- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 6, 2013
Annual Review of Analytical Chemistry - Volume 6, 2013
Volume 6, 2013
- Preface
-
-
-
Is the Focus on “Molecules” Obsolete?
Vol. 6 (2013), pp. 1–29More LessThe technologies developed in analytical chemistry have defined in spectacular detail the properties of molecules. The field now faces enormously important and interesting problems of which molecules are only a part: for example, understanding the nature of life; helping to manage megacities, oceans, and atmospheres; and making health care (especially diagnostics) affordable and relevant. The emergence of these problems involving molecular systems raises the issue of how (and what) analytical chemistry should teach. Historically, it has been essential to chemistry in teaching the science of measurement. As complicated analytical techniques proliferate, it must consider how to balance teaching the uses of sophisticated devices and the fundamentals of analysis and measurement. This review (by an admiring but nonanalytical chemist) sketches the essential role of analytical methods—especially simple ones made up on the spot—in guiding research in new fields, with examples from self-assembled monolayers, soft lithography, paper diagnostics, and self-assembly; and suggests issues in teaching.
-
-
-
Synthetic Nanoelectronic Probes for Biological Cells and Tissues
Vol. 6 (2013), pp. 31–51More LessResearch at the interface between nanoscience and biology could yield breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on the interfaces between nanoelectronics and biology. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems; specifically, we describe the development of nanoFETs that are comparable in size to biological nanostructures involved in communication through synthesized nanowires. Second, we review current progress in multiplexed extracellular sensing using planar nanoFET arrays. Third, we describe the designs and implementation of three distinct nanoFETs used to perform the first intracellular electrical recording from single cells. Fourth, we present recent progress in merging electronic and biological systems at the three-dimensional tissue level by use of macro-porous nanoelectronic scaffolds. Finally, we discuss future developments in this research area, unique challenges and opportunities, and the tremendous impact these nanoFET-based technologies might have on biological and medical sciences.
-
-
-
Multiplexed Sensing and Imaging with Colloidal Nano- and Microparticles
Vol. 6 (2013), pp. 53–81More LessSensing and imaging with fluorescent, plasmonic, and magnetic colloidal nano- and microparticles have improved during the past decade. In this review, we describe the concepts and applications of how these techniques can be used in the multiplexed mode, that is, sensing of several analytes in parallel or imaging of several labels in parallel.
-
-
-
Nanobiodevices for Biomolecule Analysis and Imaging
Vol. 6 (2013), pp. 83–96More LessNanobiodevices have been developed to analyze biomolecules and cells for biomedical applications. In this review, we discuss several nanobiodevices used for disease-diagnostic devices, molecular imaging devices, regenerative medicine, and drug-delivery systems and describe the numerous advantages of nanobiodevices, especially in biological, medical, and clinical applications. This review also outlines the fabrication technologies for nanostructures and nanomaterials, including top-down nanofabrication and bottom-up molecular self-assembly approaches. We describe nanopillar arrays and nanowall arrays for the ultrafast separation of DNA or protein molecules and nanoball materials for the fast separation of a wide range of DNA molecules, and we present examples of applications of functionalized carbon nanotubes to obtain information about subcellular localization on the basis of mobility differences between free fluorophores and fluorophore-labeled carbon nanotubes. Finally, we discuss applications of newly synthesized quantum dots to the screening of small interfering RNA, highly sensitive detection of disease-related proteins, and development of cancer therapeutics and diagnostics.
-
-
-
Probing Molecular Solids with Low-Energy Ions
Vol. 6 (2013), pp. 97–118More LessIon/surface collisions in the ultralow- to low-energy (1–100-eV) window represent an excellent technique for investigation of the properties of condensed molecular solids at low temperatures. For example, this technique has revealed the unique physical and chemical processes that occur on the surface of ice, versus the liquid and vapor phases of water. Such instrument-dependent research, which is usually performed with spectroscopy and mass spectrometry, has led to new directions in studies of molecular materials. In this review, we discuss some interesting results and highlight recent developments in the area. We hope that access to the study of molecular solids with extreme surface specificity, as described here, will encourage investigators to explore new areas of research, some of which are outlined in this review.
-
-
-
Microfluidic Chips for Immunoassays
Vol. 6 (2013), pp. 119–141More LessThe use of microfluidic chips for immunoassays has been extensively explored in recent years. The combination of immunoassays and microfluidics affords a promising platform for multiple, sensitive, and automatic point-of-care (POC) diagnostics. In this review, we focus on the description of recent achievements in microfluidic chips for immunoassays categorized by their detection method. Following a brief introduction to the basic principles of each detection method, we examine current microfluidic immunosensor detection systems in detail. We also highlight interesting strategies for sensitive immunosensing configurations, multiplexed analysis, and POC diagnostics in microfluidic immunosensors.
-
-
-
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Vol. 6 (2013), pp. 143–162More LessSemiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
-
-
-
Environmental Mass Spectrometry
Vol. 6 (2013), pp. 163–189More LessEnvironmental mass spectrometry is an important branch of science because it provides many of the data that underlie policy decisions that can directly influence the health of people and ecosystems. Environmental mass spectrometry is currently undergoing rapid development. Among the most relevant directions are a significant broadening of the lists of formally targeted compounds; a parallel interest in nontarget chemicals; an increase in the reliability of analyses involving accurate mass measurements, tandem mass spectrometry, and isotopically labeled standards; and a shift toward faster high-throughput analysis, with minimal sample preparation, involving various approaches, including ambient ionization techniques and miniature instruments. A real revolution in analytical chemistry could be triggered with the appearance of robust, simple, and sensitive portable mass spectrometers that can utilize ambient ionization techniques. If the cost of such instruments is reduced to a reasonable level, mass spectrometers could become valuable household devices.
-
-
-
Evidence-Based Point-of-Care Diagnostics: Current Status and Emerging Technologies
Vol. 6 (2013), pp. 191–211More LessPoint-of-care (POC) diagnostics brings tests nearer to the site of patient care. The turnaround time is short, and minimal manual interference enables quick clinical management decisions. Growth in POC diagnostics is being continuously fueled by the global burden of cardiovascular and infectious diseases. Early diagnosis and rapid initiation of treatment are crucial in the management of such patients. This review provides the rationale for the use of POC tests in acute coronary syndrome, heart failure, human immunodeficiency virus, and tuberculosis. We also consider emerging technologies that are based on advanced nanomaterials and microfluidics, improved assay sensitivity, miniaturization in device design, reduced costs, and high-throughput multiplex detection, all of which may shape the future development of POC diagnostics.
-
-
-
Adsorption and Assembly of Ions and Organic Molecules at Electrochemical Interfaces: Nanoscale Aspects
Vol. 6 (2013), pp. 213–235More LessWe describe the history of electrochemical scanning tunneling microscopy (STM) and advances made in this field during the past 20 years. In situ STM allows one to monitor various electrode processes, such as the underpotential deposition of copper and silver ions; the specific adsorption of iodine and sulfate/bisulfate ions; electrochemical dissolution processes of silicon and gold single-crystal surfaces in electrolyte solutions; and the molecular assembly of metalloporphyrins, metallophthalocyanines, and fullerenes, at atomic and/or molecular resolution. Furthermore, a laser confocal microscope, combined with a differential interference contrast microscope, enables investigation of the dynamics of electrochemical processes at atomic resolution.
-
-
-
Structural Glycomic Analyses at High Sensitivity: A Decade of Progress
Vol. 6 (2013), pp. 237–265More LessThe field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.
-
-
-
Structures of Biomolecular Ions in the Gas Phase Probed by Infrared Light Sources
Vol. 6 (2013), pp. 267–285More LessInfrared (IR) spectroscopy of biomolecular ions combines mass spectrometry's high sensitivity and ability to analyze complex mixtures with the enhanced structural information available from vibrational spectroscopy. IR spectroscopy is in principle well placed to distinguish isomers and allow chemical classification of unknown molecules. This review gives an outline of current instrumentation, spectroscopic approaches, and potential bottlenecks. We discuss the most promising applications in bioanalytical mass spectrometry in view of recent experimental results, as well as future applications based on bioinformatics.
-
-
-
Next-Generation Sequencing Platforms
Vol. 6 (2013), pp. 287–303More LessAutomated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.
-
-
-
Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy
Vol. 6 (2013), pp. 305–328More LessMany biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein–coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.
-
-
-
Scanning Electrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry and Functional Imaging
Vol. 6 (2013), pp. 329–351More LessScanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, at the end of a double-barreled (theta) pipette, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science.
-
-
-
Continuous Separation Principles Using External Microaction Forces
Vol. 6 (2013), pp. 353–378More LessDuring the past decade, methods for the continuous separation of microparticles with microaction forces have rapidly advanced. Various action forces have been used in designs of both microchannel and capillary continuous separation systems, which depend on properties such as conductivity, permittivity, absorptivity, refractive index, magnetic susceptibility, and compressibility. Particle migration velocity has been used to characterize the particles. Biological cells have been the most interesting targets of these continuous separation methods.
-
-
-
Modern Raman Imaging: Vibrational Spectroscopy on the Micrometer and Nanometer Scales
Vol. 6 (2013), pp. 379–398More LessRaman microscopes are currently used in various fields of research because they allow for label-free sample investigation. Moreover, the inherently low scattering cross section of Raman spectroscopy, as well as its diffraction-limited lateral resolution, has been overcome by new Raman microscopy techniques. Nonlinear methods such as coherent anti-Stokes Raman spectroscopy and stimulated Raman spectroscopy reduce measurement times and improve z resolution, allowing for three-dimensional spectroscopic imaging of biological samples. Moreover, tip-enhanced Raman spectroscopy, a near-field optical technique that combines scanning-probe microscopy with the enhancement offered by surface-enhanced Raman scattering, enables Raman spectroscopic imaging far below the optical diffraction limit. We cover the theoretical and technical aspects of Raman microscopy and related new imaging techniques and review some very recent applications in graphene research and cell biology.
-
-
-
The Use of Synchrotron Radiation for the Characterization of Artists' Pigments and Paintings
Vol. 6 (2013), pp. 399–425More LessWe review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.
-
-
-
Real-Time Clinical Monitoring of Biomolecules
Vol. 6 (2013), pp. 427–453More LessContinuous monitoring of clinical biomarkers offers the exciting possibility of new therapies that use biomarker levels to guide treatment in real time. This review explores recent progress toward this goal. We initially consider measurements in body fluids by a range of analytical methods. We then discuss direct tissue measurements performed by implanted sensors; sampling techniques, including microdialysis and ultrafiltration; and noninvasive methods. A future directions section considers analytical methods at the cusp of clinical use.
-