Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Blaser HU, Spindler F, Studer A. 1.  2001. Enantioselective catalysis in fine chemicals production. Appl. Catal. Gen. 221:119–43 [Google Scholar]
  2. Yoon TP, Jacobsen EN. 2.  2003. Privileged chiral catalysts. Science 299:1691–93 [Google Scholar]
  3. Heitbaum M, Glorius F, Escher I. 3.  2006. Asymmetric heterogeneous catalysis. Angew. Chem. Int. Ed. 45:4732–62 [Google Scholar]
  4. Fales HM, Wright GJ. 4.  1977. Detection of chirality with chemical ionization mass-spectrometer—meso ions in gas-phase. J. Am. Chem. Soc. 99:2339–40 [Google Scholar]
  5. Baldwin MA, Howell SA, Welham KJ, Winkler FJ. 5.  1988. Identification of chiral isomers by fast atom bombardment mass spectrometry—dialkyl tartrates. Biomed. Environ. Mass Spectrom. 16:357–60 [Google Scholar]
  6. Sawada M, Shizuma M, Takai Y, Yamada H, Kaneda T, Hanafusa T. 6.  1992. Enantioselectivity in fast-atom bombardment (FAB) mass spectrometry. J. Am. Chem. Soc. 114:4405–6 [Google Scholar]
  7. Sawada M, Yamaoka H, Takai Y, Kawai Y, Yamada H. 7.  et al. 1999. Determination of enantiomeric excess for organic primary amine compounds by chiral recognition fast-atom bombardment mass spectrometry. Int. J. Mass Spectrom. 193:123–30 [Google Scholar]
  8. Shizuma M, Imamura H, Takai Y, Yamada H, Takeda T. 8.  et al. 2000. A new reagent to evaluate optical purity of organic amines by FAB mass spectrometry. Chem. Lett. 11:1292–93 [Google Scholar]
  9. Sawada M, Takai Y, Imamura H, Yamada H, Takahashi S. 9.  et al. 2001. Chiral recognizable host-guest interactions detected by fast-atom bombardment mass spectrometry: application to the enantiomeric excess determination of primary amines. Eur. J. Mass Spectrom. 7:447–59 [Google Scholar]
  10. Schalley CA. 10.  2001. Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom. Rev. 20:253–309 [Google Scholar]
  11. Shizuma M, Adachi H, Kawamura M, Takai Y, Takeda T, Sawada M. 11.  2001. Chiral discrimination of fructo-oligosaccharides toward amino acid derivatives by induced-fitting chiral recognition. J. Chem. Soc. Perkin Trans. 2:592–601 [Google Scholar]
  12. Shizuma M, Imamura H, Takai Y, Yamada H, Takeda T. 12.  et al. 2001. Facile ee-determination from a single measurement by fast atom bombardment mass spectrometry: a double labeling method. Int. J. Mass Spectrom. 210:585–90 [Google Scholar]
  13. Shizuma M, Kadoya Y, Takai Y, Imamura H, Yamada H. 13.  et al. 2002. New artificial host compounds containing galactose end groups for binding chiral organic amine guests: chiral discrimination and their complex structures. J. Org. Chem. 67:4795–807 [Google Scholar]
  14. Taji H, Watanabe M, Harada N, Naoki H, Ueda Y. 14.  2002. Diastereomer method for determining ee by 1H NMR and/or MS spectrometry with complete removal of the kinetic resolution effect. Org. Lett. 4:2699–702 [Google Scholar]
  15. Wu LM, Vogt FG. 15.  2012. A review of recent advances in mass spectrometric methods for gas-phase chiral analysis of pharmaceutical and biological compounds. J. Pharm. Biomed. Anal. 69:133–47 [Google Scholar]
  16. Awad H, El-Aneed A. 16.  2013. Enantioselectivity of mass spectrometry: challenges and promises. Mass Spectrom. Rev. 32:466–83 [Google Scholar]
  17. Piovesana S, Samperi R, Lagana A, Bella M. 17.  2013. Determination of enantioselectivity and enantiomeric excess by mass spectrometry in the absence of chiral chromatographic separation: an overview. Chem. Eur. J. 19:11478–94 [Google Scholar]
  18. Vékey K, Czira G. 18.  1997. Distinction of amino acid enantiomers based on the basicity of their dimers. Anal. Chem. 69:1700–5 [Google Scholar]
  19. Cooks RG, Kruger TL. 19.  1977. Intrinsic basicity determination using metastable ions. J. Am. Chem. Soc. 99:1279–81 [Google Scholar]
  20. Tao WA, Zhang DX, Wang F, Thomas PD, Cooks RG. 20.  1999. Kinetic resolution of D, L-amino acids based on gas-phase dissociation of copper(II) complexes. Anal. Chem. 71:4427–29 [Google Scholar]
  21. Duxi Z, Tao WA, Cooks RG. 21.  2001. Chiral resolution of D- and L-amino acids by tandem mass spectrometry of Ni(II)-bound trimeric complexes. Int. J. Mass Spectrom. 204:159–69 [Google Scholar]
  22. Wu LM, Clark RL, Cooks RG. 22.  2003. Chiral quantification of D-, L-, and meso-tartaric acid mixtures using a mass spectrometric kinetic method. Chem. Commun. 9:136–37 [Google Scholar]
  23. Wu LM, Cooks RG. 23.  2003. Chiral analysis using the kinetic method with optimized fixed ligands: applications to some antibiotics. Anal. Chem. 75:678–84 [Google Scholar]
  24. Bagheri H, Chen H, Cooks RG. 24.  2004. Chiral recognition by proton transfer reactions with optically active amines and alcohols. Chem. Commun. 23:2740–41 [Google Scholar]
  25. Wu LM, Cooks G. 25.  2005. Chiral and isomeric analysis by electrospray ionization and sonic spray ionization using the fixed-ligand kinetic method. Eur. J. Mass Spectrom. 11:231–42 [Google Scholar]
  26. Young BL, Cooks RG. 26.  2007. Improvements in quantitative chiral determinations using the mass spectrometric kinetic method. Int. J. Mass Spectrom. 267:199–204 [Google Scholar]
  27. Tao WA, Clark RL, Cooks RG. 27.  2002. Quotient ratio method for quantitative enantiomeric determination by mass spectrometry. Anal. Chem. 74:3783–89 [Google Scholar]
  28. Tao WA, Cooks RG, Nikolaev EN. 28.  2002. Chiral preferences in the dissociation of homogeneous amino acid/metal ion clusters. Eur. J. Mass Spectrom. 8:107–15 [Google Scholar]
  29. Wu L, Tao WA, Cooks RG, Begley JA, Lampert B. 29.  2002. Improved accuracy in quantitative analysis of chiral drugs using a ratio of ratio of ratio's (RRR's) kinetic method treatment. Abstr. Pap. Am. Chem. Soc. 224:163 [Google Scholar]
  30. Wu LM, Tao WA, Cooks RG. 30.  2003. Kinetic method for the simultaneous chiral analysis of different amino acids in mixtures. J. Mass Spectrom. 38:386–93 [Google Scholar]
  31. Alrabaa AR, Breheret E, Lahmani F, Zehnacker A. 31.  1995. Enantiodifferentiation in jet-cooled van-der-waals complexes of chiral molecules. Chem. Phys. Lett. 237:480–84 [Google Scholar]
  32. Pierini M, Troiani A, Speranza M, Piccirillo S, Bosman C. 32.  et al. 1997. Gas-phase enantiodifferentiation of chiral molecules: chiral recognition of 1-phenyl-1-propanol/2-butanol clusters by resonance enhanced multiphoton ionization spectroscopy. Angew. Chem. Int. Ed. 36:1729–31 [Google Scholar]
  33. Latini A, Toja D, Giardini-Guidoni A, Palleschi A, Piccirillo S, Speranza M. 33.  1999. Spectroscopic enantiodifferentiation of chiral molecules in the gas phase. Chirality 11:376–80 [Google Scholar]
  34. Filippi A, Giardini A, Piccirillo S, Speranza M. 34.  2000. Gas-phase enantioselectivity. Int. J. Mass Spectrom. 198:137–63 [Google Scholar]
  35. Guidoni AG, Latini A, Satta M, Piccirillo S, Di Palma TM. 35.  2000. Laser spectroscopy of clusters—application to differentiation of chiral systems. Synth. Metals 115:279–82 [Google Scholar]
  36. Guidoni AG, Piccirillo S, Scuderi D, Satta M, Di Palma TM. 36.  et al. 2001. Photochemical R2PI study of chirality and intermolecular forces in supersonic beam. Int. J. Photoenergy 3:223–27 [Google Scholar]
  37. Scuderi D, Paladini A, Satta M, Catone D, Piccirillo S. 37.  et al. 2002. Chiral aggregates of indan-1-ol with secondary alcohols and water: laser spectroscopy in supersonic beams. Phys. Chem. Chem. Phys. 4:4999–5003 [Google Scholar]
  38. Guidoni AG, Piccirillo S, Scuderi D, Satta M, Filippi A. 38.  et al. 2003. Laser studies of chiral molecules. Laser Processing of Advanced Materials and Laser Microtechnologies FH Dausinger, VI Konov, VY Baranov, VY Panchenko 42–47 Bellingham, WA: Soc. Opt. Eng. [Google Scholar]
  39. Scuderi D, Paladini A, Satta M, Catone D, Filippi A. 39.  et al. 2003. Gas-phase complexes: noncovalent interactions and stereospecificity. Int. J. Mass Spectrom. 223:159–68 [Google Scholar]
  40. Speranza M. 40.  2004. Chiral clusters in the gas phase. Advances in Physical Organic Chemistry 39 JP Richard 147–281 San Diego: Academic [Google Scholar]
  41. Speranza M, Satta M, Piccirillo S, Rondino F, Paladini A. 41.  et al. 2005. Chiral recognition by mass-resolved laser spectroscopy. Mass Spectrom. Rev. 24:588–610 [Google Scholar]
  42. Giardini A, Rondino F, Paladini A, Hortal AR, Satta M. 42.  et al. 2008. Monosolvation effects in chiral fluoroorganic compounds: an R2PI study. Phys. Scr. 78:058121 [Google Scholar]
  43. Speranza M, Rondino F, Satta M, Paladini A, Giardini A. 43.  et al. 2009. Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest. Chirality 21:119–44 [Google Scholar]
  44. Rondino F, Paladini A, Ciavardini A, Casavola A, Catone D. 44.  et al. 2011. Chiral recognition between 1-(4-fluorophenyl)ethanol and 2-butanol: higher binding energy of homochiral complexes in the gas phase. Phys. Chem. Chem. Phys. 13:818–24 [Google Scholar]
  45. Berova N, Nakanishi K, Woody RW. 45.  2000. Circular Dichroism: Principles and Applications New York: Wiley-VCH, 2nd ed.. [Google Scholar]
  46. Boesl U. 46.  1991. Multiphoton excitation and mass-selective ion detection for neutral and ion spectroscopy. J. Phys. Chem. 95:2949–62 [Google Scholar]
  47. Walter K, Boesl U, Schlag EW. 47.  1989. Molecular ion spectroscopy - resonance-enhanced multiphoton dissociation spectra of the fluorobenzene cation. Chem. Phys. Lett. 162:261–68 [Google Scholar]
  48. Walter K, Weinkauf R, Boesl U, Schlag EW. 48.  1988. Molecular ion spectroscopy—mass selected, resonant 2-photon dissociation spectra of CH3I+ and CD3I+. J. Chem. Phys. 89:1914–22 [Google Scholar]
  49. Boesl U, Neusser HJ, Schlag EW. 49.  1979. Spectra of individual molecular isotopes in an unseparated natural mixture. Chem. Phys. Lett. 61:57–61 [Google Scholar]
  50. Oser H, Coggiola MJ, Young SE, Crosley DR, Hafer V, Grist G. 50.  2007. Membrane introduction/laser photoionization time-of-flight mass spectrometry. Chemosphere 67:1701–8 [Google Scholar]
  51. Schiewek R, Schellentrager M, Monnikes R, Lorenz M, Giese R. 51.  et al. 2007. Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. Anal. Chem. 79:4135–40 [Google Scholar]
  52. Misawa K, Matsumoto J, Yamato Y, Mae S, Ishiuchi S. 52.  et al. 2008. Real-time and direct measurement of pollutants in exhaust gas utilizing supersonic jet/resonance enhanced multi-photon ionization Tech. Pap. 2008-01-0761, SAE Int., Warrendale, PA [Google Scholar]
  53. Boesl U, Weishaeupl R, Thiel W, Püffel P, Frey R. 53.  2005. Time-resolved chemical analysis by laser mass spectrometry: monitoring of in-cylinder and catalytic-converter processes of combustion engines Tech. Pap. 2005-01-0679, SAE Int., Warrendale, PA [Google Scholar]
  54. Bente M, Sklorz M, Streibel T, Zimmermann R. 54.  2008. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal. Chem. 80:8991–9004 [Google Scholar]
  55. Boesl U, Heger H-J, Zimmermann R, Püffel P, Nagel H. 55.  2000. Laser mass spectrometry in trace analysis. Encyclopedia of Chemical Analysis RA Meyers 2087–118 Chichester, UK: John Wiley & Sons [Google Scholar]
  56. Li R, Sullivan R, Al-Basheer W, Pagni RM, Compton RN. 56.  2006. Linear and nonlinear circular dichroism of R-(+)-3-methylcyclopentanone. J. Chem. Phys. 125:144304 [Google Scholar]
  57. Peticola Wl. 57.  1967. Multiphoton spectroscopy. Annu. Rev. Phys. Chem. 18:233–60 [Google Scholar]
  58. McClain WM. 58.  1974. Two-photon molecular spectroscopy. Acc. Chem. Res. 7:129–35 [Google Scholar]
  59. Tinoco I Jr. 59.  1975. 2-Photon circular-dichroism. J. Chem. Phys. 62:1006–9 [Google Scholar]
  60. Power EA. 60.  1975. 2-Photon circular-dichroism. J. Chem. Phys. 63:1348–50 [Google Scholar]
  61. Gunde KE, Burdicka GW, Richardson FS. 61.  1996. Chirality-dependent two-photon absorption probabilities and circular dichroic line strengths: theory, calculation and measurement. Chem. Phys. 208:195–219 [Google Scholar]
  62. Rizzo A, Lin N, Ruud K. 62.  2008. Ab initio study of the one- and two-photon circular dichroism of R-(+)-3-methyl-cyclopentanone. J. Chem. Phys. 128:164312 [Google Scholar]
  63. Lin N, Santoro F, Rizzo A, Luo Y, Zhao X, Barone V. 63.  2009. Theory for vibrationally resolved two-photon circular dichroism spectra. Application to (R)-(+)-3-methylcyclopentanone. J. Phys. Chem. A 113:4198–207 [Google Scholar]
  64. Boesl von Grafenstein U, Bornschlegl A. 64.  2006. Circular dichroism laser mass spectrometry: differentiation of 3-methylcyclopentanone enantiomers. ChemPhysChem 7:2085–87 [Google Scholar]
  65. Bornschlegl A, Loge C, Boesl U. 65.  2007. Investigation of CD effects in the multi photon ionisation of R-(+)-3-methylcyclopentanone. Chem. Phys. Lett. 447:187–91 [Google Scholar]
  66. Breunig HG, Urbasch G, Horsch P, Cordes J, Koert U, Weitzel K-M. 66.  2009. Circular dichroism in ion yields of femtosecond-laser mass spectrometry. ChemPhysChem 10:1199–202 [Google Scholar]
  67. Horsch P, Urbasch G, Weitzel KM. 67.  2011. Circular dichroism in ion yields in multiphoton ionization of (R)-propylene oxide employing femtosecond laser pulses. Z. Phys. Chem.-Int. J. Res. Phys. Chem. Chem. Phys. 225:587–94 [Google Scholar]
  68. Horsch P, Urbasch G, Weitzel KM, Kroner D. 68.  2011. Circular dichroism in ion yields employing femtosecond laser ionization—the role of laser pulse duration. Phys. Chem. Chem. Phys. 13:2378–86 [Google Scholar]
  69. Horsch P, Urbasch G, Weitzel K-M. 69.  2012. Analysis of chirality by femtosecond laser ionization mass spectrometry. Chirality 24:684–90 [Google Scholar]
  70. Lux C, Liang Q, Sarpe-Tudoran C, Wollenhaupt M, Baumert T. 70.  2010. Fragmentation studies of chiral molecules via femtosecond-laser mass spectrometry. Presented at Annu. Conf. Deutsche Physikalische Gesellschaft, Mar. 9, Hannover, Ger.
  71. Logé C, Boesl U. 71.  2012. Laser mass spectrometry with circularly polarized light: two-photon circular dichroism. Phys. Chem. Chem. Phys. 14:11981–89 [Google Scholar]
  72. Logé C, Boesl U. 72.  2012. Laser mass spectrometry with circularly polarized light: circular dichroism of molecular ions. ChemPhysChem 13:4218–23 [Google Scholar]
  73. Kröner D. 73.  2015. Laser-driven electron dynamics for circular dichroism in mass spectrometry: from one-photon excitations to multiphoton ionization. Phys. Chem. Chem. Phys. 17:19643–55 [Google Scholar]
  74. Kröner D, Shibl MF, González L. 74.  2003. Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment. Chem. Phys. Lett. 372:1–2242–48 [Google Scholar]
  75. Logé C, Bornschlegi A, Boesl U. 75.  2009. Twin mass peak ion source for comparative mass spectrometry: application to circular dichroism laser MS. Int. J. Mass Spectrom. 281:134–39 [Google Scholar]
  76. Loge C, Boesl U. 76.  2011. Multiphoton ionization and circular dichroism: new experimental approach and application to natural products. ChemPhysChem 12:1940–47 [Google Scholar]
  77. Wiley WC, McLaren IH. 77.  1955. Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26:1150–57 [Google Scholar]
  78. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA. 78.  1973. The mass-reflectron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Sov. Phys.J. Exp. Theor. Phys. 37:45–48 [Google Scholar]
  79. Boesl U, Weinkauf R, Schlag EW. 79.  1992. Reflectron time-of-flight mass-spectrometry and laser excitation for the analysis of neutrals, ionized molecules and secondary fragments. Int. J. Mass Spectrom. Ion Process. 112:121–66 [Google Scholar]
  80. Boesl U, Bornschlegl A, Loge C, Titze K. 80.  2013. Resonance-enhanced multiphoton ionization with circularly polarized light: chiral carbonyls. Anal. Bioanal. Chem. 405:6913–24 [Google Scholar]
  81. Brint P, Meshulam E, Gedanken A. 81.  1984. Excited electronic states of limonene: a circular dichroism and photoelectron spectroscopy study of d-limonene. Chem. Phys. Lett. 109:383–87 [Google Scholar]
  82. Macleod NA, Butz P, Simons JP, Grant GH, Baker CM, Tranter GE. 82.  2004. Electronic circular dichroism spectroscopy of 1-(R)-phenylethanol: the “sector rule” revisited and an exploration of solvent effects. Isr. J. Chem. 44:27–36 [Google Scholar]
  83. Macleod NA, Butz P, Simons JP, Grant GH, Baker CM, Tranter GE. 83.  2005. Structure, electronic circular dichroism and Raman optical activity in the gas phase and in solution: a computational and experimental investigation. Phys. Chem. Chem. Phys. 7:1432–40 [Google Scholar]
  84. Pickard ST, Smith HE. 84.  1990. Optically-active amines. 34. Application of the benzene chirality rule to ring-substituted phenylcarbinamines and carbinols. J. Am. Chem. Soc. 112:5741–47 [Google Scholar]
  85. Naguleswaran S, Reid MF, Stedman GE. 85.  2000. Prediction of pure electric-dipole two-photon absorption circular dichroism in lanthanide compounds. Chem. Phys. 256:207–12 [Google Scholar]
  86. Dekkers HPJM, Closs LE. 86.  1976. The optical activity of low-symmetry ketones in absorption and emission. J. Am. Chem. Soc. 98:2210–19 [Google Scholar]
  87. Titze K, Zollitsch T, Heiz U, Boesl U. 87.  2014. Laser mass spectrometry with circularly polarized light: circular dichroism of cold molecules in a supersonic gas beam. ChemPhysChem 15:2762–67 [Google Scholar]
  88. Smalley RE, Wharton L, Levy DH. 88.  1977. Molecular optical spectroscopy with supersonic beams and jets. Acc. Chem. Res. 10:139–45 [Google Scholar]
  89. Duncan MA, Dietz TG, Smalley RE. 89.  1979. Efficient multi-photon ionization of metal-carbonyls cooled in a pulsed supersonic beam. Chem. Phys. 44:415–19 [Google Scholar]
  90. Lubman DM. 90.  1987. Optically selective molecular mass spectrometry. Anal. Chem. 59:31A–40A [Google Scholar]
  91. Weickhardt C, Zimmermann R, Boesl U, Schlag EW. 91.  1993. Laser mass-spectrometry of dibenzodioxin dibenzofuran and 2 isomers of dichlorodibenzodioxins—selective ionization. Rapid Commun. Mass Spectrom. 7:183–85 [Google Scholar]
  92. Zimmermann R, Lermer C, Schramm KW, Kettrup A, Boesl U. 92.  1995. 3-Dimensional trace analysis—combination of gas-chromatography, supersonic beam UV spectroscopy and time-of-flight mass-spectrometry. Eur. Mass Spectrom. 1:341–51 [Google Scholar]
  93. Hong A, Choi CM, Eun HJ, Jeong C, Heo J, Kim NJ. 93.  2014. Conformation-specific circular dichroism spectroscopy of cold, isolated chiral molecules. Angew. Chem. Int. Ed. 53:7805–8 [Google Scholar]
  94. Zhang J, Chiang WY, Laane J. 94.  1993. Jet-cooled fluorescence excitation-spectra, conformation, and carbonyl wagging potential-energy function of cyclopentanone and its deuterated isotopomers in the S1 (n, PI-asterisk) electronic excited-states. J. Chem. Phys. 98:6129–37 [Google Scholar]
  95. Dierksen M, Grimme S. 95.  2006. A theoretical study of the chiroptical properties of molecules with isotopically engendered chirality. J. Chem. Phys. 124:174301 [Google Scholar]
  96. Na L, Santoro F, Xian Z, Rizzo A, Barone V. 96.  2008. Vibronically resolved electronic circular dichroism spectra of (R)-(+)-3-methylcyclopentanone: a theoretical study. J. Phys. Chem. A 112:12401–11 [Google Scholar]
  97. Na L, Yi L, Santoro F, Xian Z, Rizzo A. 97.  2008. Vibronically-induced change in the chiral response of molecules revealed by electronic circular dichroism spectroscopy. Chem. Phys. Lett. 464:144–49 [Google Scholar]
  98. Ritchie B. 98.  1976. Theory of angular-distribution of photoelectrons ejected from optically active molecules and molecular negative-ions. Phys. Rev. A 13:1411–15 [Google Scholar]
  99. Powis I. 99.  2000. Photoelectron spectroscopy and circular dichroism in chiral biomolecules: L-alanine. J. Phys. Chem. A 104:878–82 [Google Scholar]
  100. Bowering N, Lischke T, Schmidtke B, Muller N, Khalil T, Heinzmann U. 100.  2001. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86:1187–90 [Google Scholar]
  101. Hergenhahn U, Rennie EE, Kugeler O, Marburger S, Lischke T. 101.  et al. 2004. Photoelectron circular dichroism in core level ionization of randomly oriented pure enantiomers of the chiral molecule camphor. J. Chem. Phys. 120:4553–56 [Google Scholar]
  102. Nahon L, Garcia GA, Harding CJ, Mikajlo E, Powis I. 102.  2006. Determination of chiral asymmetries in the valence photoionization of camphor enantiomers by photoelectron imaging using tunable circularly polarized light. J. Chem. Phys. 125:114309 [Google Scholar]
  103. Powis I. 103.  2008. Photoelectron circular dichrosim in chiral molecules. Advances in Chemical Physics JC Light 267–329 New York: Wiley [Google Scholar]
  104. Nahon L, Powis I. 104.  2010. Valence photoelectron circular dichroism of gas phase enantiomers. Chiral Recognition in the Gas Phase A Zehnacker 1–26 Boca Raton, FL: CRC [Google Scholar]
  105. Powis I. 105.  2012. Photoelectron circular dichroism. Comprehensive Chiroptical Spectroscopy N Berova, PL Polavarapu, K Nakanishi, RW Woody 407–31 New York: Wiley [Google Scholar]
  106. Lux C, Wollenhaupt M, Bolze T, Liang QQ, Kohler J. 106.  et al. 2012. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51:5001–5 [Google Scholar]
  107. Lux C, Wollenhaupt M, Sarpe C, Baumert T. 107.  2015. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses. ChemPhysChem 16:115–37 [Google Scholar]
  108. Baer T, Weitzel KM, Booze J. 108.  1991. Photoelectron photoion coincidence studies of ion dissociation dynamics. Vacuum Ultraviolet Photoionization and Photodissociation of Molecules and Clusters C-Y Ng 259–96 Singapore: World Sci. [Google Scholar]
  109. Brehm B, von Puttkamer E. 109.  1967. Koinzidenzmessung von photoionen und photoelektronen bei methan. Z. Naturforsch. A 22:8–10 [Google Scholar]
  110. Davies JA, LeClaire JE, Continetti RE, Hayden CC. 110.  1999. Femtosecond time-resolved photoelectron-photoion coincidence imaging studies of dissociation dynamics. J. Chem. Phys. 111:1–4 [Google Scholar]
  111. Davies JA, Continetti RE, Chandler DW, Hayden CC. 111.  2000. Femtosecond time-resolved photoelectron angular distributions probed during photodissociation of NO2. Phys. Rev. Lett. 84:5983–86 [Google Scholar]
  112. Continetti RE, Hayden CC. 112.  2004. Coincidence imaging techniques. Modern Trends in Reaction Dynamics X Yang, K Liu 475–528 Singapore: World Sci. [Google Scholar]
  113. Rijs AM, Janssen MHM, Chrysostom ETH, Hayden CC. 113.  2004. Femtosecond coincidence imaging of multichannel multiphoton dynamics. Phys. Rev. Lett. 92:123002 [Google Scholar]
  114. Vredenborg A, Roeterdink WG, Janssen MHM. 114.  2008. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of sigma=18 ps and energy resolution Delta E/E=3.5%. Rev. Sci. Instrum. 79:063108 [Google Scholar]
  115. Vredenborg A, Lehmann CS, Irimia D, Roeterdink WG, Janssen MHM. 115.  2011. The reaction microscope: imaging and pulse shaping control in photodynamics. ChemPhysChem 12:1459–73 [Google Scholar]
  116. Lehmann CS, Ram NB, Powis I, Janssen MHM. 116.  2013. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. J. Chem. Phys. 139:234307 [Google Scholar]
  117. Ram NB, Lehmann CS, Janssen MHM. 117.  2013. Probing chirality with a femtosecond reaction microscope. EPJ Web Conf. 41:02029 [Google Scholar]
  118. Janssen MHM, Powis I. 118.  2014. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16:856–71 [Google Scholar]
  119. Lehmann CS, Ram NB, Janssen MHM. 119.  2012. Velocity map photoelectron-photoion coincidence imaging on a single detector. Rev. Sci. Instrum. 83:093103 [Google Scholar]
  120. Heister P, Luenskens T, Thaemer M, Kartouzian A, Gerlach S. 120.  et al. 2014. Orientational changes of supported chiral 2,2′-dihydroxy-1,1′-binaphthyl molecules. Phys. Chem. Chem. Phys. 16:7299–306 [Google Scholar]
  121. Harding C, Habibpour V, Kunz S, Farnbacher AN-S, Heiz U. 121.  et al. 2009. Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. J. Am. Chem. Soc. 131:538–48 [Google Scholar]
  122. Roettgen MA, Abbet S, Judai K, Antonietti J-M, Woerz AS. 122.  et al. 2007. Cluster chemistry: size-dependent reactivity induced by reverse spill-over. J. Am. Chem. Soc. 129:9635–39 [Google Scholar]
  123. Schweinberger FF, Berr MJ, Doeblinger M, Wolff C, Sanwald KE. 123.  et al. 2013. Cluster size effects in the photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 135:13262–65 [Google Scholar]
  124. Tang X, Bumueller D, Lim A, Schneider J, Heiz U. 124.  et al. 2014. Catalytic dehydration of 2-propanol by size-selected (WO3)n and (MoO3)n metal oxide clusters. J. Phys. Chem. C 118:29278–86 [Google Scholar]
  125. Heiz U, Vayloyan A, Schumacher E. 125.  1997. A new cluster source for the generation of binary metal clusters. Rev. Sci. Instrum. 68:3718–22 [Google Scholar]
  126. Heiz U. 126.  1998. Physical and chemical properties of size-selected, supported clusters. Recent Research Developments in Physical Chemistry 2 Part II, ed. SG Pandalai 1029–86 Trivandrum, India: Transw. Res. Netw. [Google Scholar]
  127. Gilb S, Hartl K, Kartouzian A, Peter J, Heiz U. 127.  et al. 2007. Cavity ring-down spectroscopy of metallic gold nanoparticles. Eur. Phys. J. D 45:501–6 [Google Scholar]
  128. Kartouzian A, Thaemer M, Soini T, Peter J, Pitschi P. 128.  et al. 2008. Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum. J. Appl. Phys. 104:124313 [Google Scholar]
  129. Kartouzian A, Thaemer M, Heiz U. 129.  2010. Characterisation and cleaning of oxide support materials for cavity ring-down spectroscopy. Phys. Stat. Solidi B 247:1147–51 [Google Scholar]
  130. Lunskens T, Heister P, Thamer M, Walenta CA, Kartouzian A, Heiz U. 130.  2015. Plasmons in supported size-selected silver nanoclusters. Phys. Chem. Chem. Phys. 17:17541–44 [Google Scholar]
  131. Thaemer M, Kartouzian A, Heister P, Gerlach S, Tschurl M. 131.  et al. 2012. Linear and nonlinear laser spectroscopy of surface adsorbates with sub-monolayer sensitivity. J. Phys. Chem. C 116:8642–48 [Google Scholar]
  132. Fischer P, Hache F. 132.  2005. Nonlinear optical spectroscopy of chiral molecules. Chirality 17:421–37 [Google Scholar]
  133. Loge C, Bornschegl A, Boesl U. 133.  2009. Progress in circular dichroism laser mass spectrometry. Anal. Bioanal. Chem. 395:1631 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error