1932

Abstract

Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow–extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041620
2016-06-12
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041620.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041620&mimeType=html&fmt=ahah

Literature Cited

  1. Takats Z, Wiseman JM, Gologan B, Cooks RG. 1.  2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73 [Google Scholar]
  2. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. 2.  2006. Ambient mass spectrometry. Science 311:1566–70 [Google Scholar]
  3. Kauppila TJ, Wiseman JM, Ketola RA, Kotiaho T, Cooks RG, Kostiainen R. 3.  2006. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Commun. Mass Spectrom. 20:387–92 [Google Scholar]
  4. Jackson AU, Werner SR, Talaty N, Song Y, Campbell K. 4.  et al. 2008. Targeted metabolomic analysis of Escherichia coli by desorption electrospray ionization and extractive electrospray ionization mass spectrometry. Anal. Biochem. 375:272–81 [Google Scholar]
  5. Rodriguez-Cruz SE. 5.  2006. Rapid analysis of controlled substances using desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20:53–60 [Google Scholar]
  6. Leuthold LA, Mandscheff J-F, Fathi M, Giroud C, Augsburger M. 6.  et al. 2006. Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit Ecstasy tablets. Rapid Commun. Mass Spectrom. 20:103–10 [Google Scholar]
  7. Cotte-Rodríguez I, Chen H, Cooks RG. 7.  2006. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. Chem. Commun. 2006:9953–55 [Google Scholar]
  8. Cotte-Rodríguez I, Hernández-Soto H, Chen H, Cooks RG. 8.  2008. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal. Chem. 80:1512–19 [Google Scholar]
  9. Takats Z, Cotte-Rodríguez I, Talaty N, Chen H, Cooks RG. 9.  2005. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem. Commun.1950–52 [Google Scholar]
  10. Chen H, Talaty NN, Takáts Z, Cooks RG. 10.  2005. Desorption electrospray ionization mass spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment. Anal. Chem. 77:6915–27 [Google Scholar]
  11. Weston DJ, Bateman R, Wilson ID, Wood TR, Creaser CS. 11.  2005. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization. Anal. Chem. 77:7572–80 [Google Scholar]
  12. Williams JP, Scrivens JH. 12.  2005. Rapid accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples. Rapid Commun. Mass Spectrom. 19:3643–50 [Google Scholar]
  13. Talaty N, Takats Z, Cooks RG. 13.  2005. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130:1624–33 [Google Scholar]
  14. Wiseman JM, Ifa DR, Song Q, Cooks RG. 14.  2006. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45:7188–92 [Google Scholar]
  15. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG. 15.  2011. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811:946–60 [Google Scholar]
  16. Pirro V, Eberlin LS, Oliveri P, Cooks RG. 16.  2012. Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 137:2374–80 [Google Scholar]
  17. Eberlin LS, Liu X, Ferreira CR, Santagata S, Agar NYR, Cooks RG. 17.  2011. Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal. Chem. 83:8366–71 [Google Scholar]
  18. Eberlin LS, Tibshirani RJ, Zhang J, Longacre TA, Berry GJ. 18.  et al. 2014. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. PNAS 111:2436–41 [Google Scholar]
  19. Kauppila TJ, Wiseman JM, Ketola RA, Kotiaho T, Cooks RG, Kostiainen R. 19.  2005. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Commun. Mass Spectrom. 20:387–92 [Google Scholar]
  20. Takats Z, Wiseman JM, Cooks RG. 20.  2005. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40:1261–75 [Google Scholar]
  21. Mulligan CC, MacMillan DK, Noll RJ, Cooks RG. 21.  2007. Fast analysis of high-energy compounds and agricultural chemicals in water with desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21:3729–36 [Google Scholar]
  22. Xu G-M, Chen B, Guo B, He D-X, Yao S-Z. 22.  2011. Detection of intermediates for the Eschweiler–Clarke reaction by liquid-phase reactive desorption electrospray ionization mass spectrometry. Analyst 136:2385–90 [Google Scholar]
  23. Perry RH, Cahill TJ III, Roizen JL, Du Bois J, Zare RN. 23.  2012. Capturing fleeting intermediates in a catalytic C–H amination reaction cycle. PNAS 109:18295–99 [Google Scholar]
  24. Wiseman JM, Ifa DR, Song Q, Cooks RG. 24.  2006. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew. Chem. Int. Ed. 45:7188–92 [Google Scholar]
  25. Miao Z, Chen H. 25.  2008. Analysis of continuous-flow liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). Proc. 56th Annu. Am. Soc. Mass Spectrom. Conf. Mass Spectrom. Denver, CO 1–5 Santa Fe, NM: Am. Soc. Mass Spectrom. [Google Scholar]
  26. Ma X, Zhao M, Lin Z, Zhang S, Yang C, Zhang X. 26.  2008. Versatile platform employing desorption electrospray ionization mass spectrometry for high-throughput analysis. Anal. Chem. 80:6131–36 [Google Scholar]
  27. Miao Z, Chen H. 27.  2009. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J. Am. Soc. Mass Spectrom. 20:10–19 [Google Scholar]
  28. Moore BN, Hamdy O, Julian RR. 28.  2012. Protein structure evolution in liquid DESI as revealed by selective noncovalent adduct protein probing. Int. J. Mass Spectrom. 330–332:220–25 [Google Scholar]
  29. Chipuk JE, Brodbelt JS. 29.  2008. Transmission mode desorption electrospray ionization. J. Am. Soc. Mass Spectrom. 19:1612–20 [Google Scholar]
  30. Miao Z, Wu S, Chen H. 30.  2010. The study of protein conformation in solution via direct sampling by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 21:1730–36 [Google Scholar]
  31. Zhang Y, Chen H. 31.  2010. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids. Int. J. Mass Spectrom. 289:98–107 [Google Scholar]
  32. Pan N, Liu P, Cui W, Tang B, Shi J, Chen H. 32.  2013. Highly efficient ionization of phosphopeptides at low pH by desorption electrospray ionization mass spectrometry. Analyst 138:1321–24 [Google Scholar]
  33. Miao Z, Chen H, Liu P, Liu Y. 33.  2011. Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization. Anal. Chem. 83:3994–97 [Google Scholar]
  34. Cai Y, Liu Y, Helmy R, Chen H. 34.  2014. Coupling of ultrafast LC with mass spectrometry by DESI. J. Am. Soc. Mass Spectrom. 25:1820–23 [Google Scholar]
  35. Zhang Y, Yuan Z, Dewald HD, Chen H. 35.  2011. Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem. Commun. 47:4171–73 [Google Scholar]
  36. Liu Y, Miao Z, Lakshmanan R, Loo RRO, Loo JA, Chen H. 36.  2012. Signal and charge enhancement for protein analysis by liquid chromatography—mass spectrometry with desorption electrospray ionization. Int. J. Mass Spectrom. 325–327:161–66 [Google Scholar]
  37. Cai Y, Adams D, Chen H. 37.  2014. A new splitting method for both analytical and preparative LC/MS. J. Am. Soc. Mass Spectrom. 25:286–92 [Google Scholar]
  38. Cai Y, Zheng Q, Liu Y, Helmy R, Loo J, Chen H. 38.  2015. Integration of electrochemistry with ultra performance liquid chromatography/mass spectrometry (UPLC/MS). Eur. J. Mass Spectrom. 21:341–51 [Google Scholar]
  39. Sun X, Miao Z, Yuan Z, Harrington PdB, Colla J, Chen H. 39.  2011. Coupling of single droplet micro-extraction with desorption electrospray ionization-mass spectrometry. Int. J. Mass Spectrom. 301:102–8 [Google Scholar]
  40. Ferguson CN, Benchaar SA, Miao Z, Loo JA, Chen H. 40.  2011. Direct ionization of large proteins and protein complexes by desorption electrospray ionization-mass spectrometry. Anal. Chem. 83:6468–73 [Google Scholar]
  41. Liu P, Zhang J, Ferguson CN, Chen H, Loo JA. 41.  2013. Measuring protein-ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal. Chem. 85:11966–72 [Google Scholar]
  42. Lu X, Ning B, He D, Huang L, Yue X. 42.  et al. 2014. High throughput screening of high-affinity ligands for proteins with anion-binding sites using desorption electrospray ionization (DESI) mass spectrometry. J. Am. Soc. Mass Spectrom. 25:454–63 [Google Scholar]
  43. Yao Y, Shams-Ud-Doha K, Daneshfar R, Kitova E, Klassen J. 43.  2015. Quantifying protein-carbohydrate interactions using liquid sample desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26:98–106 [Google Scholar]
  44. Li J, Dewald HD, Chen H. 44.  2009. Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal. Chem. 81:9716–22 [Google Scholar]
  45. Lu M, Wolff C, Cui W, Chen H. 45.  2012. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization. Anal. Bioanal. Chem. 403:355–65 [Google Scholar]
  46. Brown TA, Chen H, Zare RN. 46.  2015. Identification of fleeting electrochemical reaction intermediates using desorption electrospray ionization mass spectrometry. J. Am. Chem. Soc. 137:7274–77 [Google Scholar]
  47. Brown TA, Chen H, Zare RN. 47.  2015. Detection of the short-lived radical cation intermediate in the electrooxidation of N,N-dimethylaniline by mass spectrometry. Angew. Chem. Int. Ed. 54:11183–85 [Google Scholar]
  48. Zhang Y, Cui W, Zhang H, Dewald HD, Chen H. 48.  2012. Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal. Chem. 84:3838–42 [Google Scholar]
  49. Zhang Y, Dewald HD, Chen H. 49.  2011. Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. J. Proteome Res. 10:1293–304 [Google Scholar]
  50. Zheng Q, Zhang H, Chen H. 50.  2013. Integration of online digestion and electrolytic reduction with mass spectrometry for rapid disulfide-containing protein structural analysis. Int. J. Mass Spectrom. 353:84–92 [Google Scholar]
  51. Zheng Q, Zhang H, Tong L, Wu S, Chen H. 51.  2014. Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures. Anal. Chem. 86:8983–91 [Google Scholar]
  52. Takats Z, Wiseman JM, Gologan B, Cooks RG. 52.  2004. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. Anal. Chem. 76:4050–58 [Google Scholar]
  53. Janek K, Wenschuh H, Bienert M, Krause E. 53.  2001. Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 15:1593–99 [Google Scholar]
  54. Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW. 54.  2006. Phosphorylation analysis by mass spectrometry. Myths, facts, and the consequences for qualitative and quantitative measurements. Mol. Cell. Proteom. 5:172–81 [Google Scholar]
  55. Poulter L, Ang S-G, Williams DH, Cohen P. 55.  1987. Observations on the quantitation of the phosphate content of peptides by fast-atom bombardment mass spectrometry. Biochim. Biophys. Acta Mol. Cell Res. 929:296–301 [Google Scholar]
  56. Kuyama H, Sonomura K, Nishimura O. 56.  2008. Sensitive detection of phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry: use of alkylphosphonic acids as matrix additives. Rapid Commun. Mass Spectrom. 22:1109–16 [Google Scholar]
  57. Chen H, Cotte-Rodríguez I, Cooks RG. 57.  2006. cis-Diol functional group recognition by reactive desorption electrospray ionization (DESI). Chem. Commun. 2006.6597–99 [Google Scholar]
  58. Huang G, Chen H, Zhang X, Cooks RG, Ouyang Z. 58.  2007. Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 79:8327–32 [Google Scholar]
  59. Nyadong L, Green MD, De Jesus VR, Newton PN, Fernández FM. 59.  2007. Reactive desorption electrospray ionization linear ion trap mass spectrometry of latest-generation counterfeit antimalarials via noncovalent complex formation. Anal. Chem. 79:2150–57 [Google Scholar]
  60. Wesdemiotis C, Zhang MY, McLafferty FW. 60.  1991. Distinctive ion-molecule reactions of C4H4+ isomers with ammonia. Org. Mass Spectrom. 26:671–72 [Google Scholar]
  61. Nibbering NMM. 61.  1990. Gas-phase ion/molecule reactions as studied by Fourier transform ion cyclotron resonance. Acc. Chem. Res. 23:279–85 [Google Scholar]
  62. Liu P, Zhang J, Ferguson CN, Chen H, Loo JA. 62.  2013. Measuring protein–ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal. Chem. 85:11966–72 [Google Scholar]
  63. Yin S, Xie Y, Loo JA. 63.  2008. Mass spectrometry of protein-ligand complexes: enhanced gas-phase stability of ribonuclease-nucleotide complexes. J. Am. Soc. Mass Spectrom. 19:1199–208 [Google Scholar]
  64. Callender R, Dyer RB. 64.  2006. Advances in time-resolved approaches to characterize the dynamical nature of enzymatic catalysis. Chem. Rev. 106:3031–42 [Google Scholar]
  65. Konermann L, Douglas DJ. 65.  1997. Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 36:12296–302 [Google Scholar]
  66. Li Z, Song F, Zhuang Z, Dunaway-Mariano D, Anderson KS. 66.  2009. Monitoring enzyme catalysis in the multimeric state: direct observation of Arthrobacter 4-hydroxybenzoyl-coenzyme A thioesterase catalytic complexes using time-resolved electrospray ionization mass spectrometry. Anal. Biochem. 394:209–16 [Google Scholar]
  67. Uversky VN, Permyakov EA. 67.  2007. Methods in Protein Structure and Stability Analysis Part D. NMR and EPR Spectroscopies, Mass-Spectrometry and Protein Imaging New York: Nova Science [Google Scholar]
  68. Lee JK, Kim S, Nam HG, Zare RN. 68.  2015. Microdroplet fusion mass spectrometry for fast reaction kinetics. PNAS 112:3898–903 [Google Scholar]
  69. Zheng Q, Liu Y, Chen Q, Hu M, Helmy R. 69.  et al. 2015. Capture of reactive monophosphine-ligated palladium(0) intermediates by mass spectrometry. J. Am. Chem. Soc. 137:14035–38 [Google Scholar]
  70. Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ. 70.  et al. 2007. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics 7:469–73 [Google Scholar]
  71. Yao M, Zhu M, Sinz MW, Zhang H, Humphreys WG. 71.  et al. 2007. Development and full validation of six inhibition assays for five major cytochrome P450 enzymes in human liver microsomes using an automated 96-well microplate incubation format and LC–MS/MS analysis. J. Pharm. Biomed. Anal. 44:211–23 [Google Scholar]
  72. Zhang B, Foret F, Karger BL. 72.  2001. High-throughput microfabricated CE/ESI-MS: automated sampling from a microwell plate. Anal. Chem. 73:2675–81 [Google Scholar]
  73. Yazdi AS, Mofazzeli F, Es'haghi Z. 73.  2009. Determination of 3-nitroaniline in water samples by directly suspended droplet three-phase liquid-phase microextraction using 18-crown-6 ether and high-performance liquid chromatography. J. Chromatogr. A 1216:5086–91 [Google Scholar]
  74. He Y, Kang Y-J. 74.  2006. Single drop liquid–liquid–liquid microextraction of methamphetamine and amphetamine in urine. J. Chromatogr. A 1133:35–40 [Google Scholar]
  75. Maya F, Estela JM, Cerdà V. 75.  2010. Interfacing on-line solid phase extraction with monolithic column multisyringe chromatography and chemiluminescence detection: an effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta 80:1333–40 [Google Scholar]
  76. Basheer C, Alnedhary AA, Madhava Rao BS, Balasubramanian R, Lee HK. 76.  2008. Ionic liquid supported three-phase liquid-liquid-liquid microextraction as a sample preparation technique for aliphatic and aromatic hydrocarbons prior to gas chromatography-mass spectrometry. J. Chromatogr. A 1210:19–24 [Google Scholar]
  77. Marlow M, Hurtubise RJ. 77.  2004. Liquid–liquid–liquid microextraction for the enrichment of polycyclic aromatic hydrocarbon metabolites investigated with fluorescence spectroscopy and capillary electrophoresis. Anal. Chim. Acta 526:41–49 [Google Scholar]
  78. Fan Z, Liu X. 78.  2008. Determination of methylmercury and phenylmercury in water samples by liquid–liquid–liquid microextraction coupled with capillary electrophoresis. J. Chromatogr. A 1180:187–92 [Google Scholar]
  79. Cheng S, Wang J, Cai Y, Loo J, Chen H. 79.  2015. Enhancing performance of liquid sample desorption electrospray ionization mass spectrometry using trap and capillary columns. Int. J. Mass Spectrom. 392:73–79 [Google Scholar]
  80. Jurva U, Wikström HV, Bruins AP. 80.  2000. In vitro mimicry of metabolic oxidation reactions by electrochemistry/mass spectrometry. Rapid Commun. Mass Spectrom. 14:529–33 [Google Scholar]
  81. Jurva U, Wikström HV, Weidolf L, Bruins AP. 81.  2003. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun. Mass Spectrom. 17:800–10 [Google Scholar]
  82. Zhou F, Van Berkel GJ. 82.  1995. Electrochemistry combined online with electrospray mass spectrometry. Anal. Chem. 67:3643–49 [Google Scholar]
  83. Van Berkel GJ, Asano KG, Granger MC. 83.  2004. Controlling analyte electrochemistry in an electrospray ion source with a three-electrode emitter cell. Anal. Chem. 76:1493–99 [Google Scholar]
  84. Permentier HP, Bruins AP, Bischoff R. 84.  2008. Electrochemistry-mass spectrometry in drug metabolism and protein research. Mini Rev. Med. Chem. 8:46–56 [Google Scholar]
  85. Diehl G, Karst U. 85.  2002. On-line electrochemistry—MS and related techniques. Anal. Bioanal. Chem. 373:390–98 [Google Scholar]
  86. Gun J, Bharathi S, Gutkin V, Rizkov D, Voloshenko A. 86.  et al. 2010. Highlights in coupled electrochemical flow cell-mass spectrometry, EC/MS. Isr. J. Chem. 50:360–73 [Google Scholar]
  87. Lu M, Liu Y, Helmy R, Martin GE, Dewald HD, Chen H. 87.  2015. Online investigation of aqueous-phase electrochemical reactions by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26:1676–85 [Google Scholar]
  88. Brown TA, Hosseini-Nassab N, Chen H, Zare RN. 88.  2016. Observation of electrochemically generated nitrenium ions by desorption electrospray ionization mass spectrometry. Chem. Sci. 7:329–32 [Google Scholar]
  89. Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM. 89.  2011. Direct observation of disulfide isomerization in a single protein. Nat. Chem. 3:882–87 [Google Scholar]
  90. Bilusich D, Bowie JH. 90.  2009. Fragmentations of (M–H)-anions of underivatised peptides. Part 2: Characteristic cleavages of Ser and Cys and of disulfides and other post-translational modifications, together with some unusual internal processes. Mass Spectrom. Rev. 28:20–34 [Google Scholar]
  91. Gorman JJ, Wallis TP, Pitt JJ. 91.  2002. Protein disulfide bond determination by mass spectrometry. Mass Spectrom. Rev. 21:183–216 [Google Scholar]
  92. Stinson CA, Xia Y. 92.  2013. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume. Analyst 138:2840–46 [Google Scholar]
  93. Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM. 93.  et al. 1999. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 121:2857–62 [Google Scholar]
  94. Gunawardena HP, Gorenstein L, Erickson DE, Xia Y, McLuckey SA. 94.  2007. Electron transfer dissociation of multiply protonated and fixed charge disulfide linked polypeptides. Int. J. Mass Spectrom. 265:130–38 [Google Scholar]
  95. Cole S, Ma X, Zhang X, Xia Y. 95.  2012. Electron transfer dissociation (ETD) of peptides containing intrachain disulfide bonds. J. Am. Soc. Mass Spectrom. 23:310–20 [Google Scholar]
  96. Ni W, Lin M, Salinas P, Savickas P, Wu S-L, Karger B. 96.  2013. Complete mapping of a cystine knot and nested disulfides of recombinant human arylsulfatase A by multi-enzyme digestion and LC-MS analysis using CID and ETD. J. Am. Soc. Mass Spectrom. 24:125–33 [Google Scholar]
  97. Stankovich MT, Bard AJ. 97.  1977. The electrochemistry of proteins and related substances. Part II. Insulin. J. Electroanal. Chem. Interfacial Electrochem. 85:173–83 [Google Scholar]
  98. Cecil R, Weitzman PDJ. 98.  1964. The electroreduction of the disulfide bonds of insulin and other proteins. Biochem. J. 93:1–11 [Google Scholar]
  99. Sinz A. 99.  2006. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom. Rev. 25:663–82 [Google Scholar]
  100. Chavez JD, Liu NL, Bruce JE. 100.  2011. Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry. J. Proteome Res. 10:1528–37 [Google Scholar]
  101. Schulz DM, Ihling C, Clore GM, Sinz A. 101.  2004. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes. Biochemistry 43:4703–15 [Google Scholar]
  102. Scaloni A, Miraglia N, Orru S, Amodeo P, Motta A. 102.  et al. 1998. Topology of the calmodulin-melittin complex. J. Mol. Biol. 277:945–58 [Google Scholar]
  103. Cody RB, Laramee JA, Durst HD. 103.  2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77:2297–302 [Google Scholar]
  104. Eberherr W, Buchberger W, Hertsens R, Klampfl CW. 104.  2010. Investigations on the coupling of high-performance liquid chromatography to direct analysis in real time mass spectrometry. Anal. Chem. 82:5792–96 [Google Scholar]
  105. Iavarone AT, Jurchen JC, Williams ER. 105.  2001. Supercharged protein and peptide ions formed by electrospray ionization. Anal. Chem. 73:1455–60 [Google Scholar]
  106. Lomeli SH, Peng IX, Yin S, Loo RRO, Loo JA. 106.  2010. New reagents for increasing ESI multiple charging of proteins and protein complexes. J. Am. Soc. Mass Spectrom. 21:127–31 [Google Scholar]
  107. Liu Y, Miao Z, Lakshmanan R, Loo RRO, Loo JA, Chen H. 107.  2012. Signal and charge enhancement for protein analysis by liquid chromatography—mass spectrometry with desorption electrospray ionization. Int. J. Mass Spectrom. 325–327:161–66 [Google Scholar]
  108. Chipuk JE, Brodbelt JS. 108.  2008. Transmission mode desorption electrospray ionization. J. Am. Soc. Mass Spectrom. 19:1612–20 [Google Scholar]
  109. Shaw JB, Brodbelt JS. 109.  2011. Analysis of protein digests by transmission-mode desorption electrospray ionization mass spectrometry with ultraviolet photodissociation. Int. J. Mass Spectrom. 308:203–8 [Google Scholar]
  110. Peters KC, Comi TJ, Perry RH. 110.  2015. Multistage reactive transmission-mode desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26:1494–501 [Google Scholar]
  111. Campbell IS, Ton AT, Mulligan CC. 111.  2011. Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 22:1285–93 [Google Scholar]
  112. Yang SH, Wijeratne AB, Li L, Edwards BL, Schug KA. 112.  2010. Manipulation of protein charge states through continuous flow-extractive desorption electrospray ionization: a new ambient ionization technique. Anal. Chem. 83:643–47 [Google Scholar]
  113. Li L, Schug KA. 113.  2014. Continuous-flow extractive desorption electrospray ionization coupled to normal phase separations and for direct lipid analysis from cell extracts. J. Sep. Sci. 37:2357–63 [Google Scholar]
  114. Li L, Yang SH, Lemr K, Havlicek V, Schug KA. 114.  2013. Continuous flow-extractive desorption electrospray ionization: analysis from “non-electrospray ionization-friendly” solvents and related mechanism. Anal. Chim. Acta 769:84–90 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041620
Loading
/content/journals/10.1146/annurev-anchem-071015-041620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error