1932

Abstract

Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041507
2016-06-12
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041507.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041507&mimeType=html&fmt=ahah

Literature Cited

  1. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, van de Weert M, Grohganz H. 1.  2011. Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR. AAPS PharmSciTech 12:2627–36 [Google Scholar]
  2. Willer U, Saraji M, Khorsandi A, Geiser P, Schade W. 2.  2006. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 44:7699–710 [Google Scholar]
  3. Misra NN, Sullivan C, Cullen PJ. 3.  2015. Process analytical technology (PAT) and multivariate methods for downstream processes. Curr. Biochem. Eng. 2:4–16 [Google Scholar]
  4. Fernández-Carrasco L, Torrens-Martin D, Morales LM, Martinez-Ramirez S. 4.  2012. Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectroscopy—Materials Science, Engineering and Technology T Theophile 369–82 Rijeka, Croatia: Intech [Google Scholar]
  5. Pandey R, Dingari NC, Spegazzini N, Dasari RR, Horowitz GL, Barman I. 5.  2015. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. TRAC Trends Anal. Chem. 64:100–8 [Google Scholar]
  6. Hou S, Riley CB, Mitchell CA, Shaw RA, Bryanton J. 6.  et al. 2015. Exploration of attenuated total reflectance mid-infrared spectroscopy and multivariate calibration to measure immunoglobulin G in human sera. Talanta 142:110–19 [Google Scholar]
  7. Kansiz M, Billman-Jacobe H, McNaughton D. 7.  2000. Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl. Environ. Microbiol. 66:83415–20 [Google Scholar]
  8. Estevez MC, Alvarez M, Lechuga LM. 8.  2012. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6:463–87 [Google Scholar]
  9. Niazi NK, Singh B, Minasny B. 9.  2015. Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. Int. J. Environ. Sci. Technol. 12:61965–74 [Google Scholar]
  10. Chen Y, Lin H, Hu J, Li M. 10.  2014. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8:6955–61 [Google Scholar]
  11. Nikodem M, Wysocki G. 11.  2012. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing. Sensors 12:1216466–81 [Google Scholar]
  12. Jouy P, Mangold M, Tuzson B, Emmenegger L, Chang Y-C. 12.  et al. 2014. Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies. Analyst 139:2039–46 [Google Scholar]
  13. Reidl-Leuthner C, Ofner J, Tomischko W, Lohninger H, Lendl B. 13.  2015. Simultaneous open-path determination of road side mono-nitrogen oxides employing mid-IR laser spectroscopy. Atmos. Environ. 112:2189–95 [Google Scholar]
  14. Karoui R, Downey G, Blecker C. 14.  2010. Mid-infrared spectroscopy coupled with chemometrics: a tool for the analysis of intact food systems and the exploration of their molecular structure—quality relationships—a review. Chem. Rev. 110:106144–68 [Google Scholar]
  15. Brereton RG. 15.  2000. Introduction to multivariate calibration in analytical chemistry. Analyst 125:112125–54 [Google Scholar]
  16. Booksh KS. 16.  2000. Chemometric methods in process analysis: process instrumental methods. Encyclopedia of Analytical Chemistry RA Meyers New York: Wiley [Google Scholar]
  17. Haenlein M, Kaplan AM. 17.  2004. A beginner's guide to partial least squares analysis. Underst. Stat. 3:4283–97 [Google Scholar]
  18. Danzer K, Otto M, Currie LA. 18.  2004. Guidelines for calibration in analytical chemistry. Part 2. Multispecies calibration (IUPAC technical report). Pure Appl. Chem. 76:61215–25 [Google Scholar]
  19. Wang L, Mizaikoff B. 19.  2008. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Anal. Bioanal. Chem. 391:51641–54 [Google Scholar]
  20. Kazarinov RF, Suris RA. 20.  1971. Possible amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5:4707–9 [Google Scholar]
  21. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. 21.  1994. Quantum cascade laser. Science 264:553–56 [Google Scholar]
  22. Tittel FK, Richter D, Fried A. 22.  2003. Solid-state mid-infrared laser sources. Mid-Infrared Laser Applicaions in Spectroscopy 89 IT Sorokina, KL Vodopyanov 445–511 Berlin: Springer-Verlag [Google Scholar]
  23. Kosterev A, Wysocki G, Bakhirkin Y, So S, Lewicki R. 23.  et al. 2008. Application of quantum cascade lasers to trace gas analysis. Appl. Phys. B 90:2165–76 [Google Scholar]
  24. Spagnolo V, Kosterev AA, Dong L, Lewicki R, Tittel FK. 24.  2010. No trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl. Phys. B 100:1125–30 [Google Scholar]
  25. Erlich A, Haibach FG, Sherman JW. 25.  2011. Block engineering—quantum cascade laser spectroscopy to detect trace contamination. FACSS 2011: Anal. Sci. Innov. Reno, Nev. 1–41 Marlborough, MA: Block Eng. [Google Scholar]
  26. 26. Daylight Solutions. 2007. MircatTMlaser system Daylight Solutions, San Diego, CA. http://www.daylightsolutions.com/assets/005/5453.pdf
  27. Lehtinen J, Kuusela T. 27.  2013. Broadly tunable quantum cascade laser in cantilever-enhanced photoacoustic infrared spectroscopy of solids. Appl. Phys. B 115:3413–18 [Google Scholar]
  28. Childs DTD, Hogg RA, Revin DG, Rehman IU, Cockburn JW, Matcher SJ. 28.  2015. Sensitivity advantage of QCL tunable-laser mid-infrared spectroscopy over FTIR spectroscopy. Appl. Spectrosc. Rev. 50:822–39 [Google Scholar]
  29. Sieger M, Haas J, Jetter M, Michler P, Godejohann M, Mizaikoff B. 29.  2016. A mid-infrared spectroscopy platform based on GaAs/AlGaAs thin-film waveguides and quantum cascade lasers. Anal. Chem. 88:52558–62 [Google Scholar]
  30. Hofstetter D, Giorgetta FR, Baumann E, Yang Q, Manz C, Köhler K. 30.  2008. Midinfrared quantum cascade detector with a spectrally broad response. Appl. Phys. Lett. 93:22221106 [Google Scholar]
  31. Giorgetta FR, Baumann E, Graf M, Yang Q, Manz C. 31.  et al. 2009. Quantum cascade detectors. IEEE J. Quantum Electron. 45:81039–52 [Google Scholar]
  32. Hofstetter D, Giorgetta FR, Baumann E, Yang Q, Manz C, Köhler K. 32.  2010. Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry. Appl. Phys. B 100:313–20 [Google Scholar]
  33. Charlton C, Giovannini M, Faist J, Mizaikoff B. 33.  2006. Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing. Anal. Chem. 78:124224–27 [Google Scholar]
  34. Wang X, Sieger M, Mizaikoff B. 34.  2013. Toward on-chip mid-infrared chem/bio sensors using quantum cascade lasers and substrate-integrated semiconductor waveguides. Proc. SPIE, Quantum Sens. Nanophotonic Devices X 8631:86312M doi: 10.1117/12.2010872 [Google Scholar]
  35. Wang X, Antoszewski J, Putrino G, Lei W, Faraone L, Mizaikoff B. 35.  2013. Mercury–cadmium–telluride waveguides–a novel strategy for on-chip mid-infrared sensors. Anal. Chem. 85:10648–52 [Google Scholar]
  36. Wang X, Karlsson M, Forsberg P, Sieger M, Nikolaje F. 36.  et al. 2014. Diamonds are a spectroscopist's best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors. Anal. Chem. 86:8136–41 [Google Scholar]
  37. Carter JC, Mizaikoff B, Wilk A, Kim SS. 37.  2012. Substrate-integrated hollow waveguides (iHWG) for infrared (IR) and Raman gas sensing 2 Tech. Rep. LLNL-TR-591392, Lawrence Livermore Natl. Lab., Livermore, CA [Google Scholar]
  38. Wilk A, Carter JC, Chrisp M, Manuel AM, Mirkarimi P. 38.  et al. 2013. Substrate-integrated hollow waveguides: a new level of integration in mid-infrared gas sensing. Anal. Chem. 85:11205–10 [Google Scholar]
  39. Fortes PR, da Silveira Petruci JF, Wilk A, Cardoso AA, Raimundo IM Jr., Mizaikoff B. 39.  2014. Optimized design of substrate-integrated hollow waveguides for mid-infrared gas analyzers. J. Opt. 16:9094006 [Google Scholar]
  40. Mizaikoff B. 40.  2013. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 42:228683–99 [Google Scholar]
  41. Sieger M, Mizaikoff B. 41.  2016. Towards on-chip mid-infrared sensors. Anal. Chem. In press [Google Scholar]
  42. Griffiths PR, de Haseth JA. 42.  2007. Fourier Transform Infrared Spectrometry Hoboken, NJ: Wiley, 2nd ed..
  43. Udem T, Holzwarth R, Hänsch TW. 43.  2002. Optical frequency metrology. Nature 416:14233–37 [Google Scholar]
  44. Schliesser A, Picqué N, Hänsch TW. 44.  2012. Mid-infrared frequency combs. Nat. Photonics 6:7440–49 [Google Scholar]
  45. Adler F, Mas P, Foltynowicz A, Cossel KC, Briles TC. 45.  et al. 2010. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18:2121861–72 [Google Scholar]
  46. Griffith AG, Lau RKW, Cardenas J, Okawachi Y, Mohanty A. 46.  et al. 2015. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6:6299 [Google Scholar]
  47. Hugi A, Villares G, Blaser S, Liu HC, Faist J. 47.  2012. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492:7428229–33 [Google Scholar]
  48. Villares G, Hugi A, Blaser S, Faist J. 48.  2014. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5:5192 [Google Scholar]
  49. Tittel FK, Richter D, Fried A. 49.  2003. Mid-infrared laser applications in spectroscopy. Solid-State Mid-Infrared Laser Sources IT Sorokina, KL Vodopyanov 458–529 Top. Appl. Phys. Ser. 89 Berlin: Springer [Google Scholar]
  50. Tacke M. 50.  1989. Recent results in lead-salt laser development at the IPM. Monitoring of Gaseous Pollutants by Tunable Diode Lasers R Grisar, G Schmidtke, M Tacke, G Restelli 103–18 Brussels/Luxembourg: Springer [Google Scholar]
  51. Yang RQ. 51.  1995. Infrared laser based on intersubband transitions in quantum wells. Superlattices Microst. 17:177–83 [Google Scholar]
  52. Pushkarsky M, Weida M, Day T, Arnone D, Pritchett R. 52.  et al. 2008. High-power tunable external cavity quantum cascade laser in the 5–11 micron regime. Proc. SPIE, Solid State Lasers XVII: Technol. Devices 6871:68711X doi: 10.1117/12.777298 [Google Scholar]
  53. Weida MMJ, Yee B. 53.  2011. Quantum cascade laser-based replacement for FTIR microscopy. Proc. SPIE, Imaging, Manip. Anal. Biomol., Cells, and Tissues IX 7902:79021C doi: 10.1117/12.873954 [Google Scholar]
  54. Alcaráz MR, Schwaighofer A, Kristament C, Ramer G, Brandstetter M. 54.  et al. 2015. External-cavity quantum cascade laser spectroscopy for mid-IR transmission measurements of proteins in aqueous solution. Anal. Chem. 87:136980–87 [Google Scholar]
  55. Zhuo N, Liu F, Zhang J, Wang L, Liu J. 55.  et al. 2014. Quantum dot cascade laser. Nanoscale Res. Lett. 9:1144 [Google Scholar]
  56. Kannan P, Choudhary A, Mills B, Leonard VM, Hewak DW. 56.  et al. 2013. PbSe quantum dots grown in a high-index, low-melting-temperature glass for infrared laser applications. Proc. SPIE, Opt. Compon. Mater. X 8621:862104 doi: 10.1117/12.2001079 [Google Scholar]
  57. Khiar A, Eibelhuber M, Volobuev V, Witzan M, Hochreiner A. 57.  et al. 2014. Vertical external cavity surface emitting PbTe/CdTe quantum dot lasers for the mid-infrared spectral region. Opt. Lett. 39:236577–80 [Google Scholar]
  58. Sprengers JP, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G. 58.  et al. 2011. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99:182013–16 [Google Scholar]
  59. He Y-M, He Y, Wei Y-J, Wu D, Atatüre M. 59.  et al. 2013. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8:1213–17 [Google Scholar]
  60. Müller M, Bounouar S, Jöns KD, Glässl M, Michler P. 60.  2014. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8:3224–28 [Google Scholar]
  61. Munsch M, Claudon J, Malik NS, Gilbert K, Grosse P, Ge J. 61.  2012. Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Appl. Phys. Lett. 100:3031111 [Google Scholar]
  62. van Veggel FCJM. 62.  2014. Near-infrared quantum dots and their delicate synthesis, challenging characterization, and exciting potential applications. Chem. Mater. 26:1111–22 [Google Scholar]
  63. Petersen CR, Møller U, Kubat I, Zhou B, Dupont S. 63.  et al. 2014. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 8:11830–34 [Google Scholar]
  64. Kubat I, Agger CS, Møller U, Seddon AB, Tang Z. 64.  et al. 2014. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm. Opt. Express 22:1619169–82 [Google Scholar]
  65. Al-kadry A, El Amraoui M, Messaddeq Y, Rochette M. 65.  2014. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires. Opt. Express 22:2531131 [Google Scholar]
  66. Møller U, Yu Y, Kubat I, Petersen CR, Gai X. 66.  et al. 2015. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 23:33282–91 [Google Scholar]
  67. Vuillermet M, Rubaldo L, Chabuel F, Pautet C, Terme JC. 67.  et al. 2011. HOT infrared detectors using MCT technology. Proc. SPIE, Infrared Technol. Appl. XXXVII 8012:80122W doi: 10.1117/12.885601 [Google Scholar]
  68. Feautrier P, Gach J-L, Downing M, Jorden P, Kolb J. 68.  et al. 2012. Advances in detector technologies for visible and infrared wavefront sensing. Proc. SPIE, Adapt. Opt. Syst. III 8447:84470Q doi: 10.1117/12.925067 [Google Scholar]
  69. Martyniuk P, Rogalski A. 69.  2014. Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector. Opt. Quantum Electron. 46:4581–91 [Google Scholar]
  70. Piotrowski A. 70.  2014. Uncooled detectors for mid IR sensing applications Presented at Mid-Infrared Exch. Exploitat., Dec. 15, Zurich, Switz. http://www.mirifisens-project.eu/sites/default/files/mirifisens_images/Piotrowski_Adam_VIGO.pdf
  71. Zavvari M, Ahmadi V. 71.  2013. Quantum-dot-based mid-IR single-photon detector with self-quenching and self-recovering operation. IEEE Electron Device Lett. 34:6783–85 [Google Scholar]
  72. Downs C, Vandervelde TE. 72.  2013. Progress in infrared photodetectors since 2000. Sensors 13:45054–98 [Google Scholar]
  73. Deng Z, Jeong KS, Guyot-Sionnest P. 73.  2014. Colloidal quantum dots intraband photodetectors. ACS Nano 8:1111707–14 [Google Scholar]
  74. Lewi T, Katzir A. 74.  2012. Silver halide single-mode strip waveguides for the mid-infrared. Opt. Lett. 37:132733 [Google Scholar]
  75. Harrington JA. 75.  2004. Infrared Fibers and Their Applications Bellingham, WA: SPIE
  76. Patimisco P, Spagnolo V, Vitiello MS, Scamarcio G, Bledt CM, Harrington JA. 76.  2013. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications. Sensors 13:11329–40 [Google Scholar]
  77. Harrington JA, Rabii C, Gibson D. 77.  1999. Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power. IEEE J. Sel. Top. Quantum Electron. 5:4948–53 [Google Scholar]
  78. Harrington JA. 78.  2000. A review of IR transmitting, hollow waveguides. Fiber Integr. Opt. 19:211–27 [Google Scholar]
  79. Charlton C, Temelkuran B, Dellemann G, Mizaikoff B. 79.  2005. Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl. Phys. Lett. 86:191–3 [Google Scholar]
  80. Petruci JFDS, Cardoso AA, Wilk A, Kokoric V, Mizaikoff B. 80.  2015. Iconvert: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors. Anal. Chem. 87:9580–83 [Google Scholar]
  81. Schwarz B, Reininger P, Ristanić D, Detz H, Andrews AM. 81.  et al. 2014. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun. 5:4085 [Google Scholar]
  82. Ristanic D, Schwarz B, Reininger P, Detz H, Zederbauer T. 82.  et al. 2015. Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback. Appl. Phys. Lett. 106:4041101 [Google Scholar]
  83. Chang Y-C, Wägli P, Paeder V, Homsy A, Hvozdara L. 83.  et al. 2012. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 12:3020 [Google Scholar]
  84. Wägli P, Chang YC, Homsy A, Hvozdara L, Herzig HP, De Rooij NF. 84.  2013. Microfluidic droplet-based liquid-liquid extraction and on-chip IR spectroscopy detection of cocaine in human saliva. Anal. Chem. 85:7558–65 [Google Scholar]
  85. Seddon AB, Abdel-Moneim NS, Zhang L, Pan WJ, Furniss D. 85.  et al. 2014. Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing. Opt. Eng. 53:7071824 [Google Scholar]
  86. Wu S, Deev A. 86.  2012. Quantum cascade laser enabled nano-liter polymer waveguide sensor. Proc. SPIE, Quantum Sens. Nanophotonic Devices IX 8268:82680D doi:10.1117/12.905899 [Google Scholar]
  87. Stewart G, Culshaw B. 87.  1994. Optical waveguide modelling and design for evanescent field chemical sensors. Opt. Quantum Electron. 26:249–59 [Google Scholar]
  88. Heideman RG, Walker JA. 88.  2006. Surface waveguide technology for telecom and biochemical sensing. Proc. SPIE, Silicon Photonics 6125:61250S doi: 10.1117/12.649294 [Google Scholar]
  89. Lin PT, Kwok SW, Lin HG, Singh V, Kimerling LC. 89.  et al. 2014. Mid-infrared spectrometer using opto-nano fluidic slot-waveguide for label-free on-chip chemical sensing. Nano Lett. 14:231–38 [Google Scholar]
  90. Lin PT, Singh V, Hu J, Richardson K, Musgraves JD. 90.  et al. 2013. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides. Lab Chip 13:112161–66 [Google Scholar]
  91. Passaro VMN, La Notte M, Troia B, Passaquindici L, De Leonardis F, Giannoccaro G. 91.  2012. Photonic structures based on slot waveguides for nanosensors: state of the art and future developments. Int. J. Recent Res. Appl. Stud. 11:402–18 [Google Scholar]
  92. Phillip HR, Taft EA. 92.  1964. Kramers–Kronig analysis of reflectance data for diamond. Phys. Rev. 136:5AA1445 [Google Scholar]
  93. Li HH. 93.  1984. Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 13:1103–50 [Google Scholar]
  94. Icenogle HW, Platt BC, Wolfe WL. 94.  1976. Refractive indexes and temperature coefficients of germanium and silicon. Appl. Opt. 15:102348–51 [Google Scholar]
  95. Skauli T, Kuo PS, Vodopyanov KL, Pinguet TJ, Levi O. 95.  et al. 2003. Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 94:106447–55 [Google Scholar]
  96. Chandler-Horowitz D, Amirtharaj PM. 96.  2005. High-accuracy, midinfrared (450 cm−1 ≤ ω ≤ 4000 cm−1) refractive index values of silicon. J. Appl. Phys. 97:123526 [Google Scholar]
  97. Debenham M. 97.  1984. Refractive indices of zinc sulfide in the 0.405–13-μm wavelength range. Appl. Opt. 23:142238–39 [Google Scholar]
  98. Jaksic Z, Jaksic O. 98.  1997. Dispersion of refractive index in degenerate mercury cadmium telluride. Proc. 21st Int. Conf. Microelectron. 195–98 Piscataway, NJ: IEEE [Google Scholar]
  99. Aggarwal ID, Sanghera JS. 99.  2002. Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4:3665–78 [Google Scholar]
  100. Weiting F, Yixun Y. 100.  1990. Temperature effects on the refractive index of lead telluride and zinc selenide. Infrared Phys. 30:4371–73 [Google Scholar]
  101. Hale GM, Querry MR. 101.  1973. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12:3555–63 [Google Scholar]
  102. Edlén B. 102.  1966. The refractive index of air. Metrologia 2:271–80 [Google Scholar]
  103. Zaitsev AM. 103.  2008. On the way to mass-scale production of perfect bulk diamonds. PNAS 105:4617591–92 [Google Scholar]
  104. Forsberg P, Karlsson M. 104.  2013. Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides. Opt. Express 21:32693–700 [Google Scholar]
  105. Luong JHT, Male KB, Glennon JD. 105.  2009. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134:101965–79 [Google Scholar]
  106. Roeser J, Alting NFA, Permentier HP, Bruins AP, Bischoff R. 106.  2013. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides. Anal. Chem. 85:146626–32 [Google Scholar]
  107. Krueger A, Lang D. 107.  2012. Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22:5890–906 [Google Scholar]
  108. Schartner J, Mei B, Ro M, Muhler M, Gerwert K, Ko C. 108.  2013. Universal method for protein immobilization on chemically functionalized germanium investigated by ATR-FTIR difference spectroscopy. J. Am. Chem. Soc. 135:4079–87 [Google Scholar]
  109. Schartner J, Gavriljuk K, Nabers A, Weide P, Muhler M. 109.  et al. 2014. Immobilization of proteins in their physiological active state at functionalized thiol monolayers on ATR-germanium crystals. ChemBioChem 15:172529–34 [Google Scholar]
  110. Nabers A, Ollesch J, Schartner J, Kötting C, Genius J. 110.  et al. 2016. An infrared sensor analysing label-free the secondary structure of the Aβ peptide in presence of complex fluids. J. Biophotonics 9:3224–34 [Google Scholar]
  111. Schartner J, Hoeck N, Güldenhaupt J, Mavarani L, Nabers A. 111.  2015. Chemical functionalization of germanium with dextran-brushes for immobilization of proteins revealed by ATR-FTIR difference spectroscopy. Anal. Chem. 87:147467–75 [Google Scholar]
  112. Urmann K, Walter J-G, Scheper T, Segal E. 112.  2015. Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal. Chem. 87:1999–2006 [Google Scholar]
  113. Genoud G, Vainio M, Phillips H, Dean J, Merimaa M. 113.  2015. Radiocarbon dioxide detection based on cavity ring-down spectroscopy and a quantum cascade laser. Opt. Lett. 40:71342–45 [Google Scholar]
  114. Zhou J, Sahlberg AL, Nilsson H, Lundgren E, Zetterberg J. 114.  2015. Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing. Appl. Phys. B 121:2123–30 [Google Scholar]
  115. Helbing J, Hamm P. 115.  2011. Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity. J. Opt. Soc. Am. B 28:1171 [Google Scholar]
  116. Roy S, Post JS, Hung K-K, Stege U, Hore DK. 116.  2014. 2D correlation analysis in vibrational sum-frequency generation spectroscopy. J. Mol. Struct. 1069:103–11 [Google Scholar]
  117. Yang R, Yang Y, Dong G, Zhang W, Yu Y. 117.  2014. Multivariate methods for the identification of adulterated milk based on two-dimensional infrared correlation spectroscopy. Anal. Methods 6:103436 [Google Scholar]
  118. Mecozzi M, Sturchio E. 118.  2015. Effects of essential oil treatments on the secondary protein structure of Vicia faba: a mid-infrared spectroscopic study supported by two-dimensional correlation analysis. Spectrochim. Acta A 137:90–98 [Google Scholar]
  119. Pleitez MA, Lieblein T, Bauer A, Hertzberg O, Von Lilienfeld-Toal H, Mäntele W. 119.  2013. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Rev. Sci. Instrum. 84:8084901 [Google Scholar]
  120. Pleitez MA, Lieblein T, Bauer A, Hertzberg O, von Lilienfeld-Toal H, Mäntele W. 120.  2013. In vivo noninvasive monitoring of glucose concentation in human epidermis by pulsed mid-infrared photoacoustic spectroscopy. Anal. Chem. 85:1013–20 [Google Scholar]
  121. Ataka K, Stripp ST, Heberle J. 121.  2013. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim. Biophys. Acta Biomembr. 1828:102283–93 [Google Scholar]
  122. Silva BA, Einarsdottir O, Fink AL, Uversky VN. 122.  2011. Modulating α-synuclein misfolding and fibrillation in vitro by agrochemicals. Res. Rep. Biol. 2:43–56 [Google Scholar]
  123. Breydo L, Wu JW, Uversky VN. 123.  2012. α-Synuclein misfolding and Parkinson's disease. Biochim. Biophys. Acta Mol. Basis Dis. 1822:2261–85 [Google Scholar]
  124. Kumaraswamy P, Sethuraman S, Krishnan UM. 124.  2013. Mechanistic insights of curcumin interactions with the core-recognition motif of β-amyloid peptide. J. Agric. Food Chem. 61:133278–85 [Google Scholar]
  125. Wang P, Bohr W, Otto M, Danzer KM, Mizaikoff B. 125.  2015. Quantifying amyloid fibrils in protein mixtures via infrared attenuated-total-reflection spectroscopy. Anal. Bioanal. Chem. 407:144015–21 [Google Scholar]
  126. 126. World Health Organ. 2010. Global status report on noncommunicable diseases World Health Organ., Geneva, Switz. http://www.who.int/nmh/publications/ncd_report2010/en/
  127. Li D, Sun Y, Yu S, Sun C, Yu H, Xu K. 127.  2015. A single-loop fiber attenuated total reflection sensor enhanced by silver nanoparticles for continuous glucose monitoring. Sens. Actuators B 220:1033–42 [Google Scholar]
  128. Neubauer D, Korbmacher J, Frick M, Kiss J, Timmler M. 128.  et al. 2013. Deuterium oxide dilution: a novel method to study apical water layers and transepithelial water transport. Anal. Chem. 85:94247–50 [Google Scholar]
  129. Koch C, Brandstetter M, Wechselberger P, Lorantfy B, Plata MR. 129.  et al. 2015. Ultrasound-enhanced attenuated total reflection mid-infrared spectroscopy in-line probe: acquisition of cell spectra in a bioreactor. Anal. Chem. 87:42314–20 [Google Scholar]
  130. Koch C, Brandstetter M, Lendl B, Radel S. 130.  2013. Ultrasonic manipulation of yeast cells in suspension for absorption spectroscopy with an immersible mid-infrared fiberoptic probe. Ultrasound Med. Biol. 39:61094–1101 [Google Scholar]
  131. Radel S, McLoughlin AJ, Gherardini L, Doblhoff-Dier O, Benes E. 131.  2000. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves. Ultrasonics 38:1633–37 [Google Scholar]
  132. Culbert J, Cozzolino D, Ristic R, Wilkinson K. 132.  2015. Classification of sparkling wine style and quality by MIR spectroscopy. Molecules 20:58341–56 [Google Scholar]
  133. Borràs E, Mestres M, Aceña L, Busto O, Ferré J. 133.  et al. 2015. Identification of olive oil sensory defects by multivariate analysis of mid infrared spectra. Food Chem. 187:197–203 [Google Scholar]
  134. Bhat R, Rai RV, Karim AA. 134.  2010. Mycotoxins in food and feed: present status and future concerns. Compr. Rev. Food Sci. Food Saf. 9:157–81 [Google Scholar]
  135. Gaspardo B, Del Zotto S, Torelli E, Cividino SR, Firrao G. 135.  et al. 2012. A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Food Chem. 135:31608–12 [Google Scholar]
  136. Peiris KHS, Pumphrey MO, Dong Y, Maghirang EB, Berzonsky W, Dowell FE. 136.  2010. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chem. 87:6511–17 [Google Scholar]
  137. Sieger M, McMullin D, Oener T, Kos G, Godejohann M. 137.  et al. 2013. Mid-infrared spectroscopy based on GaAs thin-film waveguide and quantum cascade laser technology as a tool for the detection of deoxynivalenol (DON) in maize extracts Presented at World Mycotoxin Forum, 8th, Vienna
  138. McMullin D, Mizaikoff B, Krska R. 138.  2014. Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Anal. Bioanal. Chem. 407:653–60 [Google Scholar]
  139. Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, Macdonald LM, McLaughlin MJ. 139.  2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49:2139–86 [Google Scholar]
  140. Forrester ST, Janik LJ, Soriano-Disla JM, Mason S, Burkitt L. 140.  et al. 2015. Use of handheld mid-infrared spectroscopy and partial least-squares regression for the prediction of the phosphorus buffering index in Australian soils. Soil Res. 53:167–80 [Google Scholar]
  141. Terra FS, Demattê JAM, Viscarra Rossel RA. 141.  2015. Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing vis-NIR and mid-IR reflectance data. Geoderma 255–256:81–93 [Google Scholar]
  142. Christensen PR, Mehall GL, Silverman SH, Anwar S, Cannon G. 142.  et al. 2003. Miniature thermal emission spectrometer for the mars exploration rovers. J. Geophys. Res. 108:E128064 [Google Scholar]
  143. Rivera-Hernandez F, Bandfield JL, Ruff SW, Wolff MJ. 143.  2015. Characterizing the thermal infrared spectral effects of optically thin surface dust: implications for remote-sensing and in situ measurements of the Martian surface. Icarus 262:173–86 [Google Scholar]
  144. Jouglet D, Poulet F, Milliken RE, Mustard JF, Bibring J-P. 144.  et al. 2007. Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature. J. Geophys. Res. 112:E8E08S06 [Google Scholar]
  145. Lemmon MT, Wolff MJ, Bell JF, Smith MD, Cantor BA, Smith PH. 145.  2015. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251:96–111 [Google Scholar]
  146. Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH. 146.  et al. 2013. Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–64 [Google Scholar]
  147. da Silveira Petruci JF, Fortes PR, Kokoric V, Wilk A, Raimundo IM. 147.  et al. 2014. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst 139:1198–203 [Google Scholar]
  148. da Silveira Petruci JF, Fortes PR, Kokoric V, Wilk A, Raimundo IM. 148.  et al. 2013. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors. Sci. Rep. 3:3174 [Google Scholar]
  149. da Silveira Petruci JF, Wilk A, Cardoso AA, Mizaikoff B. 149.  2015. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors. Anal. Chem. 87:9605–11 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041507
Loading
/content/journals/10.1146/annurev-anchem-071015-041507
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error