1932

Abstract

This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041521
2016-06-12
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041521.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041521&mimeType=html&fmt=ahah

Literature Cited

  1. Prather KA, Hatch CD, Grassian VH. 1.  2008. Analysis of atmospheric aerosols. Annu. Rev. Anal. Chem. 1:485–514An excellent review of aerosol chemistry highlighting the synergism between laboratory studies, field measurements, and modeling analysis. [Google Scholar]
  2. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G. 2.  et al. 2013. Clouds and aerosols. Climate Change 2013: The Physical Science Basis TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen 571–658 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. von Schneidemesser E, Monks PS, Allan JD, Bruhwiler L, Forster P. 3.  et al. 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev. 115:3856–97 [Google Scholar]
  4. Moosmueller H, Chakrabarty RK, Arnott WP. 4.  2009. Aerosol light absorption and its measurement: a review. J. Quant. Spectrosc. Radiat. Transf. 110:844–78 [Google Scholar]
  5. Pöschle U, Shiraiwa M. 5.  2015. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the Anthropocene. Chem. Rev. 115:4440–75Comprehensive review of the aerosol multiphase chemistry influencing the Earth system (e.g., climate, air quality) and public health. [Google Scholar]
  6. Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M. 6.  et al. 2009. Atmospheric composition change: ecosystems-atmosphere interactions. Atmos. Environ. 43:5193–267 [Google Scholar]
  7. Ridgwell AJ. 7.  2002. Dust in the Earth system: the biogeochemical linking of land, air and sea. Philos. Trans. R. Soc. A 360:2905–24 [Google Scholar]
  8. Pratt KA, Prather KA. 8.  2012. Mass spectrometry of atmospheric aerosols—recent developments and applications. Part I: Off-line mass spectrometry techniques. Mass Spectrom. Rev. 31:1–16 [Google Scholar]
  9. Pratt KA, Prather KA. 9.  2012. Mass spectrometry of atmospheric aerosols—recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31:17–48 [Google Scholar]
  10. Laskin A, Laskin J, Nizkorodov SA. 10.  2012. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environ. Chem. 9:163–89 [Google Scholar]
  11. Laskin J, Laskin A, Nizkorodov SA. 11.  2013. New mass spectrometry techniques for studying physical chemistry of particles, droplets, and surfaces. Int. Rev. Phys. Chem. 32:128–70 [Google Scholar]
  12. Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR. 12.  et al. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26:185–222 [Google Scholar]
  13. Krieger UK, Marcolli C, Reid JP. 13.  2012. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Chem. Soc. Rev. 41:6631–62 [Google Scholar]
  14. Bzdek BR, Pennington MR, Johnston MV. 14.  2012. Single particle chemical analysis of ambient ultrafine aerosol: a review. J. Aerosol Sci. 52:109–20 [Google Scholar]
  15. Duarte R, Duarte AC. 15.  2011. A critical review of advanced analytical techniques for water-soluble organic matter from atmospheric aerosols. TrAC Trends Anal. Chem. 30:1659–71 [Google Scholar]
  16. Nizkorodov SA, Laskin J, Laskin A. 16.  2011. Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 13:3612–29A review featuring applications and perspectives of HRMS analysis for the molecular-level study of organic aerosols. [Google Scholar]
  17. Signorell R, Reid JP. 17.  2011. Fundamentals and Applications in Aerosol Spectroscopy. Boca Raton, FL: CRC PressTextbook offering a comprehensive overview of the spectroscopy of aerosols, including fundamental aspects and applications. [Google Scholar]
  18. Kulkarni P, Baron PA, Willeke K. 18.  2011. Aerosol measurement: principles, techniques, and applications Hoboken, NJ: Wiley [Google Scholar]
  19. Posfai M, Buseck PR. 19.  2010. Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci. 38:17–43 [Google Scholar]
  20. Moffet RC, Tivanski AV, Gilles MK. 20.  2010. Scanning X-ray transmission microscopy: applications in atmospheric aerosol research. Fundamentals and Applications in Aerosol Spectroscopy R Signorell, JP Reid 419–62 New York: Taylor & Francis [Google Scholar]
  21. Laskin A. 21.  2010. Electron beam analysis and microscopy of individual particles. Fundamentals and Applications in Aerosol Spectroscopy R Signorell, JP Reid 463–91 New York: Taylor & Francis [Google Scholar]
  22. Laskin A, Laskin J, Nizkorodov SA. 22.  2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115:4335–82Thorough review focused on the current understanding of the chemistry of atmospheric brown carbon, including highlights of areas that need further study. [Google Scholar]
  23. Moffet RC, Roedel TC, Kelly ST, Yu XY, Carroll GT. 23.  et al. 2013. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California. Atmos. Chem. Phys. 13:10445–59 [Google Scholar]
  24. O'Brien RE, Wang B, Laskin A, Riemer N, West M. 24.  et al. 2015. Chemical imaging of ambient aerosol particles: observational constraints on mixing state parameterization. J. Geophys. Res. Atmos. 120:9591–605 [Google Scholar]
  25. Hiranuma N, Brooks SD, Moffet RC, Glen A, Laskin A. 25.  et al. 2013. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study. J. Geophys. Res. Atmos. 118:6564–79 [Google Scholar]
  26. Laskin A, Moffet RC, Gilles MK, Fast JD, Zaveri RA. 26.  et al. 2012. Tropospheric chemistry of internally mixed sea salt and organic particles: surprising reactivity of NaCl with weak organic acids. J. Geophys. Res. Atmos. 117:D15302 [Google Scholar]
  27. Ault AP, Moffet RC, Baltrusaitis J, Collins DB, Ruppel MJ. 27.  et al. 2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. Environ. Sci. Technol. 47:5603–12 [Google Scholar]
  28. Conny JM, Collins SM, Herzing AA. 28.  2014. Qualitative multiplatform microanalysis of individual heterogeneous atmospheric particles from high-volume air samples. Anal. Chem. 86:9709–16 [Google Scholar]
  29. Kim Y-H, Kim K-H, Ma C-J, Shon Z-H, Park CG. 29.  et al. 2014. An investigation into the relationship between the major chemical components of particulate matter in urban air. Chemosphere 95:387–94 [Google Scholar]
  30. Jung H-J, Eom H-J, Kang H-W, Moreau M, Sobanska S, Ro C-U. 30.  2014. Combined use of quantitative ED-EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques for the analysis of individual particles. Analyst 139:3949–60 [Google Scholar]
  31. Jeong GY, Achterberg EP. 31.  2014. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14:12415–28 [Google Scholar]
  32. Eom H-J, Jung H-J, Sobanska S, Chung S-G, Son Y-S. 32.  et al. 2013. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry. Anal. Chem. 85:10424–31 [Google Scholar]
  33. Jeong GY, Kim JY, Seo J, Kim GM, Jin HC, Chun Y. 33.  2014. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys. 14:505–21 [Google Scholar]
  34. Pöhlker C, Huffman JA, Forster JD, Poschl U. 34.  2013. Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen. Atmos. Meas. Tech. 6:3369–92 [Google Scholar]
  35. Moffet RC, Furutani H, Rödel TC, Henn TR, Sprau PO. 35.  et al. 2012. Iron speciation and mixing in single aerosol particles from the Asian continental outflow. J. Geophys. Res. Atmos. 117:D07204 [Google Scholar]
  36. Adachi K, Buseck PR. 36.  2015. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere. Atmos. Environ. 100:1–9 [Google Scholar]
  37. Adachi K, Zaizen Y, Kajino M, Igarashi Y. 37.  2014. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan. J. Geophys. Res. Atmos. 119:5386–96 [Google Scholar]
  38. China S, Salvadori N, Mazzoleni C. 38.  2014. Effect of traffic and driving characteristics on morphology of atmospheric soot particles at freeway on-ramps. Environ. Sci. Technol. 48:3128–35 [Google Scholar]
  39. Wang B, Laskin A. 39.  2014. Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: recycling of nitric acid and formation of organic salts. J. Geophys. Res. Atmos. 119:3335–51 [Google Scholar]
  40. Wang BB, O'Brien RE, Kelly ST, Shilling JE, Moffet RC. 40.  et al. 2015. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols. J. Phys. Chem. A 119:4498–508 [Google Scholar]
  41. Ault AP, Guasco TL, Baltrusaitis J, Ryder OS, Trueblood JV. 41.  et al. 2014. Heterogeneous reactivity of nitric acid with nascent sea spray aerosol: large differences observed between and within individual particles. J. Phys. Chem. Lett. 5:2493–500 [Google Scholar]
  42. Ault AP, Guasco TL, Ryder OS, Baltrusaitis J, Cuadra-Rodriguez LA. 42.  et al. 2013. Inside versus outside: ion redistribution in nitric acid reacted sea spray aerosol particles as determined by single particle analysis. J. Am. Chem. Soc. 135:14528–31 [Google Scholar]
  43. Veghte DP, Altaf MB, Freedman MA. 43.  2013. Size dependence of the structure of organic aerosol. J. Am. Chem. Soc. 135:16046–49 [Google Scholar]
  44. Ghorai S, Wang B, Tivanski A, Laskin A. 44.  2014. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids. Environ. Sci. Technol. 48:2234–41 [Google Scholar]
  45. Li X, Gupta D, Eom H-J, Kim H, Ro C-U. 45.  2014. Deliquescence and efflorescence behavior of individual NaCl and KCl mixture aerosol particles. Atmos. Environ. 82:36–43 [Google Scholar]
  46. Kim H, Lee M-J, Jung H-J, Eom H-J, Maskey S. 46.  et al. 2012. Hygroscopic behavior of wet dispersed and dry deposited NaNO3 particles. Atmos. Environ. 60:68–75 [Google Scholar]
  47. Mikhailov EF, Mironov GN, Pöhlker C, Chi X, Krueger ML. 47.  et al. 2015. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign. Atmos. Chem. Phys. 15:8847–69 [Google Scholar]
  48. O'Brien RE, Wang BB, Kelly ST, Lundt N, You Y. 48.  et al. 2015. Liquid-liquid phase separation in aerosol particles: imaging at the nanometer scale. Environ. Sci. Technol. 49:4995–5002 [Google Scholar]
  49. You Y, Renbaum-Wolff L, Carreras-Sospedra M, Hanna SJ, Hiranuma N. 49.  et al. 2012. Images reveal that atmospheric particles can undergo liquid-liquid phase separations. PNAS 109:13188–93 [Google Scholar]
  50. You Y, Renbaum-Wolff L, Bertram AK. 50.  2013. Liquid-liquid phase separation in particles containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride. Atmos. Chem. Phys. 13:11723–34 [Google Scholar]
  51. Pöhlker C, Saturno J, Kruger ML, Forster JD, Weigand M. 51.  et al. 2014. Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration. Geophys. Res. Lett. 41:3681–89 [Google Scholar]
  52. Ghosal S, Weber PK, Laskin A. 52.  2014. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry. Anal. Methods 6:2444–51 [Google Scholar]
  53. Chen HH, Grassian VH, Saraf LV, Laskin A. 53.  2013. Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash. Analyst 138:451–60 [Google Scholar]
  54. Conny JM. 54.  2013. Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy. Environ. Sci. Technol. 47:8575–81 [Google Scholar]
  55. Jeong GY, Nousiainen T. 55.  2014. TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmos. Chem. Phys. 14:7233–54 [Google Scholar]
  56. Knopf DA, Alpert PA, Wang B, O'Brien RE, Kelly ST. 56.  et al. 2014. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. J. Geophys. Res. Atmos. 119:10365–81 [Google Scholar]
  57. Wang B, Laskin A, Roedel T, Gilles MK, Moffet RC. 57.  et al. 2012. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. J. Geophys. Res. Atmos. 117:D00V19 [Google Scholar]
  58. Schill GP, Genareau K, Tolbert MA. 58.  2015. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash. Atmos. Chem. Phys. 15:7523–36 [Google Scholar]
  59. Sihvonen SK, Schill GP, Lyktey NA, Veghte DP, Tolbert MA, Freedman MA. 59.  2014. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation. J. Phys. Chem. A 118:8787–96 [Google Scholar]
  60. Schill GP, Tolbert MA. 60.  2014. Heterogeneous ice nucleation on simulated sea-spray aerosol using Raman microscopy. J. Phys. Chem. C 118:29234–41 [Google Scholar]
  61. Wheeler MJ, Mason RH, Steunenberg K, Wagstaff M, Chou C, Bertram AK. 61.  2015. Immersion freezing of supermicron mineral dust particles: freezing results, testing different schemes for describing ice nucleation, and ice nucleation active site densities. J. Phys. Chem. A 119:4358–72 [Google Scholar]
  62. Thompson JE, Hayes PL, Jimenez JL, Adachi K, Zhang X. 62.  et al. 2012. Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmos. Environ. 55:190–200 [Google Scholar]
  63. Veghte DP, Freedman MA. 63.  2012. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles. Anal. Chem. 84:9101–8 [Google Scholar]
  64. China S, Scarnato B, Owen RC, Zhang B, Ampadu MT. 64.  et al. 2015. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: implications for optical properties. Geophys. Res. Lett. 42:1243–50 [Google Scholar]
  65. Harris E, Sinha B, Hoppe P, Ono S. 65.  2013. High-precision measurements of S-33 and S-34 fractionation during SO2 oxidation reveal causes of seasonality in SO2 and sulfate isotopic composition. Environ. Sci. Technol. 47:12174–83 [Google Scholar]
  66. Harris E, Sinha B, van Pinxteren D, Schneider J, Poulain L. 66.  et al. 2014. In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010. Atmos. Chem. Phys. 14:4219–35 [Google Scholar]
  67. Moffet RC, Henn TR, Laskin A, Gilles MK. 67.  2010. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. Anal. Chem. 82:7906–14 [Google Scholar]
  68. Kelly ST, Nigge P, Prakash S, Laskin A, Wang BB. 68.  et al. 2013. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor. Rev. Sci. Instrum. 84:073708 [Google Scholar]
  69. Huthwelker T, Zelenay V, Birrer M, Krepelova A, Raabe J. 69.  et al. 2010. An in situ cell to study phase transitions in individual aerosol particles on a substrate using scanning transmission x-ray microspectroscopy. Rev. Sci. Instrum. 81:113706 [Google Scholar]
  70. Zelenay V, Ammann M, Krepelova A, Birrer M, Tzvetkov G. 70.  et al. 2011. Direct observation of water uptake and release in individual submicrometer sized ammonium sulfate and ammonium sulfate/adipic acid particles using X-ray microspectroscopy. J. Aerosol Sci. 42:38–51 [Google Scholar]
  71. Benninghoven A. 71.  1994. Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angew. Chem. Int. Ed. 33:1023–43 [Google Scholar]
  72. Tervahattu H, Juhanoja J, Kupiainen K. 72.  2002. Identification of an organic coating on marine aerosol particles by TOF-SIMS. J. Geophys. Res. Atmos. 107:4319 [Google Scholar]
  73. Cheng W, Weng L-T, Li Y, Lau A, Chan C, Chan C-M. 73.  2014. Characterization of size-segregated aerosols using ToF-SIMS imaging and depth profiling. Surf. Interface Anal. 46:480–8 [Google Scholar]
  74. Liu Y, Minofar B, Desyaterik Y, Dames E, Zhu Z. 74.  et al. 2011. Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles. Phys. Chem. Chem. Phys. 13:11846–57 [Google Scholar]
  75. Harris E, Sinha B, van Pinxteren D, Tilgner A, Fomba KW. 75.  et al. 2013. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science 340:727–30 [Google Scholar]
  76. Laskina O, Young MA, Kleiber PD, Grassian VH. 76.  2013. Infrared extinction spectroscopy and micro-Raman spectroscopy of select components of mineral dust mixed with organic compounds. J. Geophys. Res. Atmos. 118:6593–606 [Google Scholar]
  77. Ault AP, Zhao D, Ebben CJ, Tauber MJ, Geiger FM. 77.  et al. 2013. Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys. Chem. Chem. Phys. 15:6206–14 [Google Scholar]
  78. Craig RL, Bondy AL, Ault AP. 78.  2015. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level. Anal. Chem. 87:7510–14 [Google Scholar]
  79. Beardsley R, Jang M, Ori B, Im Y, Delcomyn CA, Witherspoon N. 79.  2013. Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environ. Chem. 10:167–77 [Google Scholar]
  80. Drozd G, Woo J, Hakkinen SAK, Nenes A, McNeill VF. 80.  2014. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility. Atmos. Chem. Phys. 14:5205–15 [Google Scholar]
  81. Zaveri RA, Shaw WJ, Cziczo DJ, Schmid B, Ferrare RA. 81.  et al. 2012. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atm. Chem. Phys. Discuss. 12:1299–400 [Google Scholar]
  82. Piens D, Kelly ST, Harder T, Petters MD, O'Brien RE. 82.  et al. 2016. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging. Environ. Sci. Technol. doi: 10.1021/acs.est.6b00793 [Google Scholar]
  83. Roach PJ, Laskin J, Laskin A. 83.  2010. Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. Anal. Chem. 82:7979–86 [Google Scholar]
  84. Laskin J, Laskin A, Roach PJ, Slysz GW, Anderson GA. 84.  et al. 2010. High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 82:2048–58 [Google Scholar]
  85. O'Brien RE, Laskin A, Laskin J, Rubitschun CL, Surratt JD, Goldstein AH. 85.  2014. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution nanospray desorption electrospray ionization mass spectrometry: CalNex 2010 field study. J. Geophys. Res. Atmos. 119:12706–20 [Google Scholar]
  86. O'Brien RE, Laskin A, Laskin J, Liu S, Weber R. 86.  et al. 2013. Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmos. Environ. 68:265–72 [Google Scholar]
  87. O'Brien RE, Nguyen TB, Laskin A, Laskin J, Hayes PL. 87.  et al. 2013. Probing molecular associations of field-collected and laboratory-generated SOA with nano-DESI high-resolution mass spectrometry. J. Geophys. Res. Atmos. 118:1042–51 [Google Scholar]
  88. Tao S, Lu X, Levac N, Bateman AP, Nguyen TB. 88.  et al. 2014. Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. Environ. Sci. Technol. 48:10993–1001 [Google Scholar]
  89. Chang-Graham AL, Profeta LTM, Johnson TJ, Yokelson RJ, Laskin A, Laskin J. 89.  2011. Case study of water-soluble metal containing organic constituents of biomass burning aerosol. Environ. Sci. Technol. 45:1257–63 [Google Scholar]
  90. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, van der Gon HD. 90.  et al. 2015. Particulate matter, air quality and climate: lessons learned and future needs. Atmos. Chem. Phys. 15:8217–99 [Google Scholar]
  91. Quinn PK, Collins DB, Grassian VH, Prather KA, Bates TS. 91.  2015. Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev. 115:4383–99A comprehensive review of the results of field and laboratory studies to characterize the properties of SSA, with an emphasis on the organic fraction. [Google Scholar]
  92. George C, Ammann M, D'Anna B, Donaldson DJ, Nizkorodov SA. 92.  2015. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 115:4218–58A comprehensive review of photochemical processes occurring at the air-surface interfaces of aerosols, environmental surfaces, and atmospheric ice. [Google Scholar]
  93. Noziere B, Kalberer M, Claeys M, Allan J, D'Anna B. 93.  et al. 2015. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem. Rev. 115:3919–83 [Google Scholar]
  94. Zhang R, Wang G, Guo S, Zarnora ML, Ying Q. 94.  et al. 2015. Formation of urban fine particulate matter. Chem. Rev. 115:3803–55 [Google Scholar]
  95. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM. 95.  et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234–37 [Google Scholar]
  96. Wang B, Harder TH, Kelly ST, Piens DS, China S. 96.  et al. 2016. Airborne soil organic particles generated by precipitation. Nat. Geosci. doi: 10.1038/NGEO2705 A field evidence report of solid ASOP emitted to the atmosphere through atmosphere–land surface interactions following rainfall. [Google Scholar]
  97. Nie W, Ding A, Wang T, Kerminen V-M, George C. 97.  et al. 2014. Polluted dust promotes new particle formation and growth. Sci. Rep. 4:6634 [Google Scholar]
  98. Knippertz P, Stuut J-BW. 98.  2014. Mineral Dust, a Key Player in the Earth System Dordrecht, Neth.: SpringerTextbook offering a comprehensive overview of the chemistry and physics of atmospheric mineral dust. [Google Scholar]
  99. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D. 99.  et al. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9:5155–236 [Google Scholar]
  100. Al-Abadleh HA. 100.  2015. Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv. 5:45785–911 [Google Scholar]
  101. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G. 101.  et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71 [Google Scholar]
  102. Hakkinen SAK, McNeill VF, Riipinen I. 102.  2014. Effect of inorganic salts on the volatility of organic acids. Environ. Sci. Technol. 48:13718–26 [Google Scholar]
  103. Weller C, Horn S, Herrmann H. 103.  2013. Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. J. Photochem. Photobiol.-Chem. 268:24–36 [Google Scholar]
  104. Weller C, Tilgner A, Braeuer P, Herrmann H. 104.  2014. Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles. Environ. Sci. Technol. 48:5652–59 [Google Scholar]
  105. Elbert W, Taylor PE, Andreae MO, Pöschl U. 105.  2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7:4569–88 [Google Scholar]
  106. Sesartic A, Dallafior TN. 106.  2011. Global fungal spore emissions, review and synthesis of literature data. Biogeosciences 8:1181–92Comprehensive reviews focused on airborne biological particles and their atmospheric life cycle and impact on air quality and climate. [Google Scholar]
  107. Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B. 107.  et al. 2011. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 8:17–25Comprehensive reviews focused on airborne biological particles and their atmospheric life cycle and impact on air quality and climate. [Google Scholar]
  108. Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS. 108.  et al. 2012. Primary biological aerosol particles in the atmosphere: a review. Tellus B 64:15598 [Google Scholar]
  109. Jaenicke R. 109.  2005. Abundance of cellular material and proteins in the atmosphere. Science 308:73 [Google Scholar]
  110. Heald CL, Spracklen DV. 110.  2009. Atmospheric budget of primary biological aerosol particles from fungal spores. Geophys. Res. Lett. 36:L09806 [Google Scholar]
  111. Huffman JA, Sinha B, Garland RM, Snee-Pollmann A, Gunthe SS. 111.  et al. 2012. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos. Chem. Phys. 12:11997–2019 [Google Scholar]
  112. Prenni AJ, Tobo Y, Garcia E, DeMott PJ, Huffman JA. 112.  et al. 2013. The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett. 40:227–31 [Google Scholar]
  113. Spracklen DV, Heald CL. 113.  2014. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14:9051–59 [Google Scholar]
  114. Schumacher CJ, Pöhlker C, Aalto P, Hiltunen V, Petäjä T. 114.  et al. 2013. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13:11987–2001 [Google Scholar]
  115. Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q. 115.  et al. 2010. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 48:RG2002 [Google Scholar]
  116. Pummer BG, Bauer H, Bernardi J, Chazallon B, Facq S. 116.  et al. 2013. Chemistry and morphology of dried-up pollen suspension residues. J. Raman Spectrosc. 44:1654–58 [Google Scholar]
  117. Griffiths PT, Borlace JS, Gallimore PJ, Kalberer M, Herzog M, Pope FD. 117.  2012. Hygroscopic growth and cloud activation of pollen: a laboratory and modelling study. Atmos. Sci. Lett. 13:289–95 [Google Scholar]
  118. Grote M, Valenta R, Reichelt R. 118.  2003. Abortive pollen germination: a mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. J. Allergy Clin. Immunol. 111:1017–23 [Google Scholar]
  119. Taylor P, Flagan R, Miguel A, Valenta R, Glovsky M. 119.  2004. Birch pollen rupture and the release of aerosols of respirable allergens. Clin. Exp. Allergy 34:1591–96 [Google Scholar]
  120. Steiner AL, Brooks SD, Deng C, Thornton DC, Pendleton MW, Bryant V. 120.  2015. Pollen as atmospheric cloud condensation nuclei. Geophys. Res. Lett. 42:3596–602 [Google Scholar]
  121. O'Sullivan D, Murray BJ, Ross JF, Whale TF, Price HC. 121.  et al. 2015. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 5:8082 [Google Scholar]
  122. Després VR, Nowoisky JF, Klose M, Conrad R, Andreae MO, Pöschl U. 122.  2007. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4:1127–41 [Google Scholar]
  123. Artaxo P, Rizzo LV, Brito JF, Barbosa HM, Arana A. 123.  et al. 2013. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discuss. 165:203–35 [Google Scholar]
  124. Meskhidze N, Petters MD, Tsigaridis K, Bates T, O'Dowd C. 124.  et al. 2013. Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols. Atmos. Sci. Lett. 14:207–13 [Google Scholar]
  125. Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP. 125.  et al. 2007. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J. Geophys. Res. Atmos. 112:D21202 [Google Scholar]
  126. Modini RL, Harris B, Ristovski ZD. 126.  2010. The organic fraction of bubble-generated, accumulation mode sea spray aerosol (SSA). Atmos. Chem. Phys. 10:2867–77 [Google Scholar]
  127. Fuentes E, Coe H, Green D, McFiggans G. 127.  2011. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol. Part 2: Composition, hygroscopicity and cloud condensation activity. Atmos. Chem. Phys. 11:2585–602 [Google Scholar]
  128. Prather KA, Bertram TH, Grassian VH, Deane GB, Stokes MD. 128.  et al. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. PNAS 110:7550–55 [Google Scholar]
  129. Frossard AA, Russell LM, Burrows SM, Elliott SM, Bates TS, Quinn PK. 129.  2014. Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res. Atmos. 119:12977–3003 [Google Scholar]
  130. Quinn PK, Bates TS, Schulz KS, Coffman DJ, Frossard AA. 130.  et al. 2014. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 7:228–32 [Google Scholar]
  131. Orellana MV, Matrai PA, Leck C, Rauschenberg CD, Lee AM, Coz E. 131.  2011. Marine microgels as a source of cloud condensation nuclei in the high Arctic. PNAS 108:13612–17 [Google Scholar]
  132. Ovadnevaite J, O'Dowd C, Dall'Osto M, Ceburnis D, Worsnop DR, Berresheim H. 132.  2011. Detecting high contributions of primary organic matter to marine aerosol: a case study. Geophys. Res. Lett. 38:L02807 [Google Scholar]
  133. Facchini MC, Rinaldi M, Decesari S, Carbone C, Finessi E. 133.  et al. 2008. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 35:L17814 [Google Scholar]
  134. Clarke AD, Owens SR, Zhou JC. 134.  2006. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res. Atmos. 111:D06210 [Google Scholar]
  135. Pierce JR, Adams PJ. 135.  2006. Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res. Atmos. 111:D06203 [Google Scholar]
  136. Collins DB, Ault AP, Moffet RC, Ruppel MJ, Cuadra-Rodriguez LA. 136.  et al. 2013. Impact of marine biogeochemistry on the chemical mixing state and cloud forming ability of nascent sea spray aerosol. J. Geophys. Res. Atmos. 118:8553–65 [Google Scholar]
  137. Wex H, Fuentes E, Tsagkogeorgas G, Voigtlander J, Clauss T. 137.  et al. 2010. The influence of algal exudate on the hygroscopicity of sea spray particles. Adv. Meteorol. 2010:365131 [Google Scholar]
  138. Alpert PA, Kilthau WP, Bothe DW, Radway JC, Aller JY, Knopf DA. 138.  2015. The influence of marine microbial activities on aerosol production: a laboratory mesocosm study. J. Geophys. Res. Atmos. 120:8841–60 [Google Scholar]
  139. Ault AP, Zhao DF, Ebben CJ, Tauber MJ, Geiger FM. 139.  et al. 2013. Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys. Chem. Chem. Phys. 15:6206–14 [Google Scholar]
  140. Guasco TL, Cuadra-Rodriguez LA, Pedler BE, Ault AP, Collins DB. 140.  et al. 2014. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. Environ. Sci. Technol. 48:1324–33 [Google Scholar]
  141. Verdugo P. 141.  2012. Marine microgels. Annu. Rev. Mar. Sci. 4:375–400 [Google Scholar]
  142. Cisternas-Novoa C, Lee C, Engel A. 142.  2015. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): differences between their origin and vertical distributions in the ocean. Mar. Chem. 175:56–71 [Google Scholar]
  143. Knopf DA, Alpert PA, Wang B, Aller JY. 143.  2011. Stimulation of ice nucleation by marine diatoms. Nat. Geosci. 4:88–90 [Google Scholar]
  144. Alpert PA, Aller JY, Knopf DA. 144.  2011. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys. Chem. Chem. Phys. 13:19882–94 [Google Scholar]
  145. Sharoni S, Trainic M, Schatz D, Lehahn Y, Flores MJ. 145.  et al. 2015. Infection of phytoplankton by aerosolized marine viruses. PNAS 112:6643–47 [Google Scholar]
  146. Donaldson DJ, George C. 146.  2012. Sea-surface chemistry and its impact on the marine boundary layer. Environ. Sci. Technol. 46:10385–89 [Google Scholar]
  147. Zhou XL, Davis AJ, Kieber DJ, Keene WC, Maben JR. 147.  et al. 2008. Photochemical production of hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols produced by bursting bubbles from Sargasso seawater. Geophys. Res. Lett. 35:L20803 [Google Scholar]
  148. Joung YS, Buie CR. 148.  2015. Aerosol generation by raindrop impact on soil. Nat. Commun. 6:6083 [Google Scholar]
  149. O'Sullivan D, Murray BJ, Malkin TL, Whale TF, Umo NS. 149.  et al. 2014. Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components. Atmos. Chem. Phys. 14:1853–67 [Google Scholar]
  150. Tobo Y, DeMott PJ, Hill TCJ, Prenni AJ, Swoboda-Colberg NG. 150.  et al. 2014. Organic matter matters for ice nuclei of agricultural soil origin. Atmos. Chem. Phys. 14:8521–31 [Google Scholar]
  151. Wang BB, Knopf DA. 151.  2011. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3. J. Geophys. Res. Atmos. 116:D03205 [Google Scholar]
  152. Koop T, Bookhold J, Shiraiwa M, Pöschle U. 152.  2011. Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13:19238–55 [Google Scholar]
  153. Zhou S, Shiraiwa M, McWhinney RD, Poschl U, Abbatt JPD. 153.  2013. Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss. 165:391–406 [Google Scholar]
  154. Vaden TD, Imre D, Beranek J, Shrivastava M, Zelenyuk A. 154.  2011. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. PNAS 108:2190–95 [Google Scholar]
  155. Renbaum-Wolff L, Grayson JW, Bateman AP, Kuwata M, Sellier M. 155.  et al. 2013. Viscosity of alpha-pinene secondary organic material and implications for particle growth and reactivity. PNAS 110:8014–19 [Google Scholar]
  156. Berkemeier T, Shiraiwa M, Pöschl U, Koop T. 156.  2014. Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. 14:12513–31 [Google Scholar]
  157. Pajunoja A, Lambe AT, Hakala J, Rastak N, Cummings MJ. 157.  et al. 2015. Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys. Res. Lett. 42:3063–68 [Google Scholar]
  158. Shiraiwa M, Yee LD, Schilling KA, Loza CL, Craven JS. 158.  et al. 2013. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. PNAS 110:11746–50 [Google Scholar]
  159. Donaldson MA, Bish DL, Raff JD. 159.  2014. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid. PNAS 111:18472–77 [Google Scholar]
  160. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I. 160.  et al. 2011. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616–18 [Google Scholar]
  161. Li Y, Pöschl U, Shiraiwa M. 161.  2016. Molecular corridors and parameterizations of volatility in the evolution of organic aerosols. Atmos. Chem. Phys. 16:3327–344 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041521
Loading
/content/journals/10.1146/annurev-anchem-071015-041521
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error