1932

Abstract

In the last decade, paper analytical devices (PADs) have evolved into sophisticated yet simple sensors with biological and environmental applications in the developed and developing world. The focus of this review is the technological improvements that have over the past five years increased the applicability of PADs to real-world problems. Specifically, this review reports on advances in sample processing, fluid flow control, signal amplification, and component integration. Throughout, we have sought to emphasize advances that retain the main virtues of PADs: low cost, portability, and simplicity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041605
2016-06-12
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041605.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041605&mimeType=html&fmt=ahah

Literature Cited

  1. Fridley GE, Le H, Yager P. 1.  2014. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86:136447–53 [Google Scholar]
  2. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. 2.  2013. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:1126–35 [Google Scholar]
  3. Martinez AW, Phillips ST, Nie Z, Cheng C-M, Carrilho E. 3.  et al. 2010. Programmable diagnostic devices made from paper and tape. Lab Chip 10:192499–504 [Google Scholar]
  4. Scida K, Cunningham JC, Renault C, Richards I, Crooks RM. 4.  2014. Simple, sensitive, and quantitative electrochemical detection method for paper analytical devices. Anal. Chem. 86:136501–7 [Google Scholar]
  5. Ge S, Liu W, Ge L, Yan M, Yan J. 5.  et al. 2013. In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay. Biosens. Bioelectron. 49:111–17 [Google Scholar]
  6. Li X, Scida K, Crooks RM. 6.  2015. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal. Chem. 87:179009–15 [Google Scholar]
  7. Cunningham JC, Scida K, Kogan MR, Wang B, Ellington AD, Crooks RM. 7.  2015. Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip 15:183707–15 [Google Scholar]
  8. Lewis GG, Robbins JS, Phillips ST. 8.  2013. Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal. Chem. 85:2110432–39 [Google Scholar]
  9. Li L, Xu J, Zheng X, Ma C, Song X. 9.  et al. 2014. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens. Bioelectron. 61:76–82 [Google Scholar]
  10. Wu Y, Xue P, Kang Y, Hui KM. 10.  2013. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal. Chem. 85:188661–68 [Google Scholar]
  11. Wu Y, Xue P, Hui KM, Kang Y. 11.  2014. A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 52:180–87 [Google Scholar]
  12. Fosdick SE, Anderson MJ, Renault C, DeGregory PR, Loussaert JA, Crooks RM. 12.  2014. Wire, mesh, and fiber electrodes for paper-based electroanalytical devices. Anal. Chem. 86:73659–66 [Google Scholar]
  13. Renault C, Anderson MJ, Crooks RM. 13.  2014. Electrochemistry in hollow-channel paper analytical devices. J. Am. Chem. Soc. 136:124616–23 [Google Scholar]
  14. Cunningham JC, Kogan MR, Tsai Y-J, Luo L, Richards I, Crooks RM. 14.  2015. Paper-based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchange. ACS Sens. 1:140–47 [Google Scholar]
  15. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W. 15.  2012. Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:183392–98 [Google Scholar]
  16. Yang X, Forouzan O, Brown TP, Shevkoplyas SS. 16.  2012. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:2274–80 [Google Scholar]
  17. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW. 17.  et al. 2012. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 84:62883–91 [Google Scholar]
  18. Nery E, Kubota L. 18.  2013. Sensing approaches on paper-based devices: a review. Anal. Bioanal. Chem. 405:247573–95 [Google Scholar]
  19. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 19.  2009. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:13–10 [Google Scholar]
  20. Jeong S-G, Kim J, Nam J-O, Song YS, Lee C-S. 20.  2013. Paper-based analytical device for quantitative urinalysis. Int. Neurourol. J. 17:4155–61 [Google Scholar]
  21. Then WL, Garnier G. 21.  2013. Paper diagnostics in biomedicine. Rev. Anal. Chem. 32:4269–94 [Google Scholar]
  22. Yetisen AK, Akram MS, Lowe CR. 22.  2013. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:122210–51 [Google Scholar]
  23. Chin CD, Linder V, Sia SK. 23.  2012. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:122118–34 [Google Scholar]
  24. Liana DD, Raguse B, Gooding JJ, Chow E. 24.  2012. Recent advances in paper-based sensors. Sensors 12:911505–26 [Google Scholar]
  25. Mace C, Deraney R. 25.  2014. Manufacturing prototypes for paper-based diagnostic devices. Microfluid. Nanofluid. 16:5801–9 [Google Scholar]
  26. Rozand C. 26.  2014. Paper-based analytical devices for point-of-care infectious disease testing. Eur. J. Clin. Microbiol. Infect. Dis. 33:2147–56 [Google Scholar]
  27. Li X, Ballerini DR, Shen W. 27.  2012. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:1011301 [Google Scholar]
  28. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. 28.  2015. Recent developments in paper-based microfluidic devices. Anal. Chem. 87:119–41 [Google Scholar]
  29. Maxwell EJ, Mazzeo AD, Whitesides GM. 29.  2013. Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull. 38:4309–14 [Google Scholar]
  30. Ahmed S, Bui M-PN, Abbas A. 30.  2016. Paper-based chemical and biological sensors: engineering aspects. Biosens. Bioelectron. 77:249–63 [Google Scholar]
  31. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. 31.  2007. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46:81318–20 [Google Scholar]
  32. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W. 32.  2013. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal. Chim. Acta 788:39–45 [Google Scholar]
  33. Lafleur L, Stevens D, McKenzie K, Ramachandran S, Spicar-Mihalic P. 33.  et al. 2012. Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards. Lab Chip 12:61119–27 [Google Scholar]
  34. Carvalhal RF, Simão Kfouri M, de Oliveira Piazetta MH, Gobbi AL, Kubota LT. 34.  2010. Electrochemical detection in a paper-based separation device. Anal. Chem. 82:31162–65 [Google Scholar]
  35. Li C-Z, Vandenberg K, Prabhulkar S, Zhu X, Schneper L. 35.  et al. 2011. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron. 26:114342–48 [Google Scholar]
  36. Li X, Tian J, Shen W. 36.  2010. Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal. Bioanal. Chem. 396:1495–501 [Google Scholar]
  37. Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D. 37.  et al. 2014. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 86:199554–62 [Google Scholar]
  38. Li X, Tian J, Shen W. 38.  2010. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:3649–59 [Google Scholar]
  39. Ratnarathorn N, Chailapakul O, Henry CS, Dungchai W. 39.  2012. Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta 99:552–57 [Google Scholar]
  40. Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS. 40.  2012. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 84:104474–80 [Google Scholar]
  41. Cate DM, Nanthasurasak P, Riwkulkajorn P, L'Orange C, Henry CS, Volckens J. 41.  2014. Rapid detection of transition metals in welding fumes using paper-based analytical devices. Ann. Occup. Hyg. 58:4413–23 [Google Scholar]
  42. Dungchai W, Chailapakul O, Henry CS. 42.  2010. Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal. Chim. Acta 674:2227–33 [Google Scholar]
  43. Sameenoi Y, Panymeesamer P, Supalakorn N, Koehler K, Chailapakul O. 43.  et al. 2012. Microfluidic paper-based analytical device for aerosol oxidative activity. Environ. Sci. Technol. 47:2932–40 [Google Scholar]
  44. Karita S, Kaneta T. 44.  2014. Acid-base titrations using microfluidic paper-based analytical devices. Anal. Chem. 86:2412108–14 [Google Scholar]
  45. Liu H, Xiang Y, Lu Y, Crooks RM. 45.  2012. Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew. Chem. Int. Ed. 51:286925–28 [Google Scholar]
  46. Schonhorn JE, Fernandes SC, Rajaratnam A, Deraney RN, Rolland JP, Mace CR. 46.  2014. A device architecture for three-dimensional, patterned paper immunoassays. Lab Chip 14:244653–58 [Google Scholar]
  47. Noh H, Phillips ST. 47.  2010. Fluidic timers for time-dependent, point-of-care assays on paper. Anal. Chem. 82:198071–78 [Google Scholar]
  48. Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Bohringer KF. 48.  2012. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12:1174–81 [Google Scholar]
  49. Jarujamrus P, Tian J, Li X, Siripinyanond A, Shiowatana J, Shen W. 49.  2012. Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:92205–10 [Google Scholar]
  50. Renault C, Li X, Fosdick SE, Crooks RM. 50.  2013. Hollow-channel paper analytical devices. Anal. Chem. 85:167976–79 [Google Scholar]
  51. Wang Y, Ge L, Wang P, Yan M, Ge S. 51.  et al. 2013. Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip 13:193945–55 [Google Scholar]
  52. Noh H, Phillips ST. 52.  2010. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal. Chem. 82:104181–87 [Google Scholar]
  53. Toley BJ, Wang JA, Gupta M, Buser JR, Lafleur LK. 53.  et al. 2015. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15:61432–44 [Google Scholar]
  54. Liu H, Li X, Crooks RM. 54.  2013. Paper-based slippad for high-throughput chemical sensing. Anal. Chem. 85:94263–67 [Google Scholar]
  55. Connelly JT, Rolland JP, Whitesides GM. 55.  2015. “Paper machine” for molecular diagnostics. Anal. Chem. 87:157595–7601 [Google Scholar]
  56. Liu H, Crooks RM. 56.  2011. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133:4417564–66 [Google Scholar]
  57. Martinez AW, Phillips ST, Whitesides GM. 57.  2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. PNAS 105:5019606–11 [Google Scholar]
  58. Müller RH, Clegg DL. 58.  1949. Automatic paper chromatography. Anal. Chem. 21:91123–25 [Google Scholar]
  59. Cuartero M, Crespo GA, Bakker E. 59.  2015. Paper-based thin-layer coulometric sensor for halide determination. Anal. Chem. 87:31981–90 [Google Scholar]
  60. Wang P, Ge L, Yan M, Song X, Ge S, Yu J. 60.  2012. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron. 32:1238–43 [Google Scholar]
  61. Ge S, Ge L, Yan M, Song X, Yu J, Huang J. 61.  2012. A disposable paper-based electrochemical sensor with an addressable electrode array for cancer screening. Chem. Commun. 48:759397–99 [Google Scholar]
  62. Lu J, Ge S, Ge L, Yan M, Yu J. 62.  2012. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim. Acta 80:334–41 [Google Scholar]
  63. Tseng S-C, Yu C-C, Wan D, Chen H-L, Wang LA. 63.  et al. 2012. Eco-friendly plasmonic sensors: using the photothermal effect to prepare metal nanoparticle-containing test papers for highly sensitive colorimetric detection. Anal. Chem. 84:115140–45 [Google Scholar]
  64. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. 64.  2012. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84:62900–7 [Google Scholar]
  65. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S. 65.  et al. 2012. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci. Transl. Med. 4:152152ra129 [Google Scholar]
  66. Xu M, Bunes BR, Zang L. 66.  2011. Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl. Mater. Interfaces 3:3642–47 [Google Scholar]
  67. Eaidkong T, Mungkarndee R, Phollookin C, Tumcharern G, Sukwattanasinitt M, Wacharasindhu S. 67.  2012. Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. J. Mater. Chem. 22:135970–77 [Google Scholar]
  68. Maruo YY, Akaoka K, Nakamura J. 68.  2010. Development and performance evaluation of ozone detection paper using azo dye orange I: effect of pH. Sens. Actuators B 143:2487–93 [Google Scholar]
  69. Veigas B, Jacob JM, Costa MN, Santos DS, Viveiros M. 69.  et al. 2012. Gold on paper-paper platform for Au-nanoprobe TB detection. Lab Chip 12:224802–8 [Google Scholar]
  70. Bhakta SA, Borba R, Taba M Jr., Garcia CD, Carrilho E. 70.  2014. Determination of nitrite in saliva using microfluidic paper-based analytical devices. Anal. Chim. Acta 809:117–22 [Google Scholar]
  71. Kim S, Jung E, Kim MJ, Pyo A, Palani T. 71.  et al. 2012. A simple, fast, and easy assay for transition metal-catalyzed coupling reactions using a paper-based colorimetric iodide sensor. Chem. Commun. 48:708751–53 [Google Scholar]
  72. Klasner S, Price A, Hoeman K, Wilson R, Bell K, Culbertson C. 72.  2010. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal. Bioanal. Chem. 397:51821–29 [Google Scholar]
  73. Rattanarat P, Dungchai W, Cate DM, Siangproh W, Volckens J. 73.  et al. 2013. A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal. Chim. Acta 800:50–55 [Google Scholar]
  74. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS. 74.  2013. Simple, distance-based measurement for paper analytical devices. Lab Chip 13:122397–404 [Google Scholar]
  75. Apilux A, Siangproh W, Praphairaksit N, Chailapakul O. 75.  2012. Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates. Talanta 97:388–94 [Google Scholar]
  76. Das P, Ghosh A, Bhatt H, Das A. 76.  2012. A highly selective and dual responsive test paper sensor of Hg2+/Cr3+ for naked eye detection in neutral water. RSC Adv. 2:93714–21 [Google Scholar]
  77. Hossain SMZ, Brennan JD. 77.  2011. β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal. Chem. 83:228772–78 [Google Scholar]
  78. Zhang Y, Li X, Li H, Song M, Feng L, Guan Y. 78.  2014. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions. Analyst 139:194887–93 [Google Scholar]
  79. Chen G-H, Chen W-Y, Yen Y-C, Wang C-W, Chang H-T, Chen C-F. 79.  2014. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86:146843–49 [Google Scholar]
  80. Cate DM, Noblitt SD, Volckens J, Henry CS. 80.  2015. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:132808–18 [Google Scholar]
  81. Evans E, Moreira Gabriel EF, Benavidez TE, Tomazelli Coltro WK, Garcia CD. 81.  2014. Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139:215560–67 [Google Scholar]
  82. Cha R, Wang D, He Z, Ni Y. 82.  2012. Development of cellulose paper testing strips for quick measurement of glucose using chromogen agent. Carbohydr. Polym. 88:41414–19 [Google Scholar]
  83. Salles MO, Meloni GN, de Araujo WR, Paixao TRLC. 83.  2014. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal. Methods 6:72047–52 [Google Scholar]
  84. Pourreza N, Golmohammadi H. 84.  2015. Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe. Talanta 131:136–41 [Google Scholar]
  85. Wang W, Wu W-Y, Wang W, Zhu J-J. 85.  2010. Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. J. Chromatogr. A1217243896–99 [Google Scholar]
  86. Zhou M, Yang M, Zhou F. 86.  2014. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens. Bioelectron. 55:39–43 [Google Scholar]
  87. Wu X, Kuang H, Hao C, Xing C, Wang L, Xu C. 87.  2012. Paper supported immunosensor for detection of antibiotics. Biosens. Bioelectron. 33:1309–12 [Google Scholar]
  88. Yun S, Kim J. 88.  2010. Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor. Sens. Actuators B 150:1308–13 [Google Scholar]
  89. Mirica KA, Weis JG, Schnorr JM, Esser B, Swager TM. 89.  2012. Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51:4310740–45 [Google Scholar]
  90. Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O. 90.  2010. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 82:51727–32 [Google Scholar]
  91. Lei KF, Lee K-F, Yang S-I. 91.  2012. Fabrication of carbon nanotube-based pH sensor for paper-based microfluidics. Microelectron. Eng. 100:1–5 [Google Scholar]
  92. Jagadeesan KK, Kumar S, Sumana G. 92.  2012. Application of conducting paper for selective detection of troponin. Electrochem. Commun. 20:71–74 [Google Scholar]
  93. Liu X, Mwangi M, Li X, O'Brien M, Whitesides GM. 93.  2011. Paper-based piezoresistive MEMS sensors. Lab Chip 11:132189–96 [Google Scholar]
  94. Gimenez AJ, Yaánñez-Limoón JM, Seminario JM. 94.  2011. Paper-based photoconductive infrared sensor. J. Phys. Chem. C 115:3818829–34 [Google Scholar]
  95. Gimenez AJ, Yaánñez-Limoón JM, Seminario JM. 95.  2010. ZnO-paper based photoconductive UV sensor. J. Phys. Chem. C 115:1282–87 [Google Scholar]
  96. Gullapalli H, Vemuru VSM, Kumar A, Botello-Mendez A, Vajtai R. 96.  et al. 2010. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6:151641–46 [Google Scholar]
  97. Mahadeva SK, Yun S, Kim J. 97.  2011. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite. Sens. Actuators A 165:2194–99 [Google Scholar]
  98. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P. 98.  2012. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84:104574–79 [Google Scholar]
  99. Jin S-Q, Guo S-M, Zuo P, Ye B-C. 99.  2015. A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification. Biosens. Bioelectron. 63:379–83 [Google Scholar]
  100. Larsson PA, G Puttaswamaiah S, Ly C, Vanerek A, Hall JC, Drolet F. 100.  2013. Filtration, adsorption and immunodetection of virus using polyelectrolyte multilayer-modified paper. Colloids Surf. B 101:205–9 [Google Scholar]
  101. Rattanarat P, Dungchai W, Cate D, Volckens J, Chailapakul O, Henry CS. 101.  2014. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal. Chem. 86:73555–62 [Google Scholar]
  102. Zhang L, Wang Y, Ma C, Wang P, Yan M. 102.  2015. Self-powered sensor for Hg2+ detection based on hollow-channel paper analytical devices. RSC Adv. 5:3124479–85 [Google Scholar]
  103. Jayawardane BM, McKelvie ID, Kolev SD. 103.  2012. A paper-based device for measurement of reactive phosphate in water. Talanta 100:454–60 [Google Scholar]
  104. Sechi D, Greer B, Johnson J, Hashemi N. 104.  2013. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85:2210733–37 [Google Scholar]
  105. Chen X, Chen J, Wang F, Xiang X, Luo M. 105.  et al. 2012. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens. Bioelectron. 35:1363–68 [Google Scholar]
  106. Mu X, Xin X, Fan C, Li X, Tian X. 106.  et al. 2015. A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem. Commun. 51:296365–68 [Google Scholar]
  107. Cunningham JC, Brenes NJ, Crooks RM. 107.  2014. Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal. Chem. 86:126166–70 [Google Scholar]
  108. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A. 108.  et al. 2010. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:4477–83 [Google Scholar]
  109. Santhiago M, Henry CS, Kubota LT. 109.  2014. Low cost, simple three dimensional electrochemical paper-based analytical device for determination of p-nitrophenol. Electrochim. Acta 130:771–77 [Google Scholar]
  110. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E. 110.  et al. 2012. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12:1153–58 [Google Scholar]
  111. Novell M, Parrilla M, Crespo GA, Rius FX, Andrade FJ. 111.  2012. Paper-based ion-selective potentiometric sensors. Anal. Chem. 84:114695–702 [Google Scholar]
  112. Lan W-J, Zou XU, Hamedi MM, Hu J, Parolo C. 112.  et al. 2014. Paper-based potentiometric ion sensing. Anal. Chem. 86:199548–53 [Google Scholar]
  113. Zang D, Ge L, Yan M, Song X, Yu J. 113.  2012. Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem. Commun. 48:394683–85 [Google Scholar]
  114. Zhang L, Yang W, Yang Y, Liu H, Gu Z. 114.  2015. Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 140:217399–406 [Google Scholar]
  115. Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G. 115.  2010. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B 145:1488–94 [Google Scholar]
  116. Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST. 116.  et al. 2010. Paper-based ELISA. Angew. Chem. Int. Ed. 49:284771–74 [Google Scholar]
  117. Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J. 117.  2011. Paper-based planar reaction arrays for printed diagnostics. Sens. Actuators B 160:11404–12 [Google Scholar]
  118. Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N. 118.  et al. 2012. Portable self-contained cultures for phage and bacteria made of paper and tape. Lab Chip 12:214269–78 [Google Scholar]
  119. Mensah ST, Gonzalez Y, Calvo-Marzal P, Chumbimuni-Torres KY. 119.  2014. Nanomolar detection limits of Cd2+, Ag+, and K+ using paper-strip ion-selective electrodes. Anal. Chem. 86:157269–73 [Google Scholar]
  120. Godino N, Gorkin R, Bourke K, Ducree J. 120.  2012. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip 12:183281–84 [Google Scholar]
  121. Dungchai W, Chailapakul O, Henry CS. 121.  2009. Electrochemical detection for paper-based microfluidics. Anal. Chem. 81:145821–26 [Google Scholar]
  122. Santhiago M, Wydallis JB, Kubota LT, Henry CS. 122.  2013. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal. Chem. 85:105233–39 [Google Scholar]
  123. Rattanarat P, Dungchai W, Siangproh W, Chailapakul O, Henry CS. 123.  2012. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal. Chim. Acta 744:1–7 [Google Scholar]
  124. Delaney JL, Hogan CF, Tian J, Shen W. 124.  2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83:41300–1306 [Google Scholar]
  125. Tan SN, Ge L, Wang W. 125.  2010. Paper disk on screen printed electrode for one-step sensing with an internal standard. Anal. Chem. 82:218844–47 [Google Scholar]
  126. Shi J, Tang F, Xing H, Zheng H, Lianhua B, Wei W. 126.  2012. Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J. Braz. Chem. Soc. 23:1124–30 [Google Scholar]
  127. Gribble CM, Matthews GP, Laudone GM, Turner A, Ridgway CJ. 127.  et al. 2011. Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters. Chem. Eng. Sci. 66:163701–9 [Google Scholar]
  128. Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RMD. 128.  et al. 2013. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13:152922–30 [Google Scholar]
  129. Liu W, Chen D, Du W, Nichols KP, Ismagilov RF. 129.  2010. Slipchip for immunoassays in nanoliter volumes. Anal. Chem. 82:83276–82 [Google Scholar]
  130. Lutz BR, Trinh P, Ball C, Fu E, Yager P. 130.  2011. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:244274–78 [Google Scholar]
  131. Fu E, Kauffman P, Lutz B, Yager P. 131.  2010. Chemical signal amplification in two-dimensional paper networks. Sens. Actuators B 149:1325–28 [Google Scholar]
  132. Fu E, Lutz B, Kauffman P, Yager P. 132.  2010. Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:7918–20 [Google Scholar]
  133. Toley BJ, McKenzie B, Liang T, Buser JR, Yager P, Fu E. 133.  2013. Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85:2311545–52 [Google Scholar]
  134. Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. 134.  2013. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:142840–47 [Google Scholar]
  135. Chen H, Cogswell J, Anagnostopoulos C, Faghri M. 135.  2012. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip 12:162909–13 [Google Scholar]
  136. Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P. 136.  2010. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:202659–65 [Google Scholar]
  137. Rezk AR, Qi A, Friend JR, Li WH, Yeo LY. 137.  2012. Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab Chip 12:4773–79 [Google Scholar]
  138. Chou J, Wong J, Christodoulides N, Floriano P, Sanchez X, McDevitt J. 138.  2012. Porous bead-based diagnostic platforms: bridging the gaps in healthcare. Sensors 12:1115467 [Google Scholar]
  139. Dungchai W, Sameenoi Y, Chailapakul O, Volckens J, Henry CS. 139.  2013. Determination of aerosol oxidative activity using silver nanoparticle aggregation on paper-based analytical devices. Analyst 138:226766–73 [Google Scholar]
  140. Ornatska M, Sharpe E, Andreescu D, Andreescu S. 140.  2011. Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal. Chem. 83:114273–80 [Google Scholar]
  141. Luckham RE, Brennan JD. 141.  2010. Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol-gel/enzyme/gold nanoparticle composites. Analyst 135:82028–35 [Google Scholar]
  142. Sun G, Liu H, Zhang Y, Yu J, Yan M. 142.  et al. 2015. Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay for prostate specific antigen using porous zinc oxide spheres–silver nanoparticles nanocomposites as labels. New J. Chem. 39:6062–67 [Google Scholar]
  143. Li L, Kong Q, Zhang Y, Dong C, Ge S, Yu J. 143.  2015. A 3D electrochemical immunodevice based on a porous Pt-paper electrode and metal ion functionalized flower-like Au nanoparticles. J. Mater. Chem. B 3:142764–69 [Google Scholar]
  144. Mostafalu P, Sonkusale S. 144.  2015. A high-density nanowire electrode on paper for biomedical applications. RSC Adv. 5:128680–87 [Google Scholar]
  145. Savolainen A, Zhang Y, Rochefort D, Holopainen U, Erho T. 145.  et al. 2011. Printing of polymer microcapsules for enzyme immobilization on paper substrate. Biomacromolecules 12:62008–15 [Google Scholar]
  146. Guerrero MP, Bertrand F, Rochefort D. 146.  2011. Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules. Chem. Eng. Sci. 66:215313–20 [Google Scholar]
  147. Shiroma LY, Santhiago M, Gobbi AL, Kubota LT. 147.  2012. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Anal. Chim. Acta. 725:44–50 [Google Scholar]
  148. Luo L, Li X, Crooks RM. 148.  2014. Low-voltage origami-paper-based electrophoretic device for rapid protein separation. Anal. Chem. 86:2412390–97 [Google Scholar]
  149. Ge L, Wang S, Ge S, Yu J, Yan M. 149.  et al. 2014. Electrophoretic separation in a microfluidic paper-based analytical device with an on-column wireless electrogenerated chemiluminescence detector. Chem. Commun. 50:435699–702 [Google Scholar]
  150. Tian J, Kannangara D, Li X, Shen W. 150.  2010. Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency. Lab Chip 10:172258–64 [Google Scholar]
  151. Gong MM, Zhang P, MacDonald BD, Sinton D. 151.  2014. Nanoporous membranes enable concentration and transport in fully wet paper-based assays. Anal. Chem. 86:168090–97 [Google Scholar]
  152. Moghadam BY, Connelly KT, Posner JD. 152.  2014. Isotachophoretic preconcentration on paper-based microfluidic devices. Anal. Chem. 86:125829–37 [Google Scholar]
  153. Moghadam BY, Connelly KT, Posner JD. 153.  2015. Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis. Anal. Chem. 87:21009–17 [Google Scholar]
  154. Rosenfeld T, Bercovici M. 154.  2014. 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 14:234465–74 [Google Scholar]
  155. Yuan J, Gaponik N, Eychmüller A. 155.  2012. Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal. Chem. 84:115047–52 [Google Scholar]
  156. Ge L, Wang P, Ge S, Li N, Yu J. 156.  et al. 2013. Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source. Anal. Chem. 85:83961–70 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041605
Loading
/content/journals/10.1146/annurev-anchem-071015-041605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error