
Full text loading...
Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible.
Article metrics loading...
Full text loading...
Literature Cited
Data & Media loading...