- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 3, 2010
Annual Review of Analytical Chemistry - Volume 3, 2010
Volume 3, 2010
-
-
An Editor's View of Analytical Chemistry (the Discipline)
Vol. 3 (2010), pp. 1–18More LessThe author recounts progress observed in analytical chemistry (the discipline) from the vantage point of a 20-year editor of Analytical Chemistry (the journal). The recounting draws liberally from the journal's monthly editorials. A complete listing of the editorials can be found in Supplemental Material.
-
-
-
Integrated Microreactors for Reaction Automation: New Approaches to Reaction Development
Vol. 3 (2010), pp. 19–42More LessApplications of microsystems (microreactors) in continuous-flow chemistry have expanded rapidly over the past two decades, with numerous reports of higher conversions and yields compared to conventional batch benchtop equipment. Synthesis applications are enhanced by chemical information gained from integrating microreactor components with sensors, actuators, and automated fluid handling. Moreover, miniaturized systems allow experiments on well-defined samples at conditions not easily accessed by conventional means, such as reactions at high pressure and temperatures. The wealth of synthesis information that could potentially be acquired through use of microreactors integrated with physical sensors and analytical chemistry techniques for online reaction monitoring has not yet been well explored. The increased efficiency resulting from use of continuous-flow microreactor platforms to automate reaction screening and optimization encourages a shift from current batchwise chemical reaction development to this new approach. We review advances in this new area and provide application examples of online monitoring and automation.
-
-
-
Ambient Ionization Mass Spectrometry
Vol. 3 (2010), pp. 43–65More LessMass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.
-
-
-
Evaluation of DNA/Ligand Interactions by Electrospray Ionization Mass Spectrometry
Vol. 3 (2010), pp. 67–87More LessElectrospray ionization mass spectrometry (ESI-MS) has enabled the detection and characterization of DNA/ligand complexes, including evaluation of both relative binding affinities and selectivities of DNA-interactive ligands. The noncovalent complexes that are transferred from the solution to the gas phase retain the signature of the native species, thus allowing the use of MS to screen DNA/ligand complexes, reveal the stoichiometries of the complexes, and provide insight into the nature of the interactions. Ligands that bind to DNA via metal-mediated modes and those that bind to unusual DNA structures, such as quadruplexes, are amenable to ESI. Chemical probe methods applied to DNA/ligand complexes with ESI-MS detection afford information about ligand-binding sites and conformational changes of DNA that occur upon ligand binding.
-
-
-
Analysis of Water in Confined Geometries and at Interfaces
Vol. 3 (2010), pp. 89–107More LessThe properties of water depend on its extended hydrogen bond network and the continual picosecond–time scale structural evolution of the network. Water molecules in confined environments with pools a few nanometers in diameter or at interfaces undergo hydrogen bond structural dynamics that differ drastically from the dynamics they undergo in bulk water. Orientational motions of water require hydrogen bond network rearrangement. Therefore, observations of orientational relaxation in nanoscopic water systems provide information about the influence of confinement and interfaces on hydrogen bond dynamics. Ultrafast infrared polarization- and wavelength-selective pump-probe experiments can measure the orientational relaxation of water and distinguish water at an interface from water removed from an interface. These experiments can be applied to water in reverse micelles (spherical nanopools). The results provide quantitative determination of the dynamics of water as a function of the size and nature of the confining structure.
-
-
-
Single-Molecule DNA Analysis
Vol. 3 (2010), pp. 109–128More LessThe ability to detect single molecules of DNA or RNA has led to an extremely rich area of exploration of the single most important biomolecule in nature. In cases in which the nucleic acid molecules are tethered to a solid support, confined to a channel, or simply allowed to diffuse into a detection volume, novel techniques have been developed to manipulate the DNA and to examine properties such as structural dynamics and protein-DNA interactions. Beyond the analysis of the properties of nucleic acids themselves, single-molecule detection has enabled dramatic improvements in the throughput of DNA sequencing and holds promise for continuing progress. Both optical and nonoptical detection methods that use surfaces, nanopores, and zero-mode waveguides have been attempted, and one optically based instrument is already commercially available. The breadth of literature related to single-molecule DNA analysis is vast; this review focuses on a survey of efforts in molecular dynamics and nucleic acid sequencing.
-
-
-
Capillary Liquid Chromatography at Ultrahigh Pressures
Vol. 3 (2010), pp. 129–150More LessUltrahigh-pressure liquid chromatography (UHPLC) is a method of liquid chromatography utilizing sub-2-μm particles packed into capillary columns 25 to 100 cm long. Columns of this length packed with particles this fine require operation with pressures from 1,000 to 7,000 bar (15,000 to 100,000 psi). The advantages of this technique are high separation powers (theoretical plate counts from 100,000 to 300,000) and run times from a few minutes (isocratic) to a few hours (long gradients). This review discusses the background and theoretical basis of UHPLC, practical aspects of UHPLC hardware, examples of separations, future areas for research in UHPLC, and techniques that are both competitive with and complementary to UHPLC.
-
-
-
In Situ Optical Studies of Solid-Oxide Fuel Cells
Vol. 3 (2010), pp. 151–174More LessThermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1°C across a SOFC electrode at temperatures higher than 600°C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.
-
-
-
Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications
Vol. 3 (2010), pp. 175–205More LessCavity-enhanced direct frequency comb spectroscopy combines broad bandwidth, high spectral resolution, and ultrahigh detection sensitivity in one experimental platform based on an optical frequency comb efficiently coupled to a high-finesse cavity. The effective interaction length between light and matter is increased by the cavity, massively enhancing the sensitivity for measurement of optical losses. Individual comb components act as independent detection channels across a broad spectral window, providing rapid parallel processing. In this review we discuss the principles, the technology, and the first applications that demonstrate the enormous potential of this spectroscopic method. In particular, we describe various frequency comb sources, techniques for efficient coupling between comb and cavity, and detection schemes that utilize the technique's high-resolution, wide-bandwidth, and fast data-acquisition capabilities. We discuss a range of applications, including breath analysis for medical diagnosis, trace-impurity detection in specialty gases, and characterization of a supersonic jet of cold molecules.
-
-
-
Electrochemical Impedance Spectroscopy
Vol. 3 (2010), pp. 207–229More LessThis review describes recent advances in electrochemical impedance spectroscopy (EIS) with an emphasis on its novel applications to various electrochemistry-related problems. Section 1 discusses the development of new EIS techniques to reduce measurement time. For this purpose, various forms of multisine EIS techniques were first developed via a noise signal synthesized by mixing ac waves of various frequencies, followed by fast Fourier transform of the signal and the resulting current. Subsequently, an entirely new concept was introduced in which true white noise was used as an excitation source, followed by Fourier transform of both excitation and response signals. Section 2 describes novel applications of the newly developed techniques to time-resolved impedance measurements as well as to impedance imaging. Section 3 is devoted to recent applications of EIS techniques, specifically traditional measurements in various fields with a special emphasis on biosensor detections.
-
-
-
Electrochemical Aspects of Electrospray and Laser Desorption/Ionization for Mass Spectrometry
Vol. 3 (2010), pp. 231–254More LessSoft-ionization methods, namely electrospray ionization and laser desorption/ionization, are widely used to transfer large molecules as intact gas-phase ions either from a solution or from a solid substrate. During both processes, in-source electrochemical and photoelectrochemical reactions occur. These electrode reactions, which take place at interfaces, play important roles in influencing the ionization products, but they have received little attention. We show that having good control over both types of electrochemical reactions can lead to new analytical applications. Examples include online tagging by grafting of mass tags and in-source photooxidation of peptides.
-
-
-
Adaptive Microsensor Systems
Vol. 3 (2010), pp. 255–276More LessWe provide a broad review of approaches for developing chemosensor systems whose operating parameters can adapt in response to environmental changes or application needs. Adaptation may take place at the instrumentation level (e.g., tunable sensors) and at the data-analysis level (e.g., adaptive classifiers). We discuss several strategies that provide tunability at the device level: modulation of internal sensing parameters, such as frequencies and operation voltages; variation of external parameters, such as exposure times and catalysts; and development of compact microanalysis systems with multiple tuning options. At the data-analysis level, we consider adaptive filters for change, interference, and drift rejection; pattern classifiers that can adapt to changes in the statistical properties of training data; and active-sensing techniques that can tune sensing parameters in real time. We conclude with a discussion of future opportunities for adaptive sensing in wireless distributed sensor systems.
-
-
-
Confocal Raman Microscopy of Optical-Trapped Particles in Liquids
Vol. 3 (2010), pp. 277–297More LessThe in situ analysis of small, dispersed particles in liquids is a challenging problem, the successful solution to which influences diverse applications of colloidal particles in materials science, synthetic chemistry, and molecular biology. Optical trapping of small particles with a tightly focused laser beam can be combined with confocal Raman microscopy to provide molecular structure information about individual, femtogram-sized particles in liquid samples. In this review, we consider the basic principles of combining optical trapping and confocal Raman spectroscopy, then survey the applications that have been developed through the combination of these techniques and their use in the analysis of particles dispersed in liquids.
-
-
-
Scanning Electrochemical Microscopy in Neuroscience
Vol. 3 (2010), pp. 299–318More LessThis article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.
-
-
-
Single-Biomolecule Kinetics: The Art of Studying a Single Enzyme
Vol. 3 (2010), pp. 319–340More LessThe potential of single-enzyme studies to unravel the complex energy landscape of these polymeric catalysts is the next critical step in enzymology. From its inception in Rotman's emulsion experiments in the 1960s, the field of single-molecule enzymology has now advanced into the time-resolved age. Technological advances have enabled individual enzymatic turnover reactions to be observed with a millisecond time resolution. A number of initial studies have revealed the underlying static and dynamic disorder in the catalytic rates originating from conformational fluctuations. Although these experiments are still in their infancy, they may be able to relate the topography of the energy landscape to the biological function and regulation of enzymes. This review summarizes some of the experimental techniques and data-analysis methods that have been used to study individual enzyme molecules in search of a deeper understanding of their kinetics.
-
-
-
Chiral Separations
Vol. 3 (2010), pp. 341–363More LessThe main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.
-
-
-
Gas-Phase Chemistry of Multiply Charged Bioions in Analytical Mass Spectrometry
Vol. 3 (2010), pp. 365–385More LessIon chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized.
-
-
-
Rotationally Induced Hydrodynamics: Fundamentals and Applications to High-Speed Bioassays
Vol. 3 (2010), pp. 387–407More LessBioassays are indispensable tools in areas ranging from fundamental life science research to clinical practice. Improving assay speed and levels of detection will have a profound impact in all of these areas. We recently developed a rapid, sensitive format for immunosorbent assays that expedites antigen mass transport by rotating the capture substrate. This review outlines the theoretical foundation of rotationally induced hydrodynamics and its application in heterogeneous assays. We describe a general solution that solves the rates of immunoreactions on rotating capture substrates, taking into account both diffusion and the rate of reaction between antibody and antigen. The general solution applies to a wide range of rotation rates, including mass transport–limited to reaction rate–limited assays, and is validated experimentally. We discuss several applications that demonstrate how immunoassays can be tailored to increase speed as well as lower the limit of detection of viral particles, pathogens, toxins, and proteins.
-
-
-
Microsystems for the Capture of Low-Abundance Cells
Vol. 3 (2010), pp. 409–431More LessEfficient selection and enumeration of low-abundance biological cells are highly important in a variety of applications. For example, the clinical utility of circulating tumor cells (CTCs) in peripheral blood is recognized as a viable biomarker for the management of various cancers, in which the clinically relevant number of CTCs per 7.5 ml of blood is two to five. Although there are several methods for isolating rare cells from a variety of heterogeneous samples, such as immunomagnetic-assisted cell sorting and fluorescence-activated cell sorting, they are fraught with challenges. Microsystem-based technologies are providing new opportunities for selecting and isolating rare cells from complex, heterogeneous samples. Such approaches involve reductions in target-cell loss, process automation, and minimization of contamination issues. In this review, we introduce different application areas requiring rare cell analysis, conventional techniques for their selection, and finally microsystem approaches for low-abundance-cell isolation and enumeration.
-
-
-
Advances in Mass Spectrometry for Lipidomics
Vol. 3 (2010), pp. 433–465More LessRecent expansion in research in the field of lipidomics has been driven by the development of new mass spectrometric tools and protocols for the identification and quantification of molecular lipids in complex matrices. Although there are similarities between the field of lipidomics and the allied field of mass spectrometry (e.g., proteomics), lipids present some unique advantages and challenges for mass spectrometric analysis. The application of electrospray ionization to crude lipid extracts without prior fractionation—the so-called shotgun approach—is one such example, as it has perhaps been more successfully applied in lipidomics than in any other discipline. Conversely, the diverse molecular structure of lipids means that collision-induced dissociation alone may be limited in providing unique descriptions of complex lipid structures, and the development of additional, complementary tools for ion activation and analysis is required to overcome these challenges. In this article, we discuss the state of the art in lipid mass spectrometry and highlight several areas in which current approaches are deficient and further innovation is required.
-