From a molecular perspective, enactors of function in biology are intact proteins that can be variably modified at the genetic, transcriptional, or post-translational level. Over the past 30 years, mass spectrometry (MS) has become a powerful method for the analysis of proteomes. Prevailing bottom-up proteomics operates at the level of the peptide, leading to issues with protein inference, connectivity, and incomplete sequence/modification information. Top-down proteomics (TDP), alternatively, applies MS at the proteoform level to analyze intact proteins with diverse sources of intramolecular complexity preserved during analysis. Fortunately, advances in prefractionation workflows, MS instrumentation, and dissociation methods for whole-protein ions have helped TDP emerge as an accessible and potentially disruptive modality with increasingly translational value. In this review, we discuss technical and conceptual advances in TDP, along with the growing power of proteoform-resolved measurements in clinical and translational research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. Smith L, Kelleher N, Consort. Top Down Proteom 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87 [Google Scholar]
  2. Chait B. 2.  2006. Mass spectrometry: bottom-up or top-down. ? Science 314:65–66 [Google Scholar]
  3. Nesvizhskii A, Aebersold R. 3.  2005. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteom. 4:1419–40 [Google Scholar]
  4. Gross JH. 4.  2004. Mass Spectrometry: A Textbook New York: Springer
  5. Walther T, Mann M. 5.  2010. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 190:491–500 [Google Scholar]
  6. Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. 6.  2011. Fourier transform mass spectrometry. Mol. Cell. Proteom. 10:M111.009431 [Google Scholar]
  7. Zhang Y, Fonslow B, Shan B, Baek M, Yates JR 3rd. 7.  2013. Protein analysis by shotgun/bottom-down proteomics. Chem. Rev. 113:2343–94 [Google Scholar]
  8. Fenn J, Mann M, Meng C, Wong S, Whitehorse C. 8.  1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 [Google Scholar]
  9. Kelleher N, Lin H, Valaskovic G, Aaserud D, Fridriksson E, McLafferty F. 9.  1999. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 121:806–12 [Google Scholar]
  10. Guner H, Close P, Cai W, Zhang H, Peng Y. 10.  et al. 2014. MASH suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J. Am. Soc. Mass Spectrom. 25:464–70 [Google Scholar]
  11. Fellers R, Greer J, Early B, Yu X, LeDuc R. 11.  et al. 2015. ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics 15:1235–38 [Google Scholar]
  12. McLafferty F. 12.  2011. A century of progress in molecular mass spectrometry. Annu. Rev. Anal. Chem. 4:1–22 [Google Scholar]
  13. Henry K, Williams E, Wang B, McLafferty F, Shabanowitz J, Hunt D. 13.  1989. Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms tumor and in familial adrenocortical carcinoma. PNAS 86:3247–51 [Google Scholar]
  14. McLafferty F. 14.  1994. High-resolution tandem FT mass spectrometry above 10 kDa. Acc. Chem. Res. 27:379–86 [Google Scholar]
  15. Kelleher N, Costello C, Begley T, McLafferty F. 15.  1995. Thiaminase I (42 kDa) heterogeneity, sequence refinement, and active site location from high-resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6:981–84 [Google Scholar]
  16. Compton P, Zamdborg L, Thomas P, Kelleher N. 16.  2011. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83:6868–74 [Google Scholar]
  17. Zhou H, Ning Z, Starr A, Abu-Farha M, Figeys D. 17.  2012. Advancements in top-down proteomics. Anal. Chem. 84:720–34 [Google Scholar]
  18. Armirotti A, Damonte G. 18.  2010. Achievements and perspectives of top-down proteomics. Proteomics 10:3566–76 [Google Scholar]
  19. Ahlf D, Thomas P, Kelleher N. 19.  2013. Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr. Opin. Chem. Biol. 17:787–94 [Google Scholar]
  20. Siuti N, Kelleher N. 20.  2007. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 4:817–21 [Google Scholar]
  21. Tran J, Doucette A. 21.  2008. Rapid and effective focusing in a carrier ampholyte solution isoelectric focusing system: a proteome prefractionation tool. J. Proteome Res. 7:1761–66 [Google Scholar]
  22. Kelleher N, Taylor S, Grannis D, Kinsland C, Chiu H. 22.  et al. 1998. Efficient sequence analysis of the six gene products (7–74 kDa) from the Escherichia coli thiamine biosynthetic operon by tandem high-resolution mass spectrometry. Protein Sci. 7:1796–801 [Google Scholar]
  23. Lee S, Berger S, Martinovic S, Pasa-Tolic L, Anderson G. 23.  et al. 2002. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. PNAS 99:5942–47 [Google Scholar]
  24. Shen Y, Tolic N, Zhao R, Pasa-Tolic L, Li L. 24.  et al. 2001. High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry. Anal. Chem. 73:3011–21 [Google Scholar]
  25. Martinovic S, Berger S, Pasa-Tolic L, Smith R. 25.  2000. Separation and detection of intact noncovalent protein complexes from mixtures by on-line capillary isoelectric focusing-mass spectrometry. Anal. Chem. 72:5356–60 [Google Scholar]
  26. Meng F, Cargile B, Patrie S, Johnson J, McLoughlin S, Kelleher N. 26.  2002. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem. 74:2923–29 [Google Scholar]
  27. Simpson D, Ahn S, Pasa-Tolic L, Bogdanov B, Mottaz H. 27.  et al. 2006. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling. Electrophoresis 27:2722–33 [Google Scholar]
  28. Ouvry-Patat S, Torres M, Quek H, Gelfand C, O'Mullan P. 28.  et al. 2008. Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 8:2798–808 [Google Scholar]
  29. Smith R, Wahl J, Goodlett D, Hofstadler S. 29.  1993. Capillary electrophoresis/mass spectrometry. Anal. Chem. 65:574A–84A [Google Scholar]
  30. Valaskovic G, Kelleher N, McLafferty F. 30.  1996. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science 273:1199–202 [Google Scholar]
  31. Li Y, Compton P, Tran J, Ntai I, Kelleher N. 31.  2014. Optimizing capillary electrophoresis for top-down proteomics of 30–80 kDa proteins. Proteomics 14:1158–64 [Google Scholar]
  32. Zhao Y, Riley N, Sun L, Hebert A, Yan X. 32.  et al. 2015. Coupling capillary zone electrophoresis with electron transfer dissociation and activated ion electron transfer dissociation for top-down proteomics. Anal. Chem. 87:5422–29 [Google Scholar]
  33. Tran J, Doucette A. 33.  2008. Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal. Chem. 80:1568–73 [Google Scholar]
  34. Tran J, Doucette A. 34.  2009. Multiplexed size separation of intact proteins in solution phase for mass spectrometry. Anal. Chem. 81:6201–9 [Google Scholar]
  35. Catherman A, Durbin K, Ahlf D, Early B, Fellers R. 35.  et al. 2013. Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol. Cell. Proteom. 12:3465–73 [Google Scholar]
  36. Tran JC, Zamdborg L, Ahlf D, Lee J, Catherman A. 36.  et al. 2011. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254–58 [Google Scholar]
  37. Ahlf D, Compton P, Tran J, Early B, Thomas P, Kelleher N. 37.  2012. Evaluation of the compact high-field Orbitrap for top-down proteomics of human cells. J. Proteome Res. 11:4308–14 [Google Scholar]
  38. Catherman A, Li M, Tran J, Durbin K, Compton P. 38.  et al. 2013. Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal. Chem. 85:1880–88 [Google Scholar]
  39. Ntai I, Kim K, Fellers R, Skinner O, Smith AD IV. 39.  et al. 2014. Applying label-free quantitation to top down proteomics. Anal. Chem. 86:4961–68 [Google Scholar]
  40. Kim K, Compton P, Tran J, Keleher N. 40.  2015. Online matrix removal platform for coupling gel-based separations to whole protein electrospray ionization mass spectrometry. J. Proteome Res. 14:2199–206 [Google Scholar]
  41. Zinnel NF, Pai P-J, Russell DH. 41.  2012. Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: Increased dynamic range affords increased sequence coverage. Anal. Chem. 84:3390–97 [Google Scholar]
  42. Xiu L, Valeja S, Alpert A, Jin S, Ge Y. 42.  2014. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics. Anal. Chem. 86:7899–906 [Google Scholar]
  43. Valeja S, Xiu L, Gregorich Z, Guner H, Jin S, Ge Y. 43.  2015. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics. Anal. Chem. 87:5363–71 [Google Scholar]
  44. Denisov E, Damoc E, Lange O, Makarov A. 44.  2012. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int. J. Mass Spectrom. 325–2780–85
  45. Patrie S, Charlebois J, Whipple D, Kelleher N, Hendrickson C. 45.  et al. 2004. Construction of a hybrid quadrupole/Fourier transform ion cyclotron resonance mass spectrometer for versatile MS/MS above 10 kDa. J. Am. Soc. Mass Spectrom. 15:1099–108 [Google Scholar]
  46. Tolmachev A, Robinson E, Wu S, Pasa-Tolic L, Smith R. 46.  2009. FT-ICR MS optimization for the analysis of intact proteins. Int. J. Mass Spectrom. 281:32–38 [Google Scholar]
  47. Hu Q, Noll R, Li H, Makarov A, Hardman M, Cooks R. 47.  2005. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40:430–43 [Google Scholar]
  48. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O. 48.  et al. 2006. Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78:2113–20 [Google Scholar]
  49. Michalski A, Damoc E, Hauschild J, Lange O, Wieghaus A. 49.  et al. 2011. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteom. 10:M111.011015 [Google Scholar]
  50. Macek B, Waanders L, Olsen J, Mann M. 50.  2006. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-Orbitrap mass spectrometer. Mol. Cell. Proteom. 5:949–58 [Google Scholar]
  51. Boyne M II, Pesavento J, Mizzen C, Kelleher N. 51.  2006. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res. 5:248–53 [Google Scholar]
  52. Thomas C, Kelleher N, Mizzen C. 52.  2006. Mass spectrometric characterization of human histone H3: a bird's eye view. J. Proteome Res. 5:240–47 [Google Scholar]
  53. Siuti N, Roth MJ, Mizzen CA, Kelleher NL, Pesavento JJ. 53.  2006. Gene-specific characterization of human histone H2B by electron capture dissociation. J. Proteome Res. 5:233–39 [Google Scholar]
  54. Wynne C, Fenselau C, Demirev P, Edewards N. 54.  2009. Top-down identification of protein biomarkers in bacteria with unsequenced genomes. Anal. Chem. 81:9633–42 [Google Scholar]
  55. Wynne C, Edwards N, Fenselau C. 55.  2010. Phyloproteomic classification of unsequenced organisms by top-down identification of bacterial proteins using capLC-MS/MS on an Orbitrap. Proteomics 10:3631–43 [Google Scholar]
  56. Fornelli L, Parra J, Hartmer R, Stoermer C, Lubeck M, Tsybin Y. 56.  2013. Top-down analysis of 30–80 kDa proteins by electron transfer dissociation time-of-flight mass spectrometry. Anal. Bioanal. Chem. 405:8505–14 [Google Scholar]
  57. Chamot-Rooke J, Mikaty G, Malosse C, Soyer M, Dumont A. 57.  et al. 2011. Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. Science 331:778–82 [Google Scholar]
  58. Zhurov K, Fornelli L, Wodrich M, Laskay U, Tsybin Y. 58.  2012. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42:5014–30 [Google Scholar]
  59. McAlister G, Phanstiel D, Good D, Berggren W, Coon J. 59.  2007. Implementation of electron-transfer dissociation on a hybrid linear ion trap–Orbitrap mass spectrometer. Anal. Chem. 79:3525–34 [Google Scholar]
  60. Fornelli L, Damoc E, Thomas P, Kelleher N, Aizikov K. 60.  et al. 2012. Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation Orbitrap FTMS. Mol. Cell. Proteom. 11:1758–67 [Google Scholar]
  61. Mao Y, Valeja S, Rouse J, Hendrickson C, Marshall A. 61.  2013. Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation–Fourier transform ion cyclotron resonance–mass spectrometry. Anal. Chem. 85:4239–46 [Google Scholar]
  62. Ge Y, Rybakova I, Xu Q, Moss R. 62.  2009. Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. PNAS 106:12658–63 [Google Scholar]
  63. Riley N, Westphall M, Coon J. 63.  2015. Activated ion electron transfer dissociation for improved fragmentation of intact proteins. Anal. Chem. 87:7109–16 [Google Scholar]
  64. Cannon J, Cammarata M, Robotham S, Cotham V, Shaw J. 64.  et al. 2014. Ultraviolet photodissociation for characterization of whole proteins on a chromatographic time scale. Anal. Chem. 86:2185–92 [Google Scholar]
  65. Warnke S, von Helden G, Pagel K. 65.  2015. Analyzing the higher order structure of proteins with conformer-selective ultraviolet photodissociation. Proteomics 15:2804–12 [Google Scholar]
  66. Dang X, Young N. 66.  2014. Ultraviolet photodissociation enhances top-down mass spectrometry as demonstrated on green fluorescent protein variants. Proteomics 14:1128–29 [Google Scholar]
  67. Shaw J, Li W, Holden D, Zhang Y, Griep-Raming J. 67.  et al. 2013. Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J. Am. Chem. Soc. 135:12646–51 [Google Scholar]
  68. Senko M, Remes P, Canterbury J, Mathur R, Song Q. 68.  et al. 2013. Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal. Chem. 85:11710–14 [Google Scholar]
  69. Brunner A, Lossl P, Liu F, Huguet R, Mullen C. 69.  et al. 2015. Benchmarking multiple fragmentation methods on an Orbitrap fusion for top-down phospho-proteoform characterization. Anal. Chem. 87:4152–58 [Google Scholar]
  70. Zheng Y, Fornelli L, Compton P, Sharma S, Canterbury J. 70.  et al. 2016. Unabridged analysis of human histone H3 by differential top-down mass spectrometry reveals hypermethylated proteoforms from MMSET/NSD2 overexpression. Mol. Cell. Proteom. 15:776–90 [Google Scholar]
  71. Levy M, Gucinski A, Boyne M II. 71.  2015. Primary sequence confirmation of a protein therapeutic using top down MS/MS and MS3. Anal. Chem. 87:6995–99 [Google Scholar]
  72. Coelho Graça D, Hartmer R, Jabs W, Beris P, Clerici L. 72.  et al. 2015. Identification of hemoglobin variants by top-down mass spectrometry using selected diagnostic product ions. Anal. Bioanal. Chem. 407:2837–45 [Google Scholar]
  73. Acosta-Martin AE, Coelho Graça D, Antinori P, Clerici L, Hartmer R. 73.  et al. 2013. Quantitative mass spectrometry analysis of intact hemoglobin a2 by precursor ion isolation and detection. Anal. Chem. 85:7971–75 [Google Scholar]
  74. Shevchenko A, Wilm M, Vorm O, Mann M. 74.  1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850–58 [Google Scholar]
  75. Washburn MP, Wolters D, Yates JR 3rd. 75.  2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242–47 [Google Scholar]
  76. Wisniewski JR, Zougman A, Nagaraj N, Mann M. 76.  2009. Universal sample preparation method for proteome analysis. Nat. Methods 6:359–62 [Google Scholar]
  77. Bunger M, Cargile B, Ngunjiri A, Bundy J, Stephenson JL Jr. 77.  2008. Automated proteomics of E. coli via top-down electron-transfer dissociation mass spectrometry. Anal. Chem. 80:1459–67 [Google Scholar]
  78. Ferguson J, Wenger C, Metcalf W, Kelleher N. 78.  2009. Top-down proteomics reveals novel protein forms expressed in Methanosarcina acetivorans. J. Am. Soc. Mass Spectrom. 20:1743–50 [Google Scholar]
  79. Meng F, Du Y, Miller L, Patrie S, Robinson D, Kelleher N. 79.  2004. Molecular-level description of proteins from Saccharomyces cerevisiae using quadrupole FT hybrid mass spectrometry for top down proteomics. Anal. Chem. 76:2852–58 [Google Scholar]
  80. Kellie JF, Catherman AD, Durbin KR, Tran JC, Tipton JD. 80.  et al. 2011. Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry. Anal. Chem. 84209–15
  81. Roth M, Parks B, Ferguson J, Boyne M II, Kelleher N. 81.  2008. “Proteotyping”: population proteomics of human leukocytes using top down mass spectrometry. Anal. Chem. 80:2857–66 [Google Scholar]
  82. Pesavento J, Mizzen C, Kelleher N. 82.  2006. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal. Chem. 78:4271–80 [Google Scholar]
  83. Zabrouskov V, Ge Y, Schwartz J, Walker J. 83.  2008. Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry. Mol. Cell. Proteom. 7:1838–49 [Google Scholar]
  84. Ayaz-Guner S, Zhang J, Li L, Walker J, Ge Y. 84.  2009. In vivo phosphorylation site mapping in mouse cardiac troponin I by high-resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Biochemstry 48:8161–70 [Google Scholar]
  85. Dong X, Sumandea C, Chen Y, Garcia-Cazarin M, Zhang J. 85.  et al. 2012. Augmented phosphorylation of cardiac troponin I in hypertensive heart failure. J. Biol. Chem. 287:848–57 [Google Scholar]
  86. Zhang J, Dong X, Hacker T, Ge Y. 86.  2010. Deciphering modifications in swine cardiac troponin I by top-down high-resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 21:940–48 [Google Scholar]
  87. Xu F, Xu Q, Dong X, Guy M, Guner H. 87.  et al. 2011. Top-down high-resolution electron capture dissociation mass spectrometry for comprehensive characterization of post-translational modifications in Rhesus monkey cardiac troponin I. Int. J. Mass Spectrom. 305:95–102 [Google Scholar]
  88. Du Y, Parks B, Sohn S, Kwast K, Kelleher N. 88.  2006. Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry. Anal. Chem. 78:686–94 [Google Scholar]
  89. Parks B, Jiang L, Thomas P, Wenger C, Roth M. 89.  et al. 2007. Top-down proteomics on a chromatographic time scale using linear ion trap Fourier transform hybrid mass spectrometers. Anal. Chem. 79:7984–91 [Google Scholar]
  90. Collier T, Hawkridge A, Georgianna D, Payne G, Muddiman D. 90.  2008. Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer. Anal. Chem. 80:4994–5001 [Google Scholar]
  91. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H. 91.  et al. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1:376–86 [Google Scholar]
  92. Collier T, Sarkar P, Rao B, Muddiman D. 92.  2010. Quantitative top-down proteomics of SILAC labeled human embryonic stem cells. J. Am. Soc. Mass Spectrom. 21:879–89 [Google Scholar]
  93. Thompson A, Schafer J, Kuhn K, Kiele S, Schwarz J. 93.  et al. 2003. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75:1895–904 [Google Scholar]
  94. Hung C, Tholey A. 94.  2012. Tandem mass tag protein labeling for top-down identification and quantification. Anal. Chem. 84:161–70 [Google Scholar]
  95. Wiener M, Sachs J, Deyanova E, Yates N. 95.  2004. Differential mass spectrometry: a label-free LC–MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76:6085–96 [Google Scholar]
  96. Mazur M, Cardasis H, Spellman D, Liaw A, Yates N, Hendrickson R. 96.  2010. Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. PNAS 107:7728–33 [Google Scholar]
  97. Gomez SM, Nishio JN, Faull KF, Whitelegge JP. 97.  2002. The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell. Proteom. 1:46–59 [Google Scholar]
  98. Ryan C, Souda P, Halgand F, Wong D, Loo J. 98.  et al. 2010. Confident assignment of intact mass tags to human salivary cystatins using top-down Fourier-transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 21:908–17 [Google Scholar]
  99. Cabras T, Pisano E, Boi R, Olianas A, Manconi B. 99.  et al. 2009. Age-dependent modifications of the human salivary secretory protein complex. J. Proteome Res. 8:4126–34 [Google Scholar]
  100. Castagnola M, Messana I, Inzitari R, Fanali C, Cabras T. 100.  et al. 2008. Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J. Proteome Res. 7:5327–32 [Google Scholar]
  101. Wu S, Brown J, Tolic N, Meng D, Liu X. 101.  et al. 2014. Quantitative analysis of human salivary gland-derived intact proteome using top-down mass spectrometry. Proteomics 14:1211–22 [Google Scholar]
  102. Edwards RL, Griffiths P, Bunch J, Cooper HJ. 102.  2012. Top-down proteomics and direct surface sampling of neonatal dried blood spots: diagnosis of unknown hemoglobin variants. J. Am. Soc. Mass Spectrom. 23:1921–30 [Google Scholar]
  103. Edwards RL, Griffiths P, Bunch J, Cooper HJ. 103.  2014. Compound heterozygotes and beta-thalassemia: top-down mass spectrometry for detection of hemoglobinopathies. Proteomics14:1232–38
  104. Mao P, Wang D. 104.  2014. Top-down proteomics of a drop of blood for diabetes monitoring. J. Proteome Res. 13:1560–69 [Google Scholar]
  105. Demirev PA, Feldman AB, Kowalski P, Lin JS. 105.  2005. Top-down proteomics for rapid identification of intact microorganisms. Anal. Chem. 77:7455–61 [Google Scholar]
  106. Hummel M, Wigger T, Brockmeyer J. 106.  2015. Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics: a consensus set of isoforms of Sin a 1. J. Proteome Res. 14:1547–56 [Google Scholar]
  107. Lagrain B, Brunnbauer M, Rombouts I, Koehler P. 107.  2013. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry. PLOS ONE 8:e58682 [Google Scholar]
  108. Petris LD, Orre L, Kanter L, Pernemalm M, Koyi H. 108.  et al. 2009. Tumor expression of S100A6 correlates with survival of patients with stage I non-small-cell lung cancer. Lung Cancer 63:410–17 [Google Scholar]
  109. Zhang J, Guy MJ, Norman HS, Chen Y-C, Xu Q. 109.  et al. 2011. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J. Proteome Res. 10:4054–65 [Google Scholar]
  110. Desiderio C, D'Angelo L, Rossetti D, Iavarone F, Giardina B. 110.  et al. 2012. Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 12:2158–66 [Google Scholar]
  111. Cabras T, Pisano E, Montaldo C, Giuca M, Iavarone F. 111.  et al. 2013. Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics. Mol. Cell. Proteom. 12:1844–52 [Google Scholar]
  112. Laouirem S, Faouder JL, Alexandrov T, Mestivier D, Leger T. 112.  et al. 2014. Progression from cirrhosis to cancer is associated with early ubiquitin post-translational modifications: identification of new biomarkers of cirrhosis at risk of malignancy. J. Pathol. 234:452–63 [Google Scholar]
  113. Iavarone F, Melis M, Platania G, Cabras T, Manconi B. 113.  et al. 2014. Characterization of salivary proteins of schizophrenic and bipolar disorder patients by top-down proteomics. J. Proteom. 103:15–22 [Google Scholar]
  114. Ye H, Mandal R, Catherman A, Thomas P, Kelleher N. 114.  et al. 2014. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders. PLOS ONE 9:e92831 [Google Scholar]
  115. Kellie JF, Higgs RE, Ryder JW, Major A, Beach TG. 115.  et al. 2014. Quantitative measurement of intact α-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry. Sci. Rep. 45797
  116. Martelli C, Iavarone F, D'Angelo L, Arba M, Vincenzoni F. 116.  et al. 2015. Integrated proteomic platforms for the comparative characterization of medulloblastoma and pilocytic astrocytoma pediatric brain tumors: a preliminary study. Mol. BioSyst. 11:1668–83 [Google Scholar]
  117. Savaryn JP, Catherman AD, Thomas PM, Abecassis MM, Kelleher NL. 117.  2013. The emergence of top-down proteomics in clinical research. Genome Med. 5:53 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error