles and commercial instrumentation. Anal. Chem. 85:6820–25
    [Google Scholar]
  40. 40.
    Wu Z, Wei B, Zhang X, Wirth MJ 2014. Efficient separations of intact proteins using slip-flow with nano-liquid chromatography–mass spectrometry. Anal. Chem. 86:1592–98
    [Google Scholar]
  41. 41.
    Ikegami T, Tanaka N 2016. Recent progress in monolithic silica columns for high-speed and high-selectivity separations. Annu. Rev. Anal. Chem. 9:317–42
    [Google Scholar]
  42. 42.
    Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N 1996. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 68:3498–501
    [Google Scholar]
  43. 43.
    Lambert N, Miyazaki S, Ohira M, Tanaka N, Felinger A 2016. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure. J. Chromatogr. A 1473:99–108
    [Google Scholar]
  44. 44.
    Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D et al. 2008. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal. Chem. 80:8741–50
    [Google Scholar]
  45. 45.
    Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y et al. 2012. Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J. Chromatogr. A 1228:283–91
    [Google Scholar]
  46. 46.
    Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y 2012. Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. J. Chromatogr. A 1228:292–97
    [Google Scholar]
  47. 47.
    Yamana R, Iwasaki M, Wakabayashi M, Nakagawa M, Yamanaka S, Ishihama Y 2013. Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot nanoLC–MS/MS analysis with meter-scale monolithic silica columns. J. Proteome Res. 12:214–21
    [Google Scholar]
  48. 48.
    Horie K, Kamakura T, Ikegami T, Wakabayashi M, Kato T et al. 2014. Hydrophilic interaction chromatography using a meter-scale monolithic silica capillary column for proteomics LC-MS. Anal. Chem. 86:3817–24
    [Google Scholar]
  49. 49.
    Hara T, Futagami S, De Malsche W, Eeltink S, Terryn H et al. 2017. Chromatographic properties of minimal aspect ratio monolithic silica columns. Anal. Chem. 89:10948–56
    [Google Scholar]
  50. 50.
    Billen J, Gzil P, Desmet G 2006. Domain size-induced heterogeneity as performance limitation of small-domain monolithic columns and other LC support types. Anal. Chem. 78:6191–201
    [Google Scholar]
  51. 51.
    Gritti F, Guiochon G 2009. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes. J. Chromatogr. A 1216:4752–67
    [Google Scholar]
  52. 52.
    Hara T, Desmet G, Baron GV, Minakuchi H, Eeltink S 2016. Effect of polyethylene glycol on pore structure and separation efficiency of silica-based monolithic capillary columns. J. Chromatogr. A 1442:42–52
    [Google Scholar]
  53. 53.
    Meinusch R, Ellinghaus R, Hormann K, Tallarek U, Smarsly BM 2017. On the underestimated impact of the gelation temperature on macro- and mesoporosity in monolithic silica. Phys. Chem. Chem. Phys. 19:14821–34
    [Google Scholar]
  54. 54.
    Wang W, Li T, Long H, Zhu L 2017. Preparation of hierarchically mesoporous silica monolith using two components of poly(ethylene glycol) as cooperative dual-templates. J. Non-Cryst. Solids 461:80–86
    [Google Scholar]
  55. 55.
    von der Lehr M, Hormann K, Höltzel A, White LS, Reising AE et al. 2017. Mesopore etching under supercritical conditions—a shortcut to hierarchically porous silica monoliths. Microporous Mesoporous Mater 243:247–53
    [Google Scholar]
  56. 56.
    Hjerten S, Liao JL, Zhang R 1989. High-performance liquid-chromatography on polymer beds. J. Chromatogr. 473:273–75
    [Google Scholar]
  57. 57.
    Beneito-Cambra M, Herrero-Martínez JM, Ramis-Ramos G, Lindner W, Lämmerhofer M 2011. Comparison of monolithic and microparticulate columns for reversed-phase liquid chromatography of tryptic digests of industrial enzymes in cleaning products. J. Chromatogr. A 1218:7275–80
    [Google Scholar]
  58. 58.
    Arrua RD, Talebi M, Causon TJ, Hilder EF 2012. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal. Chim. Acta 738:1–12
    [Google Scholar]
  59. 59.
    Eeltink S, Wouters S, Dores-Sousa JL, Svec F 2017. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J. Chromatogr. A 1498:8–21
    [Google Scholar]
  60. 60.
    Vyviurska O, Yongqin L, Mann BF, Svec F 2018. Comparison of commercial organic polymer-based and silica-based monolithic columns using mixtures of analytes differing in size and chemistry. J. Sep. Sci. 41:1558–66
    [Google Scholar]
  61. 61.
    Detobel F, Broeckhoven K, Wellens J, Wouters B, Swart R et al. 2010. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns. J. Chromatogr. A 1217:3085–90
    [Google Scholar]
  62. 62.
    Eeltink S, Wouters B, Desmet G, Ursem M, Blinco D et al. 2011. High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J. Chromatogr. A 1218:5504–11
    [Google Scholar]
  63. 63.
    Mohr J, Swart R, Samonig M, Böhm G, Huber CG 2010. High-efficiency nano- and micro-HPLC—high-resolution Orbitrap-MS platform for top-down proteomics. Proteomics 10:3598–609
    [Google Scholar]
  64. 64.
    Simone P, Pierri G, Foglia P, Gasparrini F, Mazzoccanti G et al. 2016. Separation of intact proteins on γ-ray-induced polymethacrylate monolithic columns: a highly permeable stationary phase with high peak capacity for capillary high-performance liquid chromatography with high-resolution mass spectrometry. J. Sep. Sci. 39:264–71
    [Google Scholar]
  65. 65.
    Talebi M, Shellie RA, Hilder EF, Lacher NA, Haddad PR 2014. Semiautomated pH gradient ion-exchange chromatography of monoclonal antibody charge variants. Anal. Chem. 86:9794–99
    [Google Scholar]
  66. 66.
    Hasegawa G, Kanamori K, Ishizuka N, Nakanishi K 2012. New monolithic capillary columns with well-defined macropores based on poly(styrene-co-divinylbenzene). ACS Appl. Mater. Interfaces 4:2343–47
    [Google Scholar]
  67. 67.
    Liu K, Aggarwal P, Tolley HD, Lawson JS, Lee ML 2014. Fabrication of highly cross-linked reversed-phase monolithic columns via living radical polymerization. J. Chromatogr. A 1367:90–98
    [Google Scholar]
  68. 68.
    Gama MR, Aggarwal P, Liu K, Lee ML, Bottoli CBG 2017. Improvement in liquid chromatographic performance of organic polymer monolithic capillary columns with controlled free-radical polymerization. J. Chromatogr. Sci. 55:398–404
    [Google Scholar]
  69. 69.
    Chen Y, Shu Y, Yang Z, Lv X, Tan W et al. 2017. The preparation of a poly (pentaerythritol tetraglycidyl ether-co-poly ethylene imine) organic monolithic capillary column and its application in hydrophilic interaction chromatography for polar molecules. Anal. Chim. Acta 988:104–13
    [Google Scholar]
  70. 70.
    Liu Z, Ou J, Lin H, Wang H, Liu Z et al. 2014. Preparation of monolithic polymer columns with homogeneous structure via photoinitiated thiol-yne click polymerization and their application in separation of small molecules. Anal. Chem. 86:12334–40
    [Google Scholar]
  71. 71.
    Chen L, Ou J, Liu Z, Lin H, Wang H et al. 2015. Fast preparation of a highly efficient organic monolith via photo-initiated thiol-ene click polymerization for capillary liquid chromatography. J. Chromatogr. A 1394:103–10
    [Google Scholar]
  72. 72.
    Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H 2015. Thiol-epoxy click polymerization for preparation of polymeric monoliths with well-defined 3D framework for capillary liquid chromatography. Anal. Chem. 87:3476–83
    [Google Scholar]
  73. 73.
    Liu Z, Ou J, Zou H 2016. Click polymerization for preparation of monolithic columns for liquid chromatography. TrAC Trends Anal. Chem. 82:89–99
    [Google Scholar]
  74. 74.
    Bai J, Wang H, Ou J, Liu Z, Shen Y, Zou H 2016. Rapid “one-pot” preparation of polymeric monolith via photo-initiated thiol-acrylate polymerization for capillary liquid chromatography. Anal. Chim. Acta 925:88–96
    [Google Scholar]
  75. 75.
    Bai J, Ou J, Zhang H, Ma S, Shen Y, Ye M 2017. Synthesis of polymeric monoliths via thiol-maleimide polymerization reaction for highly efficient chromatographic separation. J. Chromatogr. A 1514:72–79
    [Google Scholar]
  76. 76.
    Ganewatta N, El Rassi Z 2018. Organic polymer-based monolithic stationary phases with incorporated nanostructured materials for HPLC and CEC. Electrophoresis 39:53–66
    [Google Scholar]
  77. 77.
    Grzywiński D, Szumski M, Buszewski B 2017. Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J. Chromatogr. A 1526:93–103
    [Google Scholar]
  78. 78.
    You L, He M, Chen B, Hu B 2017. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection. J. Chromatogr. A 1524:57–65
    [Google Scholar]
  79. 79.
    Darder MDM, Salehinia S, Parra JB, Herrero-Martinez JM, Svec F et al. 2017. Nanoparticle-directed metal–organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl. Mater. Interfaces 9:1728–36
    [Google Scholar]
  80. 80.
    Huang J, Turner SR 2018. Hypercrosslinked polymers: a review. Polymer Rev 58:1–41
    [Google Scholar]
  81. 81.
    Grzywiński D, Szumski M, Buszewski B 2016. Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns. J. Chromatogr. A 1477:11–21
    [Google Scholar]
  82. 82.
    Saba SA, Mousavi MPS, Bühlmann P, Hillmyer MA 2015. Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation. J. Am. Chem. Soc. 137:8896–99
    [Google Scholar]
  83. 83.
    Schulze MW, Hillmyer MA 2017. Tuning mesoporosity in cross-linked nanostructured thermosets via polymerization-induced microphase separation. Macromolecules 50:997–1007
    [Google Scholar]
  84. 84.
    Cingolani A, Cuccato D, Storti G, Morbidelli M 2018. Control of pore structure in polymeric monoliths prepared from colloidal dispersions. Macromol. Mater. Eng. 303:1700417
    [Google Scholar]
  85. 85.
    Hoffmann F, Fröba M 2011. Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev. 40:608–20
    [Google Scholar]
  86. 86.
    Mizoshita N, Tani T, Inagaki S 2011. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 40:789–800
    [Google Scholar]
  87. 87.
    Hoffmann F, Cornelius M, Morell J, Fröba M 2006. Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45:3216–51
    [Google Scholar]
  88. 88.
    Wahab MA, Beltramini JN 2015. Recent advances in hybrid periodic mesostructured organosilica materials: opportunities from fundamental to biomedical applications. RSC Adv 5:79129–51
    [Google Scholar]
  89. 89.
    Wyndham KD, O'Gara JE, Walter TH, Glose KH, Lawrence NL et al. 2003. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles. Anal. Chem. 75:6781–88
    [Google Scholar]
  90. 90.
    Castellanos M, Van Eendenburg CV, Gubern C, Sanchez JM 2016. Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. J. Chromatogr. B 1029–1030:137–44
    [Google Scholar]
  91. 91.
    Richards AL, Hebert AS, Ulbrich A, Bailey DJ, Coughlin EE et al. 2015. One-hour proteome analysis in yeast. Nat. Protoc. 10:701
    [Google Scholar]
  92. 92.
    Vancoillie G, Vergaelen M, Hoogenboom R 2016. Ultra-high performance size-exclusion chromatography in polar solvents. J. Chromatogr. A 1478:43–49
    [Google Scholar]
  93. 93.
    Mathon C, Barding GA, Larive CK 2017. Separation of ten phosphorylated mono- and disaccharides using HILIC and ion-pairing interactions. Anal. Chim. Acta 972:102–10
    [Google Scholar]
  94. 94.
    Van Meulebroek L, De Paepe E, Vercruysse V, Pomian B, Bos S et al. 2017. Holistic lipidomics of the human gut phenotype using validated ultra-high-performance liquid chromatography coupled to hybrid Orbitrap mass spectrometry. Anal. Chem. 89:12502–10
    [Google Scholar]
  95. 95.
    Rebbin V, Schmidt R, Fröba M 2006. Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angew. Chem. Int. Ed. 45:5210–14
    [Google Scholar]
  96. 96.
    Zhang Y, Jin Y, Yu H, Dai P, Ke Y, Liang X 2010. Pore expansion of highly monodisperse phenylene-bridged organosilica spheres for chromatographic application. Talanta 81:824–30
    [Google Scholar]
  97. 97.
    Yu H, Jia C, Wu H, Song G, Jin Y et al. 2012. Highly stable high performance liquid chromatography stationary phase based on direct chemical modification of organic bridges in hybrid silica. J. Chromatogr. A 1247:63–70
    [Google Scholar]
  98. 98.
    Wu C, Liang Y, Liang Z, Zhang L, Zhang Y 2018. Ethane-bridged hybrid monoliths with well-defined mesoporosity and great stability for high-performance peptide separation. Anal. Chim. Acta 1019:128–34
    [Google Scholar]
  99. 99.
    Šesták J, Moravcová D, Křenková J, Planeta J, Roth M, Foret F 2017. Bridged polysilsesquioxane-based wide-bore monolithic capillary columns for hydrophilic interaction chromatography. J. Chromatogr. A 1479:204–9
    [Google Scholar]
  100. 100.
    Wu C, Liang Y, Yang K, Min Y, Liang Z et al. 2016. Clickable periodic mesoporous organosilica monolith for highly efficient capillary chromatographic separation. Anal. Chem. 88:1521–25
    [Google Scholar]
  101. 101.
    Wu C, Liang Y, Zhu X, Zhao Q, Fang F et al. 2018. Macro-mesoporous organosilica monoliths with bridged-ethylene and terminal-vinyl: high-density click functionalization for chromatographic separation. Anal. Chim. Acta 1038:198–205
    [Google Scholar]
  102. 102.
    Yaghi OM, Li HL 1995. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117:10401–2
    [Google Scholar]
  103. 103.
    Li J-R, Sculley J, Zhou H-C 2012. Metal–organic frameworks for separations. Chem. Rev. 112:869–932
    [Google Scholar]
  104. 104.
    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM 2013. The chemistry and applications of metal-organic frameworks. Science 341:1230444
    [Google Scholar]
  105. 105.
    Zhang J, Chen Z 2017. Metal-organic frameworks as stationary phase for application in chromatographic separation. J. Chromatogr. A 1530:1–18
    [Google Scholar]
  106. 106.
    Yusuf K, Aqel A, Alothman Z 2014. Metal-organic frameworks in chromatography. J. Chromatogr. A 1348:1–16
    [Google Scholar]
  107. 107.
    Zhao X, Wang Y, Li D-S, Bu X, Feng P 2018. Metal–organic frameworks for separation. Adv. Mater. 30:1705189
    [Google Scholar]
  108. 108.
    Yang C-X, Yan X-P 2011. Metal–organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Anal. Chem. 83:7144–50
    [Google Scholar]
  109. 109.
    Zhao W-W, Zhang C-Y, Yan Z-G, Bai L-P, Wang X et al. 2014. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. J. Chromatogr. A 1370:121–28
    [Google Scholar]
  110. 110.
    Lun S, Sha C, Wei-Wei Z, Yan B, Xing-Chen M et al. 2016. High-performance liquid chromatography separation of phthalate acid esters with a MIL-53(Al)-packed column. J. Sep. Sci. 39:3163–70
    [Google Scholar]
  111. 111.
    Yan Z, Zhang W, Gao J, Lin Y, Li J et al. 2015. Reverse-phase high performance liquid chromatography separation of positional isomers on a MIL-53(Fe) packed column. RSC Adv 5:40094–102
    [Google Scholar]
  112. 112.
    Van der Perre S, Liekens A, Bueken B, De Vos DE, Baron GV, Denayer JFM 2016. Separation properties of the MIL-125(Ti) Metal-Organic Framework in high-performance liquid chromatography revealing cis/trans selectivity. J. Chromatogr. A 1469:68–76
    [Google Scholar]
  113. 113.
    Nuzhdin AL, Shalygin AS, Artiukha EA, Chibiryaev AM, Bukhtiyarova GA, Martyanov ON 2016. HKUST-1 silica aerogel composites: novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography. RSC Adv 6:62501–7
    [Google Scholar]
  114. 114.
    Lv Y, Tan X, Svec F 2017. Preparation and applications of monolithic structures containing metal–organic frameworks. J. Sep. Sci. 40:272–87
    [Google Scholar]
  115. 115.
    Ahmed A, Forster M, Jin J, Myers P, Zhang H 2015. Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. ACS Appl. Mater. Interfaces 7:18054–63
    [Google Scholar]
  116. 116.
    Qu Q, Xuan H, Zhang K, Chen X, Ding Y et al. 2017. Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. J. Chromatogr. A 1505:63–68
    [Google Scholar]
  117. 117.
    Fu YY, Yang CX, Yan XP 2013. Fabrication of ZIF-8@SiO2 core–shell microspheres as the stationary phase for high-performance liquid chromatography. Chem. Eur. J. 19:13484–91
    [Google Scholar]
  118. 118.
    Zhang X, Han Q, Ding M 2015. One-pot synthesis of UiO-66@SiO2 shell–core microspheres as stationary phase for high performance liquid chromatography. RSC Adv 5:1043–50
    [Google Scholar]
  119. 119.
    Arrua RD, Peristyy A, Nesterenko PN, Das A, D'Alessandro DM, Hilder EF 2017. UiO-66@SiO2 core–shell microparticles as stationary phases for the separation of small organic molecules. Analyst 142:517–24
    [Google Scholar]
  120. 120.
    Peristyy A, Nesterenko PN, Das A, D'Alessandro DM, Hilder EF, Arrua RD 2016. Flow-dependent separation selectivity for organic molecules on metal–organic frameworks containing adsorbents. Chem. Commun. 52:5301–4
    [Google Scholar]
  121. 121.
    Qu Q, Si Y, Xuan H, Zhang K, Chen X et al. 2017. A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchim. Acta 184:4099–106
    [Google Scholar]
  122. 122.
    Bhattacharjee S, Khan MI, Li XF, Zhu QL, Wu XT 2018. Recent progress in asymmetric catalysis and chromatographic separation by chiral metal-organic frameworks. Catalysts 8:120
    [Google Scholar]
  123. 123.
    Mei Z, Xinglian C, Junhui Z, Jiao K, Liming Y 2016. A 3D homochiral MOF [Cd2(d-cam)3]•2Hdma•4dma for HPLC chromatographic enantioseparation. Chirality 28:340–46
    [Google Scholar]
  124. 124.
    Zhang JH, Nong RY, Xie SM, Wang BJ, Ai P, Yuan LM 2017. Homochiral metal-organic frameworks based on amino acid ligands for HPLC separation of enantiomers. Electrophoresis 38:2513–20
    [Google Scholar]
  125. 125.
    Navarro-Sánchez J, Argente-García AI, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D et al. 2017. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J. Am. Chem. Soc. 139:4294–97
    [Google Scholar]
  126. 126.
    Abbas A, Wang Z-X, Li Z, Jiang H, Liu Y, Cui Y 2018. Enantioselective separation over a chiral biphenol-based metal–organic framework. Inorg. Chem. 57:8697–700
    [Google Scholar]
  127. 127.
    Hartlieb KJ, Holcroft JM, Moghadam PZ, Vermeulen NA, Algaradah MM et al. 2016. CD-MOF: a versatile separation medium. J. Am. Chem. Soc. 138:2292–301
    [Google Scholar]
  128. 128.
    Scriba GKE 2016. Chiral recognition in separation science—an update. J. Chromatogr. A 1467:56–78
    [Google Scholar]
  129. 129.
    Ahmed A, Hodgson N, Barrow M, Clowes R, Robertson CM et al. 2014. Macroporous metal–organic framework microparticles with improved liquid phase separation. J. Mater. Chem. A 2:9085–90
    [Google Scholar]
  130. 130.
    Ahmed A, Forster M, Clowes R, Myers P, Zhang H 2014. Hierarchical porous metal–organic framework monoliths. Chem. Commun. 50:14314–16
    [Google Scholar]
  131. 131.
    Liu T, Liu Y, Yao L, Yang W, Tian L et al. 2018. Controllable formation of meso- and macropores within metal–organic framework crystals via a citric acid modulator. Nanoscale 10:13194–201
    [Google Scholar]
  132. 132.
    Shen K, Zhang L, Chen X, Liu L, Zhang D et al. 2018. Ordered macro-microporous metal-organic framework single crystals. Science 359:206–10
    [Google Scholar]
  133. 133.
    Diercks CS, Yaghi OM 2017. The atom, the molecule, and the covalent organic framework. Science 355:eaa1585
    [Google Scholar]
  134. 134.
    Waller PJ, Gándara F, Yaghi OM 2015. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48:3053–63
    [Google Scholar]
  135. 135.
    Huang N, Wang P, Jiang D 2016. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1:16068
    [Google Scholar]
  136. 136.
    Qian H-L, Yang C-X, Wang W-L, Yang C, Yan X-P 2018. Advances in covalent organic frameworks in separation science. J. Chromatogr. A 1542:1–18
    [Google Scholar]
  137. 137.
    Xuan W, Nengsheng Y 2017. Recent advances in metal‐organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–78
    [Google Scholar]
  138. 138.
    Wang LL, Yang CX, Yan XP 2017. In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography. ChemPlusChem 82:933–38
    [Google Scholar]
  139. 139.
    Zhao W, Hu K, Hu C, Wang X, Yu A, Zhang S 2017. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J. Chromatogr. A 1487:83–88
    [Google Scholar]
  140. 140.
    Wang SL, Zhang LY, Xiao RL, Chen HH, Chu ZY et al. 2018. Fabrication of SiO2@COF5 microspheres and their application in high performance liquid chromatography. Anal. Methods 10:1968–76
    [Google Scholar]
  141. 141.
    Liu L-H, Yang C-X, Yan X-P 2017. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. J. Chromatogr. A 1479:137–44
    [Google Scholar]
  142. 142.
    Zhang K, Cai SL, Yan YL, He ZH, Lin HM et al. 2017. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J. Chromatogr. A 1519:100–9
    [Google Scholar]
  143. 143.
    Han X, Huang J, Yuan C, Liu Y, Cui Y 2018. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140:892–95
    [Google Scholar]
  144. 144.
    Marechal A, El-Debs R, Dugas V, Demesmay C 2013. Is click chemistry attractive for separation sciences?. J. Sep. Sci. 36:2049–62
    [Google Scholar]
  145. 145.
    Chu C, Liu R 2011. Application of click chemistry on preparation of separation materials for liquid chromatography. Chem. Soc. Rev. 40:2177–88
    [Google Scholar]
  146. 146.
    Yao X, Zheng H, Zhang Y, Ma X, Xiao Y, Wang Y 2016. Engineering thiol-ene click chemistry for the fabrication of novel structurally well-defined multifunctional cyclodextrin separation materials for enhanced enantioseparation. Anal. Chem. 88:4955–64
    [Google Scholar]
  147. 147.
    Shao W, Liu J, Yang K, Liang Y, Weng Y et al. 2016. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment. Talanta 158:361–67
    [Google Scholar]
  148. 148.
    Liu Z, Liu J, Liu Z, Wang H, Ou J et al. 2017. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis. J. Chromatogr. A 1498:29–36
    [Google Scholar]
  149. 149.
    Shao W, Liu J, Liang Y, Yang K, Min Y et al. 2018. “Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment. Anal. Bioanal. Chem. 410:1019–27
    [Google Scholar]
  150. 150.
    Xiong CF, Wang ZY, Wang SY, Yuan CC, Wang LL 2018. Preparation and evaluation of a hydrophilic interaction and cation-exchange chromatography stationary phase modified with 2-methacryloyloxyethyl phosphorylcholine. J. Chromatogr. A 1546:56–65
    [Google Scholar]
  151. 151.
    Zhang H, Ma S, Yao Y, Li Y, Li Y et al. 2017. Facile preparation of multi-functionalized hybrid monoliths via two-step photo-initiated reactions for two-dimensional liquid chromatography–mass spectrometry. J. Chromatogr. A 1524:135–42
    [Google Scholar]
  152. 152.
    Wang H-S, Song M, Hang T-J 2016. Functional interfaces constructed by controlled/living radical polymerization for analytical chemistry. ACS Appl. Mater. Interfaces 8:2881–98
    [Google Scholar]
  153. 153.
    Shishkova E, Hebert AS, Coon JJ 2016. Now, more than ever, proteomics needs better chromatography. Cell Syst 3:321–24
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-114854
Loading
/content/journals/10.1146/annurev-anchem-061318-114854
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error