1932

Abstract

Lithium battery technologies have revolutionized mobile energy storage, but improvements in the technology are still needed. Critical to delivering new light weight, high capacity, safe devices is an improved understanding of the dynamic processes occurring at the electrode-electrolyte interfaces. Therefore, alongside advances in materials there has been a parallel progression in advanced characterization methods. Herein, recent developments for operando spectro-electrochemical techniques centered on Raman, infrared, and sum frequency generation are described within the context of lithium-ion and non-aqueous lithium-oxygen battery research. In particular, shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS), surface-enhanced infrared absorption spectroscopy (SEIRAS), and near-field infrared are explained and critically evaluated, and future opportunities discussed. The aim is to introduce the wider community to the developing range of methodologies and tools now available in the hope that it encourages greater usage across the sector.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115303
2019-06-12
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115303.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115303&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM 2012. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11:119–29
    [Google Scholar]
  2. 2.
    Tarascon JM, Armand M. 2008. Building better batteries. Nature 451:7179652–57
    [Google Scholar]
  3. 3.
    Peng ZQ, Freunberger SA, Chen YH, Bruce PG 2012. A reversible and higher-rate Li-O2 battery. Science 337:6094563–66
    [Google Scholar]
  4. 4.
    Aurbach D, McCloskey BD, Nazar LF, Bruce PG 2016. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1:916128
    [Google Scholar]
  5. 5.
    Vetter J, Novak P, Wagner MR, Veit C, Moller KC et al. 2005. Ageing mechanisms in lithium-ion batteries. J. Power Sources 147:1–2269–81
    [Google Scholar]
  6. 6.
    Verma P, Maire P, Novák P 2010. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55:226332–41
    [Google Scholar]
  7. 7.
    Peled E. 1979. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126:122047–51
    [Google Scholar]
  8. 8.
    McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC 2011. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2:101161–66
    [Google Scholar]
  9. 9.
    McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V et al. 2012. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3:8997–1001
    [Google Scholar]
  10. 10.
    Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S et al. 2017. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries. Nat. Energy 2:517036
    [Google Scholar]
  11. 11.
    Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V et al. 2011. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50:286351–55
    [Google Scholar]
  12. 12.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W 2010. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1:142193–203
    [Google Scholar]
  13. 13.
    Luntz AC, McCloskey BD. 2014. Nonaqueous Li-air batteries: a status report. Chem. Rev. 114:2311721–50
    [Google Scholar]
  14. 14.
    Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A et al. 2013. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12:228–32
    [Google Scholar]
  15. 15.
    Hardwick LJ, Ponce De Leon C 2018. Rechargeable multi-valent metal-air batteries. Johnson Matthey Technol. Rev. 62:2134–49
    [Google Scholar]
  16. 16.
    Tripathi AM, Su W-N, Hwang BJ 2018. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47:3736–851
    [Google Scholar]
  17. 17.
    Willets KA, Van Duyne RP 2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97
    [Google Scholar]
  18. 18.
    Gittleson FS, Ryu W, Taylor AD 2014. Operando observation of the gold-electrolyte interface in LiO2 batteries. ACS Appl. Mater. Interfaces 6:2119017–25
    [Google Scholar]
  19. 19.
    Galloway TA, Hardwick LJ. 2016. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7:112119–24
    [Google Scholar]
  20. 20.
    Zeng Z-C, Huang S-C, Wu D-Y, Meng L-Y, Li M-H et al. 2015. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137:3711928–31
    [Google Scholar]
  21. 21.
    Touzalin T, Joiret S, Maisonhaute E, Lucas IT 2017. Capturing electrochemical transformations by tip-enhanced Raman spectroscopy. Curr. Opin. Electrochem. 6:146–52
    [Google Scholar]
  22. 22.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB et al. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:7287392–95
    [Google Scholar]
  23. 23.
    Wang J, Dong JC, Yang J, Wang Y, Zhang CJ et al. 2017. In situ SERS and SHINERS study of electrochemical hydrogenation of p-ethynylaniline in nonaqueous solvents. Electrochem. Commun. 78:16–20
    [Google Scholar]
  24. 24.
    Huang YF, Kooyman PJ, Koper MTM 2016. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7:12440
    [Google Scholar]
  25. 25.
    Galloway TA, Cabo-Fernandez L, Aldous I, Braga F, Hardwick L 2017. Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells. Faraday Discuss 205:469–90
    [Google Scholar]
  26. 26.
    Honesty NR, Gewirth AA. 2012. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43:146–50
    [Google Scholar]
  27. 27.
    Butcher DP, Boulos SP, Murphy CJ, Ambrosio RC, Gewirth AA 2012. Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111). J. Phys. Chem. C 116:85128–40
    [Google Scholar]
  28. 28.
    Galloway TA, Dong JC, Li JF, Attard G, Hardwick LJ 2019. Oxygen reactions on Pt{hkl} in a non-aqueous Na+ electrolyte: site selective stabilization of a sodium peroxy species. Chem. Sci. 10:2956–64
    [Google Scholar]
  29. 29.
    Li JF, Zhang YJ, Rudnev AV, Anema JR, Li SB et al. 2015. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 137:62400–8
    [Google Scholar]
  30. 30.
    Guan S, Donovan-Sheppard O, Reece C, Willock DJ, Wain AJ, Attard GA 2016. Structure sensitivity in catalytic hydrogenation at platinum surfaces measured by shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). ACS Catal 6:31822–32
    [Google Scholar]
  31. 31.
    Smith SR, Leitch JJ, Zhou C, Mirza J, Li SB et al. 2015. Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution. Anal. Chem. 87:73791–99
    [Google Scholar]
  32. 32.
    Zheng C, Shao W, Paidi SK, Han B, Fu T et al. 2015. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. Nanoscale 7:16960–68
    [Google Scholar]
  33. 33.
    Harmsen S, Wall MA, Huang R, Kircher MF 2017. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12:71400–14
    [Google Scholar]
  34. 34.
    Li JF, Tian XD, Li SB, Anema JR, Yang ZL et al. 2013. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8:52–65
    [Google Scholar]
  35. 35.
    Hy S, Felix F, Rick J, Su W-N, Hwang BJ 2014. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Nix Li(1–2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136:3999–1007
    [Google Scholar]
  36. 36.
    Hy S, Chen Y-H, Liu J, Rick J, Hwang B-J 2014. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256:324–28
    [Google Scholar]
  37. 37.
    Cabo-Fernandez L, Bresser D, Braga F, Passerini S, Hardwick LJ 2019. In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries. Batter. Supercaps2168–77
    [Google Scholar]
  38. 38.
    Ichino T, Canan BD, Scherson DA 1991. In situ attenuated total reflection Fourier-transform infrared-spectroscopy studies of the polyethylene oxide LiClO4-metallic lithium interface. J. Electrochem. Soc. 138:11L59–61
    [Google Scholar]
  39. 39.
    Ikezawa Y, Ariga T. 2007. In situ FTIR spectra at the Cu electrode/propylene carbonate solution interface. Electrochim. Acta 52:2710–15
    [Google Scholar]
  40. 40.
    Domi Y, Doi T, Tsubouchi S, Yamanaka T, Abe T, Ogumi Z 2016. Irreversible morphological changes of a graphite negative-electrode at high potentials in LiPF6-based electrolyte solution. Phys. Chem. Chem. Phys. 18:3222426–33
    [Google Scholar]
  41. 41.
    Zhuang GV, Yang H, Blizanac B, Philip N, Ross J 2005. A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy. Electrochem. Solid-State Lett. 8:9A441–45
    [Google Scholar]
  42. 42.
    Nguyen CC, Woo S-W, Song S-W 2012. Understanding the interfacial processes at silicon-copper electrodes in ionic liquid battery electrolyte. J. Phys. Chem. C 116:2814764–71
    [Google Scholar]
  43. 43.
    Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Woehrle T et al. 2008. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett. 11:5A76–80
    [Google Scholar]
  44. 44.
    Song S-W, Baek S-W. 2009. Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization. Electrochim. Acta 54:41312–18
    [Google Scholar]
  45. 45.
    Hong S, Choo M-H, Kwon YH, Kim JY, Song S-W 2016. Mechanisms for stable solid electrolyte interphase formation and improved cycling stability of tin-based battery anode in fluoroethylene carbonate-containing electrolyte. Adv. Mater. Interfaces 3:221600172
    [Google Scholar]
  46. 46.
    Song SW, Zhuang GV, Ross PN 2004. Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J. Electrochem. Soc. 151:8A1162–67
    [Google Scholar]
  47. 47.
    Shi F, Ross PN, Zhao H, Liu G, Somorjai GA, Komvopoulos K 2015. A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-Fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137:93181–84
    [Google Scholar]
  48. 48.
    Shi F, Ross PN, Somorjai GA, Komvopoulos K 2017. The chemistry of electrolyte reduction on silicon electrodes revealed by in situ ATR-FTIR spectroscopy. J. Phys. Chem. C 121:2714476–83
    [Google Scholar]
  49. 49.
    Alves Dalla Corte D, Caillon G, Jordy C, Chazalviel JN, Rosso M, Ozanam F 2016. Spectroscopic insight into Li-ion batteries during operation: an alternative infrared approach. Adv. Energy Mater. 6:21501768
    [Google Scholar]
  50. 50.
    Streich D, Novák P. 2016. Electrode-electrolyte interface characterization of carbon electrodes in Li-O2 batteries: capabilities and limitations of infrared spectroscopy. Electrochim. Acta 190:753–57
    [Google Scholar]
  51. 51.
    Mozhzhukhina N, Méndez De Leo LP, Calvo EJ 2013. Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li-air battery. J. Phys. Chem. C 117:3618375–80
    [Google Scholar]
  52. 52.
    Mozhzhukhina N, Tesio AY, Mendez De Leo LP, Calvo EJ 2017. In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li-O2 battery. J. Electrochem. Soc. 164:2A518–23
    [Google Scholar]
  53. 53.
    Hartstein A, Kirtley JR, Tsang JC 1980. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45:201
    [Google Scholar]
  54. 54.
    Osawa M, Kuramitsu M, Hatta A, Suëtaka W, Seki H 1986. Electromagnetic effect in enhanced infrared absorption of adsorbed molecules on thin metal films. Surf. Sci. 175:3L787–93
    [Google Scholar]
  55. 55.
    Osawa M, Ataka K, Yoshii K, Yotsuyanagi T 1993. Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces. J. Electron Spectrosc. Relat. Phenom. 64–65:371–79
    [Google Scholar]
  56. 56.
    Yoshii K, Ataka K-I, Osawa M, Nishikawa Y 1993. Surface-enhanced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47:1497–1502
    [Google Scholar]
  57. 57.
    Miyake H, Ye S, Osawa M 2002. Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem. Commun. 4:12973–77
    [Google Scholar]
  58. 58.
    Osawa M. 1997. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull. Chem. Soc. Jpn. 70:122861–80
    [Google Scholar]
  59. 59.
    Shao MH, Liu P, Adzic RR 2006. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128:237408–9
    [Google Scholar]
  60. 60.
    Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ 2016. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy. J. Am. Chem. Soc. 138:113745–51
    [Google Scholar]
  61. 61.
    Vivek JP, Berry NG, Zou J, Nichols RJ, Hardwick LJ 2017. In situ surface-enhanced infrared spectroscopy to identify oxygen reduction products in nonaqueous metal-oxygen batteries. J. Phys. Chem. C 121:3619657–67
    [Google Scholar]
  62. 62.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ et al. 2011. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133:208040–47
    [Google Scholar]
  63. 63.
    Lucas IT, McLeod AS, Syzdek JS, Middlemiss DS, Grey CP et al. 2015. IR near-field spectroscopy and imaging of single LixFePO4 microcrystals. Nano Lett 15:11–7
    [Google Scholar]
  64. 64.
    Ayache M, Jang D, Syzdek J, Kostecki R 2015. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode. J. Electrochem. Soc. 162:13A7078–82
    [Google Scholar]
  65. 65.
    Ayache M, Lux SF, Kostecki R 2015. IR near-field study of the solid electrolyte interphase on a tin electrode. J. Phys. Chem. Lett. 6:71126–29
    [Google Scholar]
  66. 66.
    Lambert AG, Davies PB, Neivandt DJ 2005. Implementing the theory of sum frequency generation vibrational spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 40:2103–45
    [Google Scholar]
  67. 67.
    Ye S, Osawa M. 2009. Molecular structures on solid substrates probed by sum frequency generation (SFG) vibration spectroscopy. Chem. Lett. 38:5386–91
    [Google Scholar]
  68. 68.
    Vidal F, Tadjeddine A. 2005. Sum-frequency generation spectroscopy of interfaces. Rep. Prog. Phys. 68:1095
    [Google Scholar]
  69. 69.
    Rey NG, Dlott DD. 2017. Studies of electrochemical interfaces by broadband sum frequency generation. J. Electroanal. Chem. 800:1114–25
    [Google Scholar]
  70. 70.
    Liu H, Tong Y, Kuwata N, Osawa M, Kawamura J, Ye S 2009. Adsorption of propylene carbonate (PC) on the LiCoO2 surface investigated by nonlinear vibrational spectroscopy. J. Phys. Chem. C 113:4820531–34
    [Google Scholar]
  71. 71.
    Yu L, Liu H, Wang Y, Kuwata N, Osawa M et al. 2013. Preferential adsorption of solvents on the cathode surface of lithium ion batteries. Angew. Chem. Int. Ed. 52:225753–56
    [Google Scholar]
  72. 72.
    Matsushita T, Dokko K, Kanamura K 2005. In situ FT-IR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. J. Power Sources 146:1–2360–64
    [Google Scholar]
  73. 73.
    Peng Q, Liu H, Ye S 2017. Adsorption of organic carbonate solvents on a carbon surface probed by sum frequency generation (SFG) vibrational spectroscopy. J. Electroanal. Chem. 800:134–43
    [Google Scholar]
  74. 74.
    Mukherjee P, Lagutchev A, Dlott DD 2012. In situ probing of solid-electrolyte interfaces with nonlinear coherent vibrational spectroscopy. J. Electrochem. Soc. 159:3A244–52
    [Google Scholar]
  75. 75.
    Nicolau BG, García-Rey N, Dryzhakov B, Dlott DD 2015. Interfacial processes of a model lithium ion battery anode observed, in situ, with vibrational sum-frequency generation spectroscopy. J. Phys. Chem. C 119:1910227–33
    [Google Scholar]
  76. 76.
    Horowitz Y, Han H-L, Ross PN, Somorjai GA 2016. In situ potentiodynamic analysis of the electrolyte/silicon electrodes interface reactions—a sum frequency generation vibrational spectroscopy study. J. Am. Chem. Soc. 138:3726–29
    [Google Scholar]
  77. 77.
    Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W et al. 2014. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9:3187–92
    [Google Scholar]
  78. 78.
    Horowitz Y, Han H-L, Somorjai GA 2018. Identifying the decomposition of diethyl carbonate in binary electrolyte solutions in contact with silicon anodes—a sum frequency generation vibrational spectroscopy study. Ind. Eng. Chem. Res. 57:51480–86
    [Google Scholar]
  79. 79.
    Horowitz Y, Han H-L, Ralston WT, de Araujo JR, Kreidler E et al. 2017. Fluorinated end-groups in electrolytes induce ordered electrolyte/anode interface even at open-circuit potential as revealed by sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 7:171602060
    [Google Scholar]
  80. 80.
    Horowitz Y, Han H-L, Soto FA, Ralston WT, Balbuena PB, Somorjai GA 2018. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes: electrolyte interface structure probed by sum frequency vibrational spectroscopy and ab initio molecular dynamics. Nano Lett 18:21145–51
    [Google Scholar]
  81. 81.
    Horowitz Y, Steinrück H-G, Han H-L, Cao C, Abate II et al. 2018. Fluoroethylene carbonate induces ordered electrolyte interface on silicon and sapphire surfaces as revealed by sum frequency generation vibrational spectroscopy and X-ray reflectivity. Nano Lett 18:32105–11
    [Google Scholar]
  82. 82.
    Olson JZ, Johansson PK, Castner DG, Schlenker CW 2018. Operando sum-frequency generation detection of electrolyte redox products at active Si nanoparticle Li-ion battery interfaces. Chem. Mater. 30:41239–48
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115303
Loading
/content/journals/10.1146/annurev-anchem-061318-115303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error