The release of chemical information from cells and tissues holds the key to understanding cellular behavior and dysfunction. The development of methodologies that can measure cellular secretion in a time-dependent fashion is therefore essential. Often these measurements are made difficult by the high-salt conditions of the cellular environment, the presence of numerous other secreted factors, and the small mass samples that are produced when frequent sampling is used to resolve secretory dynamics. In this review, the methods that we have developed for measuring hormone release from islets of Langerhans are dissected to illustrate the practical difficulties of studying cellular secretions. Other methods from the literature are presented that provide alternative approaches to particularly challenging areas of monitoring cellular secretion. The examples presented in this review serve as case studies and should be adaptable to other cell types and systems for unique applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Barabási AL, Oltvai ZN. 1.  2004. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5:101–13 [Google Scholar]
  2. Massagué J. 2.  1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67:753–91 [Google Scholar]
  3. Saltiel AR, Kahn CR. 3.  2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806 [Google Scholar]
  4. Berridge MJ. 4.  1993. Inositol triphosphate and calcium signaling. Nature 361:315–25 [Google Scholar]
  5. Henquin JC. 5.  2000. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–60 [Google Scholar]
  6. Terry SC, Jerman JH, Angell JB. 6.  1979. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron. Devices 26:1880–86 [Google Scholar]
  7. Manz A, Harrison DJ, Verpoorte EM, Fettinger JC, Paulus A. 7.  et al. 1992. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J. Chromatogr. A 593:253–58 [Google Scholar]
  8. Jacobson SC, Hergenröder R, Koutny LB, Warmack RJ, Ramsey JM. 8.  1994. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices. Anal. Chem. 66:1107–13 [Google Scholar]
  9. Squires TM, Quake SR. 9.  2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026 [Google Scholar]
  10. El-Ali J, Sorger PK, Jensen KF. 10.  2006. Cells on chips. Nature 442:403–11 [Google Scholar]
  11. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. 11.  1999. Patterning proteins and cells using soft lithography. Biomaterials 20:2363–76 [Google Scholar]
  12. Gencoglu A, Minerick AR. 12.  2014. Electrochemical detection techniques in micro- and nanofluidic devices. Microfluid. Nanofluid. 17:781–807 [Google Scholar]
  13. Randviir EP, Banks CE. 13.  2015. Electrode substrate innovation for electrochemical detection in microchip electrophoresis. Electrophoresis 36:1845–53 [Google Scholar]
  14. Mark JJP, Scholz R, Matysik FM. 14.  2012. Electrochemical methods in conjunction with capillary and microchip electrophoresis. J. Chromatogr. A 1267:45–64 [Google Scholar]
  15. Johnson ME, Landers JP. 15.  2004. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25:3513–27 [Google Scholar]
  16. Baker CA, Duong CT, Grimley A, Roper MG. 16.  2009. Recent advances in microfluidic detection systems. Bioanalysis 1:967–75 [Google Scholar]
  17. Ohla S, Belder D. 17.  2012. Chip-based separation devices coupled to mass spectrometry. Curr. Opin. Chem. Biol. 16:453–59 [Google Scholar]
  18. Wang X, Yi L, Mukhitov N, Schrell AM, Dhumpa R, Roper MG. 18.  2015. Microfluidics-to-mass spectrometry: a review of coupling methods and applications. J. Chromatogr. A 1382:98–116 [Google Scholar]
  19. Zhang X, Roper MG. 19.  2009. Microfluidic perfusion system for automated delivery of temporal gradients to islets of Langerhans. Anal. Chem. 81:1162–68 [Google Scholar]
  20. Zhang X, Grimley A, Bertram R, Roper MG. 20.  2010. Microfluidic system for generation of sinusoidal glucose waveforms for entrainment of islets of Langerhans. Anal. Chem. 82:6704–11 [Google Scholar]
  21. Wang X, Yi L, Guillo C, Roper MG. 21.  2015. Micellar electrokinetic chromatography method for measuring amino acid secretions from islets of Langerhans. Electrophoresis 36:1172–78 [Google Scholar]
  22. Guillo C, Roper MG. 22.  2008. Two-color electrophoretic immunoassay for simultaneous measurement of insulin and glucagon content in islets of Langerhans. Electrophoresis 29:410–16 [Google Scholar]
  23. Guillo C, Truong TM, Roper MG. 23.  2011. Simultaneous capillary electrophoresis competitive immunoassay for insulin, glucagon, and islet amyloid polypeptide secretion from mouse islets of Langerhans. J. Chromatogr. A 1218:4059–64 [Google Scholar]
  24. Lomasney AR, Yi L, Roper MG. 24.  2013. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device. Anal. Chem. 85:7919–25 [Google Scholar]
  25. Yi L, Wang X, Dhumpa R, Schrell AM, Mukhitov N, Roper MG. 25.  2015. Integrated perfusion and separation systems for entrainment of insulin secretion from islets of Langerhans. Lab Chip 15:823–32 [Google Scholar]
  26. Pørksen N. 26.  2002. The in vivo regulation of pulsatile insulin secretion. Diabetologia 45:3–20 [Google Scholar]
  27. Pørksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O. 27.  2002. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51:S245–54 [Google Scholar]
  28. Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E. 28.  2009. Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology 150:5334–40 [Google Scholar]
  29. Juhl CB, Pørksen N, Sturis J, Hansen ÅP, Veldhuis JD. 29.  et al. 2000. High-frequency oscillations in circulating amylin concentrations in healthy humans. Am. J. Physiol. Endocrinol. Metab. 278:E484–90 [Google Scholar]
  30. Matveyenko AV, Liuwantara D, Gurlo T, Kirakossian D, Dalla Man C. 30.  et al. 2012. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes 61:2269–79 [Google Scholar]
  31. Chan DW, Perlstein MT. 31.  1987. General principle of immunoassay. Immunoassay: A Practical Guide DW Chan, MT Perlstein 1–23 Orlando, FL: Academic [Google Scholar]
  32. Wild D, John R, Sheehan C, Binder S, He J. 32.  2013. Immunoassay configurations. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA, and Related Techniques ed. D Wild 29–107 Waltham, MA: Elsevier, 4th ed.. [Google Scholar]
  33. Schultz NM, Kennedy RT. 33.  1993. Rapid immunoassays using capillary electrophoresis with fluorescence detection. Anal. Chem. 65:3161–65 [Google Scholar]
  34. Shimura K, Karger BL. 34.  1994. Affinity probe capillary electrophoresis: analysis of recombinant human growth hormone with a fluorescent labeled antibody fragment. Anal. Chem. 66:9–15 [Google Scholar]
  35. Schmalzing D, Buonocore S, Piggee C. 35.  2000. Capillary electrophoresis-based immunoassays. Electrophoresis 21:3919–30 [Google Scholar]
  36. Heegaard NHH, Kennedy RT. 36.  2002. Antigen-antibody interactions in capillary electrophoresis. J. Chromatogr. B 768:93–103 [Google Scholar]
  37. Moser AC, Hage DS. 37.  2008. Capillary electrophoresis-based immunoassays: principles and quantitative applications. Electrophoresis 29:3279–95 [Google Scholar]
  38. Ferry MS, Razinkov IA, Hasty J. 38.  2011. Microfluidics for synthetic biology: from design to execution. Methods Enzymol. 497:295–372 [Google Scholar]
  39. Dishinger JF, Reid KR, Kennedy RT. 39.  2009. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal. Chem. 81:3119–27 [Google Scholar]
  40. Silva PN, Green BJ, Altamentova SM, Rocheleau JV. 40.  2013. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip 13:4374–84 [Google Scholar]
  41. Godwin LA, Pilkerton ME, Deal KS, Wanders D, Judd RL, Easley CJ. 41.  2011. Passively operated microfluidic device for stimulation and secretion sampling of single pancreatic islets. Anal. Chem. 83:7166–72 [Google Scholar]
  42. Kirby BJ, Hasselbrink EF Jr. 42.  2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202 [Google Scholar]
  43. Datta S, Conlisk AT, Li HF, Yoda M. 43.  2009. Effect of divalent ions on electroosmotic flow in microchannels. Mech. Res. Commun. 36:65–74 [Google Scholar]
  44. Roper MG, Shackman JG, Dahlgren GM, Kennedy RT. 44.  2003. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 75:4711–17 [Google Scholar]
  45. Jacobson SC, Ermakov SV, Ramsey JM. 45.  1999. Minimizing the number of voltage sources and fluid reservoirs for electrokinetic valving in microfluidic devices. Anal. Chem. 71:3273–76 [Google Scholar]
  46. Shackman JG, Dahlgren GM, Peters JL, Kennedy RT. 46.  2005. Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip 5:56–63 [Google Scholar]
  47. Wu J, Xu K, Landers JP, Weber SG. 47.  2013. An in situ measurement of extracellular cysteamine, homocysteine, and cysteine concentrations in organotypic hippocampal slice cultures by integration of electroosmotic sampling and microfluidic analysis. Anal. Chem. 85:3095–103 [Google Scholar]
  48. Mukhitov N, Yi L, Schrell AM, Roper MG. 48.  2014. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler. J. Chromatogr. A 1367:154–60 [Google Scholar]
  49. Reid KR, Kennedy RT. 49.  2009. Continuous operation of microfabricated electrophoresis devices for 24 hours and application to chemical monitoring of living cells. Anal. Chem. 81:6837–42 [Google Scholar]
  50. Wang Y, Lee D, Zhang L, Jeon H, Mendoza-Elias JE. 50.  et al. 2012. Systematic prevention of bubble formation and accumulation for long-term culture of pancreatic islet cells in microfluidic device. Biomed. Microdevices 14:419–26 [Google Scholar]
  51. Makamba H, Kim JH, Lim K, Park N, Hahn JH. 51.  2003. Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24:3607–19 [Google Scholar]
  52. Rogers CI, Pagaduan JV, Nordin GP, Woolley AT. 52.  2011. Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal. Chem. 83:6418–25 [Google Scholar]
  53. Easley CJ, Rocheleau JV, Head WS, Piston DW. 53.  2009. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal. Chem. 81:9086–95 [Google Scholar]
  54. Chen D, Du W, Liu Y, Liu W, Kuznetsov A. 54.  et al. 2008. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. PNAS 105:16843–48 [Google Scholar]
  55. Lo JF, Wang Y, Blake A, Yu G, Harvat TA. 55.  et al. 2012. Islet preconditioning via multimodal microfluidic modulation of intermittent hypoxia. Anal. Chem. 84:1987–93 [Google Scholar]
  56. Bowen AL, Martin RS. 56.  2010. Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection. Electrophoresis 31:2534–40 [Google Scholar]
  57. Parati G, Esler M. 57.  2012. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur. Heart J. 33:1058–66 [Google Scholar]
  58. Ahles A, Engelhardt S. 58.  2014. Polymorphic variants of adrenoceptors: pharmacology, physiology, and role in diseases. Pharmacol. Rev. 66:598–637 [Google Scholar]
  59. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR. 59.  2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–16 [Google Scholar]
  60. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ. 60.  et al. 1991. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. PNAS 88:10754–58 [Google Scholar]
  61. Bergquist J, Tarkowski A, Ekman R, Ewing A. 61.  1994. Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. PNAS 91:12912–16 [Google Scholar]
  62. Shadpour H, Zawistowski JS, Herman A, Hahn K, Allbritton NL. 62.  2011. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors. Anal. Chim. Acta 696:101–7 [Google Scholar]
  63. Johnson AS, Anderson KB, Halpin ST, Kirkpatrick DC, Spence DM, Martin RS. 63.  2013. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst 138:129–36 [Google Scholar]
  64. Pentecost AM, Martin RS. 64.  2015. Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Anal. Methods 7:2968–76 [Google Scholar]
  65. Johnson AS, Mehl BT, Martin RS. 65.  2015. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. Anal. Methods 7:884–93 [Google Scholar]
  66. Anderson KB, Halpin ST, Johnson AS, Martin RS, Spence DM. 66.  2013. Integration of multiple components in polystyrene-based microfluidic devices part II: cellular analysis. Analyst 138:137–43 [Google Scholar]
  67. Anderson KB, Lockwood SY, Martin RS, Spence DM. 67.  2013. A 3D printed fluidic device that enables integrated features. Anal. Chem. 85:5622–26 [Google Scholar]
  68. Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL. 68.  et al. 2014. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–32 [Google Scholar]
  69. Stipanuk MH. 69.  2004. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24:539–77 [Google Scholar]
  70. Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT. 70.  2009. Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal. Chem. 81:2350–56 [Google Scholar]
  71. Dugan CE, Cawthorn WP, MacDougald OA, Kennedy RT. 71.  2014. Multiplexed microfluidic enzyme assays for simultaneous detection of lipolysis products from adipocytes. Anal. Bioanal. Chem. 406:4851–59 [Google Scholar]
  72. Milligan G, Stoddart LA, Brown AJ. 72.  2006. G protein–coupled receptors for free fatty acids. Cell Signal 18:1360–65 [Google Scholar]
  73. Bunka DH, Stockley PG. 73.  2006. Aptamers come of age—at last. Nat. Rev. Microbiol. 4:588–96 [Google Scholar]
  74. Cho EJ, Lee JW, Ellington AD. 74.  2009. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2:241–64 [Google Scholar]
  75. Bezbradica JS, Medzhitov R. 75.  2009. Integration of cytokine and heterologous receptor signaling pathways. Nat. Immunol. 10:333–39 [Google Scholar]
  76. Lui Y, Kwa T, Revzin A. 76.  2012. Simultaneous detection of cell-secreted TNF-α and INF-γ using micropatterned aptamer-modified electrodes. Biomaterials 33:7347–55 [Google Scholar]
  77. Zhou Q, Kwa T, Gao Y, Liu Y, Rahimian A, Revzin A. 77.  2014. On-chip regeneration of aptasensors for monitoring cell secretion. Lab Chip 14:276–79 [Google Scholar]
  78. Matharu Z, Patel D, Gao Y, Hague A, Zhou Q, Revzin A. 78.  2014. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 86:8865–72 [Google Scholar]
  79. Dunn MF. 79.  2005. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18:295–303 [Google Scholar]
  80. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. 80.  2006. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–46 [Google Scholar]
  81. Bergsten P. 81.  2002. Role of oscillations in membrane potential, cytoplasmic Ca2+, and metabolism for plasma insulin oscillations. Diabetes 51:S171–76 [Google Scholar]
  82. Hu J, Wang T, Kim J, Shannon C, Easley CJ. 82.  2012. Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay. J. Am. Chem. Soc. 134:7066–72 [Google Scholar]
  83. Hu J, Yu Y, Brooks JC, Godwin LA, Somasundaram S. 83.  et al. 2014. A reusable electrochemical proximity assay for highly selective, real-time protein quantitation in biological matrices. J. Am. Chem. Soc. 136:8467–74 [Google Scholar]
  84. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K. 84.  et al. 2002. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20:473–77 [Google Scholar]
  85. Jarvius J, Melin J, Göransson J, Stenberg J, Fredriksson S. 85.  et al. 2006. Digital quantification using amplified single-molecule detection. Nat. Methods 3:725–27 [Google Scholar]
  86. Marasco CC, Enders JR, Seale KT, McLean JA, Wikswo JP. 86.  2015. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform. PLOS ONE 10e0117685
  87. Faley S, Seale K, Hughey J, Schaffer DK, VanCompernolle S. 87.  et al. 2008. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:1700–12 [Google Scholar]
  88. Faley SL, Copland M, Reboud J, Cooper JM. 88.  2011. Cell chip array for microfluidic proteomics enabling rapid in situ assessment of intracellular protein phosphorylation. Biomicrofluidics 5:024106 [Google Scholar]
  89. Ueki K, Okada T, Hu J, Liew CW, Assmann A. 89.  et al. 2006. Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes. Nat. Genet. 38:583–88 [Google Scholar]
  90. Gerin I, Dolinsky VW, Shackman JG, Kennedy RT, Chiang SH. 90.  et al. 2005. LXRβ is required for adipocyte growth, glucose homeostasis, and β cell function. J. Biol. Chem. 280:23024–31 [Google Scholar]
  91. Dhumpa R, Truong TM, Wang X, Bertram R, Roper MG. 91.  2014. Negative feedback synchronizes islets of Langerhans. Biophys. J. 106:2275–82 [Google Scholar]
  92. Wu J, Sandberg M, Weber SG. 92.  2013. Integrated electroosmotic perfusion of tissue with online microfluidic analysis to track the metabolism of cystamine, pantethine, and coenzyme A. Anal. Chem. 85:12020–27 [Google Scholar]
  93. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. 93.  2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–53 [Google Scholar]
  94. Luchansky MS, Bailey RC. 94.  2011. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133:20500–6 [Google Scholar]
  95. Svatoš A. 95.  2011. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal. Chem. 83:5037–44 [Google Scholar]
  96. Lin Y, Trouillon R, Safina G, Ewing AG. 96.  2011. Chemical analysis of single cells. Anal. Chem. 83:4369–92 [Google Scholar]
  97. Nemes P, Knolhoff AM, Rubakhin SS, Sweedler JV. 97.  2012. Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. ACS Chem. Neurosci. 3:782–92 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error