- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 12, 2019
Annual Review of Analytical Chemistry - Volume 12, 2019
Volume 12, 2019
-
-
Wearable Sensors for Biochemical Sweat Analysis
Vol. 12 (2019), pp. 1–22More LessSweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.
-
-
-
E-Cigarette Chemistry and Analytical Detection
Vol. 12 (2019), pp. 23–39More LessThe study of e-cigarette aerosol properties can inform public health while longer-term epidemiological investigations are ongoing. The determination of aerosol levels of known toxins, as well as of molecules with unknown inhalation toxicity profiles, affords specific information for estimating the risks of e-cigarettes and for uncovering areas that should be prioritized for further investigation.
-
-
-
Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing
Vol. 12 (2019), pp. 41–67More LessIn the face of looming threats from multi-drug resistant microorganisms, there is a growing need for technologies that will enable rapid identification and drug susceptibility profiling of these pathogens in health care settings. In particular, recent progress in microfluidics and nucleic acid amplification is pushing the boundaries of timescale for diagnosing bacterial infections. With a diverse range of techniques and parallel developments in the field of analytical chemistry, an integrative perspective is needed to understand the significance of these developments. This review examines the scope of new developments in assay technologies grouped by key enabling domains of research. First, we examine recent development in nucleic acid amplification assays for rapid identification and drug susceptibility testing in bacterial infections. Next, we examine advances in microfluidics that facilitate acceleration of diagnostic assays via integration and scale. Lastly, recentdevelopments in biosensor technologies are reviewed. We conclude this review with perspectives on the use of emerging concepts to develop paradigm-changing assays.
-
-
-
Polyvalent Nanoobjects for Precision Diagnostics
Vol. 12 (2019), pp. 69–88More LessAs our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.
-
-
-
Whole-Organism Analysis by Vibrational Spectroscopy
Vol. 12 (2019), pp. 89–108More LessVibrational spectroscopy has contributed to the understanding of biological materials for many years. As the technology has advanced, the technique has been brought to bear on the analysis of whole organisms. Here, we discuss advanced and recently developed infrared and Raman spectroscopic instrumentation to whole-organism analysis. We highlight many of the recent contributions made in this relatively new area of spectroscopy, particularly addressing organisms associated with disease with emphasis on diagnosis and treatment. The application of vibrational spectroscopic techniques to entire organisms is still in its infancy, but new developments in imaging and chemometric processing will likely expand in the field in the near future.
-
-
-
Recent Developments in Nanosensors for Imaging Applications in Biological Systems
Vol. 12 (2019), pp. 109–128More LessSensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.
-
-
-
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors
Hsien-Wei Yeh, and Hui-Wang AiVol. 12 (2019), pp. 129–150More LessAlthough fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.
-
-
-
Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications
Vol. 12 (2019), pp. 151–176More LessSurface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug–receptor, protein–protein, protein–DNA, protein–cell).
-
-
-
Challenges in Identifying the Dark Molecules of Life
Vol. 12 (2019), pp. 177–199More LessMetabolomics is the study of the metabolome, the collection of small molecules in living organisms, cells, tissues, and biofluids. Technological advances in mass spectrometry, liquid- and gas-phase separations, nuclear magnetic resonance spectroscopy, and big data analytics have now made it possible to study metabolism at an omics or systems level. The significance of this burgeoning scientific field cannot be overstated: It impacts disciplines ranging from biomedicine to plant science. Despite these advances, the central bottleneck in metabolomics remains the identification of key metabolites that play a class-discriminant role. Because metabolites do not follow a molecular alphabet as proteins and nucleic acids do, their identification is much more time consuming, with a high failure rate. In this review, we critically discuss the state-of-the-art in metabolite identification with specific applications in metabolomics and how technologies such as mass spectrometry, ion mobility, chromatography, and nuclear magnetic resonance currently contribute to this challenging task.
-
-
-
Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging
Vol. 12 (2019), pp. 201–224More LessThere is an increasing appreciation that every cell, even of the same type, is different. This complexity, when additionally combined with the variety of different cell types in tissue, is driving the need for spatially resolved omics at the single-cell scale. Rapid advances are being made in genomics and transcriptomics, but progress in metabolomics lags. This is partly because amplification and tagging strategies are not suited to dynamically created metabolite molecules. Mass spectrometry imaging has excellent potential for metabolic imaging. This review summarizes the recent advances in two of these techniques: matrix-assisted laser desorption ionization (MALDI) and secondary ion mass spectrometry (SIMS) and their convergence in subcellular spatial resolution and molecular information. The barriers that have held back progress such as lack of sensitivity and the breakthroughs that have been made including laser-postionization are highlighted as well as the future challenges and opportunities for metabolic imaging at the single-cell scale.
-
-
-
Laser Desorption Combined with Laser Postionization for Mass Spectrometry
Vol. 12 (2019), pp. 225–245More LessLasers with pulse lengths from nanoseconds to femtoseconds and wavelengths from the mid-infrared to extreme ultraviolet (UV) have been used for desorption or ablation in mass spectrometry. Such laser sampling can often benefit from the addition of a second laser for postionization of neutrals. The advantages offered by laser postionization include the ability to forego matrix application, high lateral resolution, decoupling of ionization from desorption, improved analysis of electrically insulating samples, and potential for high sensitivity and depth profiling while minimizing differential detection. A description of postionization by vacuum UV radiation is followed by a consideration of multiphoton, short pulse, and other postionization strategies. The impacts of laser pulse length and wavelength are considered for laser desorption or laser ablation at low pressures. Atomic and molecular analysis via direct laser desorption/ionization using near-infrared ultrashort pulses is described. Finally, the postionization of clusters, the role of gaseous collisions, sampling at ambient pressure, atmospheric pressure photoionization, and the addition of UV postionization to MALDI are considered.
-
-
-
Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry
Vol. 12 (2019), pp. 247–274More LessAtmospheric aerosol, particulate matter suspended in the air we breathe, exerts a strong impact on our health and the environment. Controlling the amount of particulate matter in air is difficult, as there are many ways particles can form by both natural and anthropogenic processes. We gain insight into the sources of particulate matter through chemical composition measurements. A substantial portion of atmospheric aerosol is organic, and this organic matter is exceedingly complex on a molecular scale, encompassing hundreds to thousands of individual compounds that distribute between the gas and particle phases. Because of this complexity, no single analytical technique is sufficient. However, mass spectrometry plays a crucial role owing to its combination of high sensitivity and molecular specificity. This review surveys the various ways mass spectrometry is used to characterize atmospheric organic aerosol at a molecular level, tracing these methods from inception to current practice, with emphasis on current and emerging areas of research. Both offline and online approaches are covered, and molecular measurements with them are discussed in the context of identifying sources and elucidating the underlying chemical mechanisms of particle formation. There is an ongoing need to improve existing techniques and develop new ones if we are to further advance our knowledge of how to mitigate the unwanted health and environmental impacts of particles.
-
-
-
Electrochemiluminescence Imaging for Bioanalysis
Vol. 12 (2019), pp. 275–295More LessElectrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
-
-
-
Electrochemistry at the Synapse
Vol. 12 (2019), pp. 297–321More LessElectrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20–100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
-
-
-
Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries
Vol. 12 (2019), pp. 323–346More LessLithium battery technologies have revolutionized mobile energy storage, but improvements in the technology are still needed. Critical to delivering new light weight, high capacity, safe devices is an improved understanding of the dynamic processes occurring at the electrode-electrolyte interfaces. Therefore, alongside advances in materials there has been a parallel progression in advanced characterization methods. Herein, recent developments for operando spectro-electrochemical techniques centered on Raman, infrared, and sum frequency generation are described within the context of lithium-ion and non-aqueous lithium-oxygen battery research. In particular, shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS), surface-enhanced infrared absorption spectroscopy (SEIRAS), and near-field infrared are explained and critically evaluated, and future opportunities discussed. The aim is to introduce the wider community to the developing range of methodologies and tools now available in the hope that it encourages greater usage across the sector.
-
-
-
Single Nanoparticle Electrochemistry
Vol. 12 (2019), pp. 347–370More LessExperimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.
-
-
-
Single-Molecule Analysis with Solid-State Nanopores
Vol. 12 (2019), pp. 371–387More LessSolid-state nanopores and nanopipettes are an exciting class of single-molecule sensors that has grown enormously over the last two decades. They offer a platform for testing fundamental concepts of stochasticity and transport at the nanoscale, for studying single-molecule biophysics and, increasingly, also for new analytical applications and in biomedical sensing. This review covers some fundamental aspects underpinning sensor operation and transport and, at the same time, it aims to put these into context as an analytical technique. It highlights new and recent developments and discusses some of the challenges lying ahead.
-
-
-
Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles
Vol. 12 (2019), pp. 389–409More LessAnalysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
-
-
-
High-Parameter Single-Cell Analysis
Vol. 12 (2019), pp. 411–430More LessThousands of transcripts and proteins confer function and discriminate cell types in the body. Using high-parameter technologies, we can now measure many of these markers at once, and multiple platforms are now capable of analysis on a cell-by-cell basis. Three high-parameter single-cell technologies have particular potential for discovering new biomarkers, revealing disease mechanisms, and increasing our fundamental understanding of cell biology. We review these three platforms (high-parameter flow cytometry, mass cytometry, and a new class of technologies called integrated molecular cytometry platforms) in this article. We describe the underlying hardware and instrumentation, the reagents involved, and the limitations and advantages of each platform. We also highlight the emerging field of high-parameter single-cell data analysis, providing an accessible overview of the data analysis process and choice of tools.
-
-
-
Single-Cell Protein Secretion Detection and Profiling
Vol. 12 (2019), pp. 431–449More LessSecreted proteins play important roles in mediating various biological processes such as cell–cell communication, differentiation, migration, and homeostasis at the population or tissue level. Here, we review bioanalytical technologies and devices for detecting protein secretions from single cells. We begin by discussing conventional approaches followed by detailing the latest advances in microengineered systems for detecting single-cell protein secretions with an emphasis on multiplex measurement. These platforms include droplet microfluidics, micro-/nanowell-based assays, and microchamber-based assays, among which the advantages and limitations are compared. Microscale systems also enable the tracking of protein secretion dynamics in single cells, further empowering the study of the cell–cell communication network. Looking forward, we discuss the remaining challenges and future opportunities that will transform basic research of cellular secretion functions at the systems level and the clinical applications for immune monitoring and cancer treatment.
-