Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Van Zant P. 1.  2014. Microchip Fabrication: A Practical Guide to Semiconductor Processing New York: McGraw-Hill, 6th ed..
  2. Wiley BJ, Qin D, Xia Y. 2.  2010. Nanofabrication at high throughput and low cost. ACS Nano 4:3554–59 [Google Scholar]
  3. Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S. 3.  et al. 2005. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23:401–12 [Google Scholar]
  4. Kopp C, Bernabe S, Bakir BB, Fedeli J-M, Orobtchouk R. 4.  et al. 2011. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17:498–509 [Google Scholar]
  5. Selvaraja SK, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. 5.  2009. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightwave Technol. 27:4076–83 [Google Scholar]
  6. Bogaerts W, Taillaert D, Luyssaert B, Dumon P, Van Campenhout J. 6.  et al. 2004. Basic structures for photonic integrated circuits in silicon-on-insulator. Opt. Express 12:1583–91 [Google Scholar]
  7. Orcutt JS, Khilo A, Popovic MA, Holzwarth CW, Moss B. 7.  et al. 2008. Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process Presented at Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf./Conf. Photonic Appl. Syst. Technol., May 4–9, San Jose, CA
  8. Lipson M. 8.  2005. Guiding, modulating, and emitting light on silicon: challenges and opportunities. J. Lightwave Technol. 23:4222–38 [Google Scholar]
  9. Analui B, Guckenberger D, Kucharski D, Narasimha A. 9.  2006. A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-μm CMOS SOI technology. IEEE J. Solid-State Circ. 41:2945–55 [Google Scholar]
  10. Biberman A, Manipatruni S, Ophir N, Chen L, Lipson M, Bergman K. 10.  2010. First demonstration of long-haul transmission using silicon microring modulators. Opt. Express 18:15544–52 [Google Scholar]
  11. Ciminelli C, Campanella CM, Dell'Olio F, Campanella CE, Armenise MN. 11.  2013. Label-free optical resonant sensors for biochemical applications. Prog. Quantum Electron. 37:51–107 [Google Scholar]
  12. Foreman MR, Swaim JD, Vollmer F. 12.  2015. Whispering gallery mode sensors. Adv. Opt. Photonics 7:168–240 [Google Scholar]
  13. Vahala KJ. 13.  2003. Optical microcavities. Nature 424:839–46 [Google Scholar]
  14. Wu Y, Vollmer F. 14.  2014. Whispering gallery mode biomolecular sensors. Cavity-Enhanced Spectroscopy and Sensing G Gagliardi, H-P Loock 323–49 Berlin/Heidelberg: Springer [Google Scholar]
  15. Rayleigh L. 15.  1910. CXII. The problem of the whispering gallery. Philos. Mag. Ser. 6:201001–4 [Google Scholar]
  16. Gorodetsky ML, Savchenkov AA, Ilchenko VS. 16.  1996. Ultimate Q of optical microsphere resonators. Opt. Lett. 21:453–55 [Google Scholar]
  17. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ. 17.  2003. Ultra-high-Q toroid microcavity on a chip. Nature 421:925–28 [Google Scholar]
  18. Serpengüzel A, Griffel G, Arnold S. 18.  1995. Excitation of resonances of microspheres on an optical fiber. Opt. Lett. 20:654–56 [Google Scholar]
  19. Krioukov E, Klunder DJW, Driessen A, Greve J, Otto C. 19.  2002. Integrated optical microcavities for enhanced evanescent-wave spectroscopy. Opt. Lett. 27:1504–6 [Google Scholar]
  20. Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S. 20.  2002. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80:4057–59 [Google Scholar]
  21. Fan X, White IM. 21.  2011. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5:591–97 [Google Scholar]
  22. Sun Y, Fan X. 22.  2011. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399:205–11 [Google Scholar]
  23. Baaske M, Vollmer F. 23.  2012. Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–36 [Google Scholar]
  24. Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S. 24.  et al. 2012. Silicon microring resonators. Laser Photonics Rev. 6:47–73 [Google Scholar]
  25. Luchansky MS, Bailey RC. 25.  2012. High-Q optical sensors for chemical and biological analysis. Anal. Chem. 84:793–821 [Google Scholar]
  26. Hunt HK, Armani AM. 26.  2014. Bioconjugation strategies for label-free optical microcavity sensors. IEEE J. Sel. Top. Quantum Electron. 20:121–33 [Google Scholar]
  27. La Notte M, Troia B, Muciaccia T, Campanella C, De Leonardis F, Passaro V. 27.  2014. Recent advances in gas and chemical detection by Vernier effect–based photonic sensors. Sensors 14:4831–55 [Google Scholar]
  28. Mehrabani S, Maker A, Armani A. 28.  2014. Hybrid integrated label-free chemical and biological sensors. Sensors 14:5890–28 [Google Scholar]
  29. Vivek S, Pao Tai L, Neil P, Hongtao L, Lan L. 29.  et al. 2014. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 15:014603 [Google Scholar]
  30. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. 30.  2003. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 28:272–74 [Google Scholar]
  31. Park Y-S, Wang H. 31.  2007. Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation. Opt. Express 15:16471–77 [Google Scholar]
  32. Lutti J, Langbein W, Borri P. 32.  2008. A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres. Appl. Phys. Lett. 93:151103 [Google Scholar]
  33. Vollmer F, Arnold S, Keng D. 33.  2008. Single virus detection from the reactive shift of a whispering-gallery mode. PNAS 105:20701–4 [Google Scholar]
  34. Hossein-Zadeh M, Vahala KJ. 34.  2007. Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt. Express 15:166–75 [Google Scholar]
  35. Kippenberg TJ, Kalkman J, Polman A, Vahala KJ. 35.  2006. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74:051802 [Google Scholar]
  36. Lee S, Eom SC, Chang JS, Huh C, Sung GY, Shin JH. 36.  2010. A silicon nitride microdisk resonator with 40-nm-thin horizontal air slot. Opt. Express 18:11209–15 [Google Scholar]
  37. Boyd RW, Heebner JE. 37.  2001. Sensitive disk resonator photonic biosensor. Appl. Opt. 40:5742–47 [Google Scholar]
  38. Chung-Yen C, Fung W, Guo LJ. 38.  2006. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quantum Electron. 12:134–42 [Google Scholar]
  39. Yalcin A, Popat KC, Aldridge JC, Desai TA, Hryniewicz J. 39.  et al. 2006. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron. 12:148–55 [Google Scholar]
  40. De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. 40.  2007. Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15:7610–15 [Google Scholar]
  41. Ling T, Guo LJ. 41.  2013. Sensitivity enhancement in optical micro-tube resonator sensors via mode coupling. Appl. Phys. Lett. 103:013702 [Google Scholar]
  42. Arce CL, Van Put S, Goes A, Hallynck E, Dubruel P. 42.  et al. 2014. Reaction tubes: a new platform for silicon nanophotonic ring resonator sensors. J. Appl. Phys. 115:044702 [Google Scholar]
  43. Wang H, Yuan L, Kim C-W, Lan X, Huang J. 43.  et al. 2015. Integrated chemical vapor sensor based on thin wall capillary coupled porous glass microsphere optical resonator. Sens. Actuators B 216:332–36 [Google Scholar]
  44. Murugan GS, Petrovich MN, Jung Y, Wilkinson JS, Zervas MN. 44.  2011. Hollow-bottle optical microresonators. Opt. Express 19:20773–84 [Google Scholar]
  45. McFarlane S, Manchee CPK, Silverstone JW, Veinot J, Meldrum A. 45.  2013. Synthesis and operation of fluorescent-core microcavities for refractometric sensing. J. Vis. Exp. 73:e50256 [Google Scholar]
  46. Rowland KJ, François A, Hoffmann P, Monro TM. 46.  2013. Fluorescent polymer coated capillaries as optofluidic refractometric sensors. Opt. Express 21:11492–505 [Google Scholar]
  47. Lane S, Chan J, Thiessen T, Meldrum A. 47.  2014. Whispering gallery mode structure and refractometric sensitivity of fluorescent capillary-type sensors. Sens. Actuators B 190:752–59 [Google Scholar]
  48. Ward JM, Dhasmana N, Nic Chormaic S. 48.  2014. Hollow core, whispering gallery resonator sensors. Eur. Phys. J. Spec. Top. 223:1917–35 [Google Scholar]
  49. Wang P, Ward J, Yang Y, Feng X, Brambilla G. 49.  et al. 2015. Lead-silicate glass optical microbubble resonator. Appl. Phys. Lett. 106:061101 [Google Scholar]
  50. Gouveia MA, Pellegrini PES, dos Santos JS, Raimundo IM, Cordeiro CMB. 50.  2014. Analysis of immersed silica optical microfiber knot resonator and its application as a moisture sensor. Appl. Opt. 53:7454–61 [Google Scholar]
  51. Vivien L, Pavesi L. 51.  2013. Handbook of Silicon Photonics Oxford, UK: Taylor & Francis
  52. Lee H, Chen T, Li J, Yang KY, Jeon S. 52.  et al. 2012. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics 6:369–73 [Google Scholar]
  53. Kippenberg TJ, Holzwarth R, Diddams SA. 53.  2011. Microresonator-based optical frequency combs. Science 332:555–59 [Google Scholar]
  54. Wienhold T, Kraemmer S, Wondimu SF, Siegle T, Bog U. 54.  et al. 2015. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers. Lab. Chip 15:3800–6 [Google Scholar]
  55. Beck T, Hauser M, Grossmann T, Floess D, Schleede S. 55.  et al. 2011. PMMA-micro goblet resonators for biosensing applications Presented at SPIE Conf. 7888, Frontiers in Biological Detection: From Nanosensors to Systems III, Jan. 22, San Francisco, CA
  56. Grossmann T, Hauser M, Beck T, Gohn-Kreuz C, Karl M. 56.  et al. 2010. High-Q conical polymeric microcavities. Appl. Phys. Lett. 96:013303 [Google Scholar]
  57. Qiulin M, Lei H, Zhixiong G, Tobias R. 57.  2010. Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption. Meas. Sci. Technol. 21:115206 [Google Scholar]
  58. Iqbal M, Gleeson MA, Spaugh B, Tybor F, Gunn WG. 58.  et al. 2010. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 16:654–61 [Google Scholar]
  59. Wilson KA, Finch CA, Anderson P, Vollmer F, Hickman JJ. 59.  2012. Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response. Biomaterials 33:225–36 [Google Scholar]
  60. Ramachandran A, Wang S, Clarke J, Ja SJ, Goad D. 60.  et al. 2008. A universal biosensing platform based on optical micro-ring resonators. Biosens. Bioelectron. 23:939–44 [Google Scholar]
  61. Schweinsberg A, Hocdé S, Lepeshkin NN, Boyd RW, Chase C, Fajardo JE. 61.  2007. An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sens. Actuators B 123:727–32 [Google Scholar]
  62. Masturzo SA, Yarrison-Rice JM, Jackson HE, Boyd JT. 62.  2007. Grating couplers fabricated by electron-beam lithography for coupling free-space light into nanophotonic devices. IEEE Trans. Nanotechnol. 6:622–26 [Google Scholar]
  63. Mekis A, Gloeckner S, Masini G, Narasimha A, Pinguet T. 63.  et al. 2011. A grating-coupler-enabled CMOS photonics platform. IEEE J. Sel. Top. Quantum Electron. 17:597–608 [Google Scholar]
  64. Wildgen S, Dunn R. 64.  2015. Whispering gallery mode resonators for rapid label-free biosensing in small volume droplets. Biosensors 5:118–30 [Google Scholar]
  65. Kim DC, Armendariz KP, Dunn RC. 65.  2013. Integration of microsphere resonators with bioassay fluidics for whispering gallery mode imaging. Analyst 138:3189–95 [Google Scholar]
  66. Huckabay HA, Dunn RC. 66.  2011. Whispering gallery mode imaging for the multiplexed detection of biomarkers. Sens. Actuators B 160:1262–67 [Google Scholar]
  67. Kushida S, Braam D, Pan C, Dao TD, Tabata K. 67.  et al. 2015. Whispering gallery resonance from self-assembled microspheres of highly fluorescent isolated conjugated polymers. Macromolecules 48:3928–33 [Google Scholar]
  68. Huckabay HA, Wildgen SM, Dunn RC. 68.  2013. Label-free detection of ovarian cancer biomarkers using whispering gallery mode imaging. Biosens. Bioelectron. 45:223–29 [Google Scholar]
  69. Luchansky MS, Washburn AL, Martin TA, Iqbal M, Gunn LC, Bailey RC. 69.  2010. Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform. Biosens. Bioelectron. 26:1283–91 [Google Scholar]
  70. Lu X, Lee JY, Feng PX-L, Lin Q. 70.  2014. High Q silicon carbide microdisk resonator. Appl. Phys. Lett. 104:181103 [Google Scholar]
  71. Cai H, Poon AW. 71.  2011. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. Opt. Lett. 36:4257–59 [Google Scholar]
  72. Lipka T, Wahn L, Trieu HK, Hilterhaus L, Müller J. 72.  2013. Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators. J. Nanophoton. 7:073793 [Google Scholar]
  73. Park J, Özdemir SK, Monifi F, Chadha T, Huang SH. 73.  et al. 2014. Titanium dioxide whispering gallery microcavities. Adv. Opt. Mat. 2:711–17 [Google Scholar]
  74. Ioppolo T, Ötügen V, Ayaz U. 74.  2013. Development of whispering gallery mode polymeric micro-optical electric field sensors. J. Vis. Exp. 71:e50199 [Google Scholar]
  75. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K. 75.  et al. 2015. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. PNAS 112:E607–15 [Google Scholar]
  76. Scholten K, Fan X, Zellers ET. 76.  2014. A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds. Lab. Chip 14:3873–80 [Google Scholar]
  77. De Vos K, Girones J, Claes T, De Koninck Y, Popelka S. 77.  et al. 2009. Multiplexed antibody detection with an array of silicon-on-insulator microring resonators. IEEE J. Photonics 1:225–35 [Google Scholar]
  78. Scholten K, Collin WR, Fan X, Zellers ET. 78.  2015. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis. Nanoscale 7:9282–89 [Google Scholar]
  79. Ta VD, Chen R, Sun H. 79.  2014. Flexible microresonators: lasing and sensing Presented at SPIE LASE, Mar. 4, San Francisco, CA
  80. Bog U, Brinkmann F, Kalt H, Koos C, Mappes T. 80.  et al. 2014. Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications. Small 10:3863–68 [Google Scholar]
  81. Humar M, Hyun Yun S. 81.  2015. Intracellular microlasers. Nat. Photonics 9:572–76 [Google Scholar]
  82. Ta VD, Chen R, Sun HD. 82.  2013. Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci. Rep. 3:1362 [Google Scholar]
  83. Delezoide C, Salsac M, Lautru J, Leh H, Nogues C. 83.  et al. 2012. Vertically coupled polymer microracetrack resonators for label-free biochemical sensors. IEEE Photonics Technol. Lett. 24:270–72 [Google Scholar]
  84. Girault P, Lorrain N, Poffo L, Guendouz M, Lemaitre J. 84.  et al. 2015. Integrated polymer micro-ring resonators for optical sensing applications. J. Appl. Phys. 117:104504 [Google Scholar]
  85. Schubert M, Steude A, Liehm P, Kronenberg NM, Karl M. 85.  et al. 2015. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15:5647–52 [Google Scholar]
  86. Lu T, Lee H, Chen T, Herchak S, Kim J-H. 86.  et al. 2011. High sensitivity nanoparticle detection using optical microcavities. PNAS 108:5976–79 [Google Scholar]
  87. Xu DX, Vachon M, Densmore A, Ma R, Janz S. 87.  et al. 2010. Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt. Express 18:22867–79 [Google Scholar]
  88. Shao L, Jiang X-F, Yu X-C, Li B-B, Clements WR. 88.  et al. 2013. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 25:5616–20 [Google Scholar]
  89. Foreman MR, Jin W-L, Vollmer F. 89.  2014. Optimizing detection limits in whispering gallery mode biosensing. Opt. Express 22:5491–511 [Google Scholar]
  90. Kim W, Özdemir ŞK, Zhu J, Yang L. 90.  2011. Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Appl. Phys. Lett. 98:141106 [Google Scholar]
  91. Zhu J, Özdemir ŞK, He L, Chen D-R, Yang L. 91.  2011. Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. Opt. Express 19:16195–206 [Google Scholar]
  92. Zhu J, Özdemir ŞK, Xiao Y-F, Li L, He L. 92.  et al. 2010. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4:46–49 [Google Scholar]
  93. Knittel J, Swaim JD, McAuslan DL, Brawley GA, Bowen WP. 93.  2013. Back-scatter based whispering gallery mode sensing. Sci. Rep. 3:2974 [Google Scholar]
  94. Noto M, Keng D, Teraoka I, Arnold S. 94.  Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys. J. 92:4466–72 [Google Scholar]
  95. Zamora V, Lützow P, Weiland M, Pergande D. 95.  2013. A highly sensitive refractometric sensor based on cascaded SiN microring resonators. Sensors 13:14601–10 [Google Scholar]
  96. Sedlmeir F, Zeltner R, Leuchs G, Schwefel HGL. 96.  2014. High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment. Opt. Express 22:30934–42 [Google Scholar]
  97. Hermanson GT. 97.  2013. Bioconjugate Techniques Cambridge, MA: Academic, 3rd ed..
  98. Green NM. 98.  1963. Avidin. 1. The use of [14C] biotin for kinetic studies and for assay. Biochem. J. 89:585–91 [Google Scholar]
  99. Suter JD, White IM, Zhu H, Shi H, Caldwell CW, Fan X. 99.  2008. Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens. Bioelectron. 23:1003–9 [Google Scholar]
  100. Vollmer F, Arnold S, Braun D, Teraoka I, Libchaber A. 100.  2003. Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. Biophys. J. 85:1974–79 [Google Scholar]
  101. Qavi AJ, Mysz TM, Bailey RC. 101.  2011. Isothermal discrimination of single-nucleotide polymorphisms via real-time kinetic desorption and label-free detection of DNA using silicon photonic microring resonator arrays. Anal. Chem. 83:6827–33 [Google Scholar]
  102. Shin Y, Perera AP, Park MK. 102.  2013. Label-free DNA sensor for detection of bladder cancer biomarkers in urine. Sens. Actuators B 178:200–6 [Google Scholar]
  103. Sabaté del Río J, Steylaerts T, Henry OYF, Bienstman P, Stakenborg T. 103.  et al. 2015. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification. Biosens. Bioelectron. 73:130–37 [Google Scholar]
  104. Wu Y, Zhang DY, Yin P, Vollmer F. 104.  2014. Ultraspecific and highly sensitive nucleic acid detection by integrating a DNA catalytic network with a label-free microcavity. Small 10:2067–76 [Google Scholar]
  105. Egger G, Liang G, Aparicio A, Jones PA. 105.  2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–63 [Google Scholar]
  106. Hawk RM, Armani AM. 106.  2015. Label free detection of 5′hydroxymethylcytosine within CpG islands using optical sensors. Biosens. Bioelectron. 65:198–203 [Google Scholar]
  107. Shin Y, Soo RA, Yoon J, Promoda Perera A, Yoon Y-J, Park MK. 107.  2015. Rapid and label-free amplification and detection assay for genotyping of cancer biomarker. Biosens. Bioelectron. 68:107–14 [Google Scholar]
  108. Kindt JT, Bailey RC. 108.  2012. Chaperone probes and bead-based enhancement to improve the direct detection of mRNA using silicon photonic sensor arrays. Anal. Chem. 84:8067–74 [Google Scholar]
  109. Chomczynski P, Sacchi N. 109.  1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–59 [Google Scholar]
  110. Blin N, Stafford DW. 110.  1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 3:2303–8 [Google Scholar]
  111. Baaske MD, Foreman MR, Vollmer F. 111.  2014. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9:933–39 [Google Scholar]
  112. Bayley H, Cremer PS. 112.  2001. Stochastic sensors inspired by biology. Nature 413:226–30 [Google Scholar]
  113. Shia WW, Bailey RC. 113.  2013. Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays. Anal. Chem. 85:805–10 [Google Scholar]
  114. Nunzi Conti G, Baldini F, Berneschi S, Farnesi D, Giannetti A. 114.  et al. 2013. Whispering gallery mode microresonators: results on aptasensors and on a new sensing approach. Presented at SPIE Conf. 8600, Laser Resonators, Microresonators, and Beam Control XV, Mar. 12, San Francisco, CA
  115. Park MK, Kee JS, Quah JY, Netto V, Song J. 115.  et al. 2013. Label-free aptamer sensor based on silicon microring resonators. Sens. Actuators B 176:552–59 [Google Scholar]
  116. Chibli H, Ghali H, Park S, Peter Y-A, Nadeau JL. 116.  2014. Immobilized phage proteins for specific detection of staphylococci. Analyst 139:179–86 [Google Scholar]
  117. Fan XZ, Naves L, Siwak NP, Brown A, Culver J, Ghodssi R. 117.  2015. Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26:205501 [Google Scholar]
  118. Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S. 118.  2013. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13:3347–51 [Google Scholar]
  119. Lin S, Diercks CS, Zhang Y-B, Kornienko N, Nichols EM. 119.  et al. 2015. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208–13 [Google Scholar]
  120. Wang F, Anderson M, Bernards M, Hunt H. 120.  2015. PEG functionalization of whispering gallery mode optical microresonator biosensors to minimize non-specific adsorption during targeted, label-free sensing. Sensors 15:18040–60 [Google Scholar]
  121. Luchansky MS, Bailey RC. 121.  2011. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133:20500–6 [Google Scholar]
  122. Valera E, McClellan MS, Bailey RC. 122.  2015. Magnetically-actuated, bead-enhanced silicon photonic immunosensor. Anal. Methods 7:8539–44 [Google Scholar]
  123. Luchansky MS, Washburn AL, McClellan MS, Bailey RC. 123.  2011. Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. Lab. Chip 11:2042–44 [Google Scholar]
  124. Kindt JT, Luchansky MS, Qavi AJ, Lee S-H, Bailey RC. 124.  2013. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal. Chem. 85:10653–57 [Google Scholar]
  125. Wade JH, Alsop AT, Vertin NR, Yang H, Johnson MD, Bailey RC. 125.  2015. Rapid, multiplexed phosphoprotein profiling using silicon photonic sensor arrays. ACS Cent. Sci. 1:374–82 [Google Scholar]
  126. Bog U, Laue T, Grossmann T, Beck T, Wienhold T. 126.  et al. 2013. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink. Lab. Chip 13:2701–7 [Google Scholar]
  127. Sun V, Armani AM. 127.  2015. Real-time detection of lipid bilayer assembly and detergent-initiated solubilization using optical cavities. Appl. Phys. Lett. 106:071103 [Google Scholar]
  128. Shopova SI, White IM, Sun Y, Zhu H, Fan X. 128.  et al. 2008. On-column micro gas chromatography detection with capillary-based optical ring resonators. Anal. Chem. 80:2232–38 [Google Scholar]
  129. Panich S, Wilson KA, Nuttall P, Wood CK, Albrecht T, Edel JB. 129.  2014. Label-free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical microcavity. Anal. Chem. 86:6299–306 [Google Scholar]
  130. Wade JH, Bailey RC. 130.  2014. Refractive index-based detection of gradient elution liquid chromatography using chip-integrated microring resonator arrays. Anal. Chem. 86:913–19 [Google Scholar]
  131. Wildgen SM, Dunn RC. 131.  2015. Scanning resonator microscopy: integrating whispering gallery mode sensing with atomic force microscopy. ACS Photonics 2:699–706 [Google Scholar]
  132. Ernst GJ, Witteman WJ. 132.  1973. Mode structure of active resonators. IEEE J. Quantum Electron. 9:911–18 [Google Scholar]
  133. He L, Özdemir ŞK, Zhu J, Kim W, Yang L. 133.  2011. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6:428–32 [Google Scholar]
  134. Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H. 134.  et al. 2014. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. PNAS 111:E3836–44 [Google Scholar]
  135. Grudinin IS, Maleki L. 135.  2007. Ultralow-threshold Raman lasing with CaF2 resonators. Opt. Lett. 32:166–68 [Google Scholar]
  136. Chistiakova MV, Armani AM. 136.  2012. Cascaded Raman microlaser in air and buffer. Opt. Lett. 37:4068–70 [Google Scholar]
  137. Rosenblum S, Lovsky Y, Arazi L, Vollmer F, Dayan B. 137.  2015. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nat. Commun. 6:6788 [Google Scholar]
  138. Mayor U, Guydosh NR, Johnson CM, Grossmann JG, Sato S. 138.  et al. 2003. The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421:863–67 [Google Scholar]
  139. Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F. 139.  2009. Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt. Express 17:6230–38 [Google Scholar]
  140. Lin S, Crozier KB. 140.  2011. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. Lab. Chip 11:4047–51 [Google Scholar]
  141. Santiago-Cordoba MA, Cetinkaya M, Boriskina SV, Vollmer F, Demirel MC. 141.  2012. Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. J. Biophoton. 5:629–38 [Google Scholar]
  142. Shopova SI, Rajmangal R, Holler S, Arnold S. 142.  2011. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98:243104 [Google Scholar]
  143. Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L. 143.  et al. 2009. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457:455–58 [Google Scholar]
  144. Arnold S, Dantham VR, Barbre C, Garetz BA, Fan X. 144.  2012. Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor. Opt. Express 20:26147–59 [Google Scholar]
  145. Kippenberg TJ, Vahala KJ. 145.  2007. Cavity opto-mechanics. Opt. Express 15:17172–205 [Google Scholar]
  146. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G. 146.  et al. 2007. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–69 [Google Scholar]
  147. Kim KH, Bahl G, Lee W, Liu J, Tomes M. 147.  et al. 2013. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light Sci. Appl. 2:e110 [Google Scholar]
  148. Fong KY, Poot M, Tang HX. 148.  2015. Nano-optomechanical resonators in microfluidics. Nano Lett. 15:6116–20 [Google Scholar]
  149. Gil-Santos E, Baker C, Nguyen DT, Hease W, Gomez C. 149.  et al. 2015. High-frequency nano-optomechanical disk resonators in liquids. Nat. Nanotechnol. 10:810–16 [Google Scholar]
  150. Heylman KD, Knapper KA, Goldsmith RH. 150.  2014. Photothermal microscopy of nonluminescent single particles enabled by optical microresonators. J. Phys. Chem. Lett. 5:1917–23 [Google Scholar]
  151. Heylman KD, Goldsmith RH. 151.  2013. Photothermal mapping and free-space laser tuning of toroidal optical microcavities. Appl. Phys. Lett. 103:211116 [Google Scholar]
  152. Knapper KA, Heylman KD, Horak EH, Goldsmith RH. 152.  2016. Chip-scale fabrication of high-Q all-glass toroidal microresonators for single-particle label-free imaging. Adv. Mat. In press. doi: 10.1002/adma.201504976

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error