1932

Abstract

Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041542
2016-06-12
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041542.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041542&mimeType=html&fmt=ahah

Literature Cited

  1. Hunter T, Sefton BM. 1.  1980. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. PNAS 77:31311–15 [Google Scholar]
  2. Fuhs SR, Meisenhelder J, Aslanian A, Ma L, Zagorska A. 2.  et al. 2015. Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162:1198–210 [Google Scholar]
  3. Besant PG, Attwood PV, Piggott MJ. 3.  2009. Focus on phosphoarginine and phospholysine. Curr. Protein Pept. Sci. 10:6536–50 [Google Scholar]
  4. Reinhardt HC, Yaffe MB. 4.  2013. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat. Rev. Mol. Cell Biol. 14:9563–80 [Google Scholar]
  5. Arneja A, Johnson H, Gabrovsek L, Lauffenburger DA, White FM. 5.  2014. Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. J. Immunol. 192:1123–35 [Google Scholar]
  6. Francavilla C, Rigbolt KTG, Emdal KB, Carraro G, Vernet E. 6.  et al. 2013. Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. Mol. Cell 51:6707–22 [Google Scholar]
  7. Nuwaysir LM, Stults JT. 7.  1993. Electrospray ionization mass spectrometry of phosphopeptides isolated by on-line immobilized metal-ion affinity chromatography. J. Am. Soc. Mass Spectrom. 4:8662–69 [Google Scholar]
  8. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM. 8.  et al. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20:3301–5 [Google Scholar]
  9. Ficarro SB, Adelmant G, Tomar MN, Zhang Y, Cheng VJ, Marto JA. 9.  2009. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem. 81:114566–75 [Google Scholar]
  10. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. 10.  2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteom. 4:7873–86 [Google Scholar]
  11. Thingholm TE, Jørgensen TJD, Jensen ON, Larsen MR. 11.  2006. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1:41929–35 [Google Scholar]
  12. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. 12.  2007. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 4:3231–37 [Google Scholar]
  13. Ruprecht B, Koch H, Medard G, Mundt M, Kuster B, Lemeer S. 13.  2015. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol. Cell Proteom. 14:1205–15 [Google Scholar]
  14. Lim KB, Kassel DB. 14.  2006. Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. Anal. Biochem. 354:2213–19 [Google Scholar]
  15. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C. 15.  et al. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:3635–48 [Google Scholar]
  16. Sharma K, D'Souza RCJ, Tyanova S, Schaab C, Wiśniewski JR. 16.  et al. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8:51583–94 [Google Scholar]
  17. White FM. 17.  2011. The potential cost of high-throughput proteomics. Sci. Signal. 4:160pe8 [Google Scholar]
  18. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. 18.  2007. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. PNAS 104:145860–65 [Google Scholar]
  19. Venable JD, Dong M-Q, Wohlschlegel J, Dillin A, Yates JR. 19.  2004. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1:139–45 [Google Scholar]
  20. Blagoev B, Ong S-E, Kratchmarova I, Mann M. 20.  2004. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol. 22:91139–45 [Google Scholar]
  21. Gold MR, Yungwirth T, Sutherland CL, Ingham RJ, Vianzon D. 21.  et al. 1994. Purification and identification of tyrosine-phosphorylated proteins from B lymphocytes stimulated through the antigen receptor. Electrophoresis 15:3–4441–53 [Google Scholar]
  22. Salomon AR, Ficarro SB, Brill LM, Brinker A, Phung QT. 22.  et al. 2003. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. PNAS 100:2443–48 [Google Scholar]
  23. Rush J, Moritz A, Lee KA, Guo A, Goss VL. 23.  et al. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23:194–101 [Google Scholar]
  24. Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. 24.  2006. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:82171–79 [Google Scholar]
  25. Kim J-E, White FM. 25.  2006. Quantitative analysis of phosphotyrosine signaling networks triggered by CD3 and CD28 costimulation in Jurkat cells. J. Immunol. 176:52833–43 [Google Scholar]
  26. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J. 26.  et al. 2005. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell Proteom. 4:91240–50 [Google Scholar]
  27. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE. 27.  et al. 2007. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. PNAS 104:3112867–72 [Google Scholar]
  28. Wolf-Yadlin A, Kumar N, Zhang Y, Hautaniemi S, Zaman M. 28.  et al. 2006. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol. Syst. Biol. 2:54 [Google Scholar]
  29. Johnson H, White FM. 29.  2014. Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. J. Proteome Res. 13:114581–93 [Google Scholar]
  30. Gajadhar AS, Johnson H, Slebos RJC, Shaddox K, Wiles K. 30.  et al. 2015. Phosphotyrosine signaling analysis in human tumors is confounded by systemic ischemia-driven artifacts and intra-specimen heterogeneity. Cancer Res. 75:71495–503 [Google Scholar]
  31. Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM. 31.  2012. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol. Cell Proteom. 11:121724–40 [Google Scholar]
  32. Rikova K, Guo A, Zeng Q, Possemato A, Yu J. 32.  et al. 2007. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:61190–203 [Google Scholar]
  33. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR. 33.  et al. 2013. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods 10:7634–37 [Google Scholar]
  34. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE. 34.  et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:58281160–66 [Google Scholar]
  35. Machida K, Eschrich S, Li J, Bai Y, Koomen J. 35.  et al. 2010. Characterizing tyrosine phosphorylation signaling in lung cancer using SH2 profiling. PLOS ONE 5:10e13470 [Google Scholar]
  36. Machida K, Thompson CM, Dierck K, Jablonowski K, Kärkkäinen S. 36.  et al. 2007. High-throughput phosphotyrosine profiling using SH2 domains. Mol. Cell 26:6899–915 [Google Scholar]
  37. Bryson BD, Del Rosario AM, Gootenberg JS, Yaffe MB, White FM. 37.  2015. Engineered bromodomains to explore the acetylproteome. Proteomics 15:91470–75 [Google Scholar]
  38. Moore KE, Carlson SM, Camp ND, Cheung P, James RG. 38.  et al. 2013. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol. Cell 50:3444–56 [Google Scholar]
  39. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T. 39.  et al. 2001. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:161981–89 [Google Scholar]
  40. Sevecka M, Wolf-Yadlin A, MacBeath G. 40.  2011. Lysate microarrays enable high-throughput, quantitative investigations of cellular signaling. Mol. Cell Proteom. 10:4M110.005363 [Google Scholar]
  41. Krutzik PO, Nolan GP. 41.  2003. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55:261–70 [Google Scholar]
  42. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R. 42.  et al. 2009. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81:166813–22 [Google Scholar]
  43. Liebler DC, Zimmerman LJ. 43.  2013. Targeted quantitation of proteins by mass spectrometry. Biochemistry 52:223797–3806 [Google Scholar]
  44. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. 44.  2003. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. PNAS 100:126940–45 [Google Scholar]
  45. Curran TG, Zhang Y, Ma DJ, Sarkaria JN, White FM. 45.  2015. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat. Commun. 6:5924 [Google Scholar]
  46. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. 46.  2012. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell Proteom. 11:111475–88 [Google Scholar]
  47. Boyd ZS, Wu QJ, O'Brien C, Spoerke J, Savage H. 47.  et al. 2008. Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol. Cancer Ther. 7:123695–706 [Google Scholar]
  48. Grote T, Siwak DR, Fritsche HA, Joy C, Mills GB. 48.  et al. 2008. Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19-9 levels in pancreatic cancer. Proteomics 8:153051–60 [Google Scholar]
  49. Yang J-Y, Werner HMJ, Li J, Westin SN, Lu Y. 49.  et al. 2016. Integrative protein-based prognostic model for early stage endometrioid endometrial cancer. Clin. Cancer Res. 22:2513–23 [Google Scholar]
  50. Cheung LWT, Yu S, Zhang D, Li J, Ng PKS. 50.  et al. 2014. Naturally occurring neomorphic PIK3R1 mutations activate the MAPK pathway, dictating therapeutic response to MAPK pathway inhibitors. Cancer Cell 26:4479–94 [Google Scholar]
  51. Lindholm EM, Krohn M, Iadevaia S, Kristian A, Mills GB. 51.  et al. 2014. Proteomic characterization of breast cancer xenografts identifies early and late bevacizumab-induced responses and predicts effective drug combinations. Clin. Cancer Res. 20:2404–12 [Google Scholar]
  52. Sevecka M, MacBeath G. 52.  2006. State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat. Methods 3:10825–31 [Google Scholar]
  53. Chan SM, Ermann J, Su L, Fathman CG, Utz PJ. 53.  2004. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 10:121390–96 [Google Scholar]
  54. Gujral TS, Karp RL, Finski A, Chan M, Schwartz PE. 54.  et al. 2013. Profiling phospho-signaling networks in breast cancer using reverse-phase protein arrays. Oncogene 32:293470–76 [Google Scholar]
  55. Wagner JP, Wolf-Yadlin A, Sevecka M, Grenier JK, Root DE. 55.  et al. 2013. Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci. Signal. 6:284ra58 [Google Scholar]
  56. Ciaccio MF, Wagner JP, Chuu C-P, Lauffenburger DA, Jones RB. 56.  2010. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat. Methods 7:2148–55 [Google Scholar]
  57. Zhang L, Wei Q, Mao L, Liu W, Mills GB, Coombes K. 57.  2009. Serial dilution curve: a new method for analysis of reverse phase protein array data. Bioinformatics 25:5650–54 [Google Scholar]
  58. Akbani R, Becker K-F, Carragher N, Goldstein T, de Koning L. 58.  et al. 2014. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: The RPPA (Reverse Phase Protein Array) society. Mol. Cell Proteom. 13:71625–43 [Google Scholar]
  59. Perez OD, Nolan GP. 59.  2002. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20:2155–62 [Google Scholar]
  60. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø. 60.  et al. 2004. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:2217–28 [Google Scholar]
  61. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. 61.  2005. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:5721523–29 [Google Scholar]
  62. Krutzik PO, Clutter MR, Trejo A, Nolan GP. 62.  2011. Fluorescent cell barcoding for multiplex flow cytometry. Curr. Protoc. Cytom. Chapter 6:Unit 6.31 [Google Scholar]
  63. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. 63.  2012. A deep profiler's guide to cytometry. Trends Immunol. 33:7323–32 [Google Scholar]
  64. Kondrat RW, McClusky GA, Cooks RG. 64.  1978. Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal. Chem. 50:142017–21 [Google Scholar]
  65. Yost RA, Enke CG. 65.  1979. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal. Chem. 51:121251–64 [Google Scholar]
  66. Zakett D, Flynn RGA, Cooks RG. 66.  1978. Chlorine isotope effects in mass spectrometry by multiple reaction monitoring. J. Phys. Chem. 82:222359–62 [Google Scholar]
  67. Anderson L, Hunter CL. 67.  2006. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteom. 5:4573–88 [Google Scholar]
  68. Krokhin OV, Craig R, Spicer V, Ens W, Standing KG. 68.  et al. 2004. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS. Mol. Cell Proteom. 3:9908–19 [Google Scholar]
  69. Röst H, Malmström L, Aebersold R. 69.  2012. A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol. Cell Proteom. 11:8540–49 [Google Scholar]
  70. Escher C, Reiter L, MacLean B, Ossola R, Herzog F. 70.  et al. 2012. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:81111–21 [Google Scholar]
  71. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P. 71.  et al. 2006. The PeptideAtlas project. Nucleic Acids Res. 34:Suppl. 1D655–58 [Google Scholar]
  72. Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS. 72.  et al. 2012. PASSEL: the PeptideAtlas SRM experiment library. Proteomics 12:81170–75 [Google Scholar]
  73. Sharma V, Eckels J, Taylor GK, Shulman NJ, Stergachis AB. 73.  et al. 2014. Panorama: a targeted proteomics knowledge base. J. Proteome Res. 13:94205–10 [Google Scholar]
  74. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL. 74.  et al. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:7966–68 [Google Scholar]
  75. Schmidt C, Lenz C, Grote M, Lührmann R, Urlaub H. 75.  2010. Determination of protein stoichiometry within protein complexes using absolute quantification and multiple reaction monitoring. Anal. Chem. 82:72784–96 [Google Scholar]
  76. Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N. 76.  et al. 2013. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499:7457166–71 [Google Scholar]
  77. Domanski D, Murphy LC, Borchers CH. 77.  2010. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal. Chem. 82:135610–20 [Google Scholar]
  78. Xiao Y, Guo L, Wang Y. 78.  2014. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Mol. Cell Proteom. 13:41065–75 [Google Scholar]
  79. Whiteaker JR, Halusa GN, Hoofnagle AN, Sharma V, MacLean B. 79.  et al. 2014. CPTAC Assay Portal: a repository of targeted proteomic assays. Nat. Methods 11:7703–4 [Google Scholar]
  80. Ebhardt HA, Root A, Sander C, Aebersold R. 80.  2015. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:183193–208 [Google Scholar]
  81. Desiderio DM, Kai M. 81.  1983. Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed. Mass Spectrom. 10:8471–79 [Google Scholar]
  82. Ciccimaro E, Blair IA. 82.  2010. Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis 2:2311–41 [Google Scholar]
  83. Thevis M, Thomas A, Schänzer W. 83.  2013. Targeting prohibited substances in doping control blood samples by means of chromatographic-mass spectrometric methods. Anal. Bioanal. Chem. 405:309655–67 [Google Scholar]
  84. Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G. 84.  et al. 2015. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15:5–6964–80 [Google Scholar]
  85. Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H. 85.  et al. 2015. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12:3258–64 [Google Scholar]
  86. Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ. 86.  2010. Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. Anal. Chem. 82:3833–41 [Google Scholar]
  87. Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. 87.  2012. Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. J. Proteome Res. 11:31621–32 [Google Scholar]
  88. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM. 88.  et al. 2014. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32:3219–23 [Google Scholar]
  89. Keller A, Bader SL, Shteynberg D, Hood L, Moritz RL. 89.  2015. Automated validation of results and removal of fragment ion interferences in targeted analysis of data-independent acquisition mass spectrometry (MS) using SWATHProphet. Mol. Cell Proteom. 14:51411–18 [Google Scholar]
  90. Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y. 90.  et al. 2015. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteom. 14:51400–10 [Google Scholar]
  91. MacBeath G, Schreiber SL. 91.  2000. Printing proteins as microarrays for high-throughput function determination. Science 289:54851760–63 [Google Scholar]
  92. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A. 92.  et al. 2000. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26:3283–89 [Google Scholar]
  93. Shah K, Liu Y, Deirmengian C, Shokat KM. 93.  1997. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. PNAS 94:83565–70 [Google Scholar]
  94. Blethrow JD, Glavy JS, Morgan DO, Shokat KM. 94.  2008. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. PNAS 105:51442–47 [Google Scholar]
  95. Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K. 95.  et al. 2011. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci. Signal. 4:196rs11 [Google Scholar]
  96. Carlson SM, White FM. 96.  2012. Labeling and identification of direct kinase substrates. Sci. Signal. 5:227pl3 [Google Scholar]
  97. Blethrow J, Zhang C, Shokat KM, Weiss EL. 97.  2004. Design and use of analog-sensitive protein kinases. Curr. Protoc. Mol. Biol. 66:18.11.1–18.11.19 [Google Scholar]
  98. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA. 98.  et al. 2011. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:60351317–22 [Google Scholar]
  99. Yu Y, Yoon S-O, Poulogiannis G, Yang Q, Ma XM. 99.  et al. 2011. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:60351322–26 [Google Scholar]
  100. Casado P, Rodriguez-Prados J-C, Cosulich SC, Guichard S, Vanhaesebroeck B. 100.  et al. 2013. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci. Signal. 6:268rs6 [Google Scholar]
  101. Carlson SM, White FM. 101.  2011. Using small molecules and chemical genetics to interrogate signaling networks. ACS Chem. Biol. 6:175–85 [Google Scholar]
  102. Obenauer JC, Cantley LC, Yaffe MB. 102.  2003. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31:133635–41 [Google Scholar]
  103. Maly DJ, Allen JA, Shokat KM. 103.  2004. A mechanism-based cross-linker for the identification of kinase-substrate pairs. J. Am. Chem. Soc. 126:309160–61 [Google Scholar]
  104. Higdon R, Hogan JM, Kolker N, van Belle G, Kolker E. 104.  2007. Experiment-specific estimation of peptide identification probabilities using a randomized database. OMICS 11:4351–65 [Google Scholar]
  105. Higdon R, Hogan JM, van Belle G, Kolker E. 105.  2005. Randomized sequence databases for tandem mass spectrometry peptide and protein identification. OMICS 9:4364–79 [Google Scholar]
  106. Shen X, Hu Q, Li J, Wang J, Qu J. 106.  2015. Experimental null method to guide the development of technical procedures and to control false-positive discovery in quantitative proteomics. J. Proteome Res. 14:104147–57 [Google Scholar]
  107. Keich U, Kertesz-Farkas A, Noble WS. 107.  2015. Improved false discovery rate estimation procedure for shotgun proteomics. J. Proteome Res. 14:83148–61 [Google Scholar]
  108. Slebos RJC, Wang X, Wang X, Zhang B, Tabb DL, Liebler DC. 108.  2015. Proteomic analysis of colon and rectal carcinoma using standard and customized databases. Sci. Data 2:150022 [Google Scholar]
  109. Nichols AM, White FM. 109.  2009. Manual validation of peptide sequence and sites of tyrosine phosphorylation from MS/MS spectra. Methods Mol. Biol. 492:143–60 [Google Scholar]
  110. Lahesmaa-Korpinen A-M, Carlson SM, White FM, Hautaniemi S. 110.  2010. Integrated data management and validation platform for phosphorylated tandem mass spectrometry data. Proteomics 10:193515–24 [Google Scholar]
  111. Zhang J, Chen Y, Zhang Z, Xing G, Wysocka J, Zhao Y. 111.  2010. MS/MS/MS reveals false positive identification of histone serine methylation. J. Proteome Res. 9:1585–94 [Google Scholar]
  112. Hu A, Noble WS, Wolf-Yadlin A. 112.  2016. Technical advances in proteomics: new developments in data independent acquisition analytical software. F1000 Fac. Rev. In press. [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041542
Loading
/content/journals/10.1146/annurev-anchem-071015-041542
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error