- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 9, 2016
Annual Review of Analytical Chemistry - Volume 9, 2016
Volume 9, 2016
-
-
Applications of Optical Microcavity Resonators in Analytical Chemistry
Vol. 9 (2016), pp. 1–25More LessOptical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.
-
-
-
Molecular Plasmonics
Vol. 9 (2016), pp. 27–43More LessIn this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.
-
-
-
Advances in Mid-Infrared Spectroscopy for Chemical Analysis
Vol. 9 (2016), pp. 45–68More LessInfrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.
-
-
-
In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy
Vol. 9 (2016), pp. 69–93More LessCoherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed.
-
-
-
Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection
Vol. 9 (2016), pp. 95–115More LessRecent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.
-
-
-
Progress in the Analysis of Complex Atmospheric Particles
Vol. 9 (2016), pp. 117–143More LessThis article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.
-
-
-
Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids
Vol. 9 (2016), pp. 145–161More LessIon transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.
-
-
-
Reagentless, Structure-Switching, Electrochemical Aptamer-Based Sensors
Vol. 9 (2016), pp. 163–181More LessThe development of structure-switching, electrochemical, aptamer-based sensors over the past ∼10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.
-
-
-
New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications
Vol. 9 (2016), pp. 183–202More LessIn the last decade, paper analytical devices (PADs) have evolved into sophisticated yet simple sensors with biological and environmental applications in the developed and developing world. The focus of this review is the technological improvements that have over the past five years increased the applicability of PADs to real-world problems. Specifically, this review reports on advances in sample processing, fluid flow control, signal amplification, and component integration. Throughout, we have sought to emphasize advances that retain the main virtues of PADs: low cost, portability, and simplicity.
-
-
-
Fabrication and Operation of Paper-Based Analytical Devices
Xiao Jiang, and Z. Hugh FanVol. 9 (2016), pp. 203–222More LessThis review focuses on the fabrication techniques and operational components of microfluidic paper-based analytical devices (μPADs). Being low-cost, user-friendly, fast, and simple, μPADs have seen explosive growth in the literature in the last decade. Many different materials and technologies have been employed to fabricate μPADs for various applications, including those that employ patterning, the creation of physical boundaries, and three-dimensional structures. In addition to fabrication techniques, flow control and other operational components in μPADs are of great interest. These components enable μPADs to control flow rates, direct flow paths via valves, sequentially deliver reagents automatically, and display test results, all of which will make μPADs more suitable for point-of-care applications.
-
-
-
Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications
Vol. 9 (2016), pp. 223–247More LessA major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
-
-
-
Microfluidic Devices for the Measurement of Cellular Secretion
Vol. 9 (2016), pp. 249–269More LessThe release of chemical information from cells and tissues holds the key to understanding cellular behavior and dysfunction. The development of methodologies that can measure cellular secretion in a time-dependent fashion is therefore essential. Often these measurements are made difficult by the high-salt conditions of the cellular environment, the presence of numerous other secreted factors, and the small mass samples that are produced when frequent sampling is used to resolve secretory dynamics. In this review, the methods that we have developed for measuring hormone release from islets of Langerhans are dissected to illustrate the practical difficulties of studying cellular secretions. Other methods from the literature are presented that provide alternative approaches to particularly challenging areas of monitoring cellular secretion. The examples presented in this review serve as case studies and should be adaptable to other cell types and systems for unique applications.
-
-
-
Plant Molecular Farming: Much More than Medicines
Vol. 9 (2016), pp. 271–294More LessPlants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.
-
-
-
Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks
Vol. 9 (2016), pp. 295–315More LessProtein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
-
-
-
Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations
Vol. 9 (2016), pp. 317–342More LessMonolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
-
-
-
Mass-Selective Chiral Analysis
Vol. 9 (2016), pp. 343–364More LessThree ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.
-
-
-
The Coupled Chemical and Physical Dynamics Model of MALDI
Vol. 9 (2016), pp. 365–385More LessThe coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.
-
-
-
Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge
Vol. 9 (2016), pp. 387–409More LessHybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible.
-
-
-
Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry
Qiuling Zheng, and Hao ChenVol. 9 (2016), pp. 411–448More LessDesorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow–extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
-
-
-
Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing
Vol. 9 (2016), pp. 449–472More LessProteins constitute a key class of molecular components that perform essential biochemical reactions in living cells. Whether the aim is to extensively characterize a given protein or to perform high-throughput qualitative and quantitative analysis of the proteome content of a sample, liquid chromatography coupled to tandem mass spectrometry has become the technology of choice. In this review, we summarize the current state of mass spectrometry applied to bottom-up proteomics, the approach that focuses on analyzing peptides obtained from proteolytic digestion of proteins. With the recent advances in instrumentation and methodology, we show that the field is moving away from providing qualitative identification of long lists of proteins to delivering highly consistent and accurate quantification values for large numbers of proteins across large numbers of samples. We believe that this shift will have a profound impact for the field of proteomics and life science research in general.
-