1932

Abstract

Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040102
2016-06-12
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071114-040102.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040102&mimeType=html&fmt=ahah

Literature Cited

  1. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. 1.  1996. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 68:3498–501 [Google Scholar]
  2. Fields SM. 2.  1996. Silica xerogel as a continuous column support for high-performance liquid chromatography. Anal. Chem. 68:2709–12 [Google Scholar]
  3. Nakanishi K, Soga N. 3.  1991. Phase separation in gelling silica–organic polymer solution: systems containing poly(sodium styrenesulfonate). J. Am. Ceram. Soc. 74:2518–30 [Google Scholar]
  4. Cabrera K, Lubda D, Eggenweiler HM, Minakuchi H, Nakanishi K. 4.  2000. A new monolithic-type HPLC column for fast separations. J. High Resolut. Chromatogr. 23:93–99 [Google Scholar]
  5. Cabrera K. 5.  2012. A new generation of silica-based monolithic HPLC columns with improved performance. LCGC N. Am. 30:30–35 [Google Scholar]
  6. Cabrera K. 6.  2004. Applications of silica-based monolithic HPLC columns. J. Sep. Sci. 27:843–52 [Google Scholar]
  7. Ghanem A, Ikegami T. 7.  2011. Recent advances in silica-based monoliths: preparations, characterizations, and applications. J. Sep. Sci. 34:1945–57 [Google Scholar]
  8. Núñez O, Gallart-Ayala H, Martins CPB, Lucci P. 8.  2012. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A 1228:298–323 [Google Scholar]
  9. Luo QZ, Shen YF, Hixson KK, Zhao R, Yang F. 9.  et al. 2005. Preparation of 20-μm-i.d. silica-based monolithic columns and their performance for proteomics analyses. Anal. Chem. 77:5028–35 [Google Scholar]
  10. Kelly RT, Page JS, Luo QZ, Moore RJ, Orton DJ. 10.  et al. 2006. Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal. Chem. 78:7796–801 [Google Scholar]
  11. Luo QZ, Page JS, Tang KQ, Smith RD. 11.  2007. MicroSPE-nanoLC-ESI-MS/MS using 10-μm-i.d. silica-based monolithic columns for proteomics. Anal. Chem. 79:540–45 [Google Scholar]
  12. Luo QZ, Tang KQ, Yang F, Elias A, Shen YF. 12.  et al. 2006. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry. J. Proteome Res. 5:1091–97 [Google Scholar]
  13. Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D. 13.  et al. 2008. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Anal. Chem. 80:8741–50 [Google Scholar]
  14. Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. 14.  2010. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Anal. Chem. 82:2616–20 [Google Scholar]
  15. Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y. 15.  2012. Human proteome analysis by using reversed-phase monolithic silica capillary columns with enhanced sensitivity. J. Chromatogr. A 1228:292–97 [Google Scholar]
  16. Horie K, Sato Y, Kimura T, Nakamura T, Ishihama Y. 16.  et al. 2012. Estimation and optimization of the peak capacity of one-dimensional gradient high performance liquid chromatography using a long monolithic silica capillary column. J. Chromatogr. A 1228:283–91 [Google Scholar]
  17. Horie K, Kamakura T, Ikegami T, Wakabayashi M, Kato T. 17.  et al. 2014. Hydrophilic interaction chromatography using a meter-scale monolithic silica capillary column for proteomics LC-MS. Anal. Chem. 86:3817–24 [Google Scholar]
  18. Soliven A, Dennis GR, Guiochon G, Hilder EF, Haddad PR, Shalliker RA. 18.  2010. Cyano bonded silica monolith—development of an in situ modification method for analytical scale columns. J. Chromatogr. A 12176085–91 [Google Scholar]
  19. Tanaka N, McCalley DV. 19.  2016. Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 88:279–98 [Google Scholar]
  20. Guiochon G. 20.  2007. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 1168101–68 [Google Scholar]
  21. Núñez O, Nakanishi K, Tanaka N. 21.  2008. Preparation of monolithic silica columns for high-performance liquid chromatography. J. Chromatogr. A 1191:231–52 [Google Scholar]
  22. Wu RA, Hu LH, Wang FG, Ye ML, Zou HF. 22.  2008. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A 1184:369–92 [Google Scholar]
  23. Gritti F, Guiochon G. 23.  2010. On the extra-column band-broadening contributions of modern, very high pressure liquid chromatographs using 2.1 mm I.D. columns packed with sub-2 μm particles. J. Chromatogr. A12177677–89 [Google Scholar]
  24. Mazzeo JR, Neue UD, Kele M, Plumb RS. 24.  2005. Advancing LC performance with smaller particles and higher pressure. Anal. Chem. 77:460A–67A [Google Scholar]
  25. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G. 25.  2010. Performance of columns packed with the new shell particles, Kinetex-C18. J. Chromatogr. A 1217:1589–603 [Google Scholar]
  26. Wu N, Bradley AC. 26.  2012. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J. Chromatogr. A 1261:113–20 [Google Scholar]
  27. Gritti F, Sanchez CA, Farkas T, Guiochon G. 27.  2010. Achieving the full performance of highly efficient columns by optimizing conventional benchmark high-performance liquid chromatography instruments. J. Chromatogr. A12173000–12 [Google Scholar]
  28. Kele M, Guiochon G. 28.  2002. Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J. Chromatogr. A 960:19–49 [Google Scholar]
  29. Al-Bokari M, Cherrak D, Guiochon G. 29.  2002. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. J. Chromatogr. A 975:275–84 [Google Scholar]
  30. Hormann K, Tallarek U. 30.  2014. Mass transport properties of second-generation silica monoliths with mean mesopore size from 5 to 25 nm. J. Chromatogr. A136594–105 [Google Scholar]
  31. Hormann K, Müllner T, Bruns S, Höltzel A, Tallarek U. 31.  2012. Morphology and separation efficiency of a new generation of analytical silica monoliths. J. Chromatogr. A 1222:46–58 [Google Scholar]
  32. Bacskay I, Sepsey A, Felinger A. 32.  2014. The pore size distribution of the first and the second generation of silica monolithic stationary phases. J. Chromatogr. A 1359:112–16 [Google Scholar]
  33. Hlushkou D, Hormann K, Höltzel A, Khirevich S, Seidel-Morgenstern A, Tallarek U. 33.  2013. Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. J. Chromatogr. A 1303:28–38 [Google Scholar]
  34. Mriziq KS, Abia JA, Lee YM, Guiochon G. 34.  2008. Structural radial heterogeneity of a silica-based wide-bore monolithic column. J. Chromatogr. A119397–103 [Google Scholar]
  35. Gritti F, Guiochon G. 35.  2012. Measurement of the eddy dispersion term in chromatographic columns: III. Application to new prototypes of 4.6 mm I.D. monolithic columns. J. Chromatogr. A 1225:79–90 [Google Scholar]
  36. Cabrera K, Kupfer T, Jung G, Knoell P. 36.  2014. Preparation and application of silica monoliths for bioanalysis Presented at 41st Int. Symp. High-Perform. Liq.-Phase Sep. Relat. Tech., May 2014, New Orleans, LA [Google Scholar]
  37. Morisato K, Miyazaki S, Ohira M, Furuno M, Nyudo M. 37.  et al. 2009. Semi-micro-monolithic columns using macroporous silica rods with improved performance. J. Chromatogr. A 1216:7384–87 [Google Scholar]
  38. Cabooter D, Broeckhoven K, Sterken R, Vanmessen A, Vandendael I. 38.  et al. 2014. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations. J. Chromatogr. A 1325:72–82 [Google Scholar]
  39. Miyazaki S, Takahashi M, Ohira M, Terashima H, Morisato K. 39.  et al. 2011. Monolithic silica rod columns for high-efficiency reversed-phase liquid chromatography. J. Chromatogr. A 1218:1988–94 [Google Scholar]
  40. Gritti F, Guiochon G. 40.  2012. Measurement of the eddy dispersion term in chromatographic columns: II. Application to new prototypes of 2.3 and 3.2 mm I.D. monolithic silica columns. J. Chromatogr. A 1227:82–95 [Google Scholar]
  41. Ma Y, Chassy AW, Miyazaki S, Motokawa M, Morisato K. 41.  et al. 2015. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. J. Chromatogr. A138347–57 [Google Scholar]
  42. Gzil P, Vervoort N, Baron GV, Desmet G. 42.  2004. General rules for the optimal external porosity of LC supports. Anal. Chem. 76:6707–18 [Google Scholar]
  43. Puy G, Roux R, Demesmay C, Rocca JL, Iapichella J. 43.  et al. 2007. Influence of the hydrothermal treatment on the chromatographic properties of monolithic silica capillaries for nano-liquid chromatography or capillary electrochromatography. J. Chromatogr. A 1160:150–59 [Google Scholar]
  44. Hara T, Mascotto S, Weidmann C, Smarsly BM. 44.  2011. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J. Chromatogr. A 1218:3624–35 [Google Scholar]
  45. Skudas R, Grimes BA, Thommes M, Unger KK. 45.  2009. Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography. J. Chromatogr. A 1216:2625–36 [Google Scholar]
  46. Ishizuka N, Minakuchi H, Nakanishi K, Soga N, Nagayama H. 46.  et al. 2000. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem. 72:1275–80 [Google Scholar]
  47. Ishizuka N, Kobayashi H, Minakuchi H, Nakanishi K, Hirao K. 47.  et al. 2002. Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography. J. Chromatogr. A 960:85–96 [Google Scholar]
  48. Motokawa M, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K. 48.  et al. 2002. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J. Chromatogr. A 961:53–63 [Google Scholar]
  49. Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. 49.  2006. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal. Chem. 78:7632–42 [Google Scholar]
  50. Hara T, Mascotto S, Weidmann C, Smarsly BM. 50.  2011. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J. Chromatogr. A 1218:3624–35 [Google Scholar]
  51. Motokawa M, Ohira M, Minakuchi H, Nakanishi K, Tanaka N. 51.  2006. Performance of octadecylsilylated monolithic silica capillary columns of 530 μm inner diameter in HPLC. J. Sep. Sci. 29:2471–77 [Google Scholar]
  52. Hara T, Weidmann C, Traut T, Smarsly B. 52.  2011. Preparation of a hybrid monolithic silica capillary column with an inner diameter of 530 μm Presented at 36th Int. Symp. High-Perform. Liq.-Phase Sep. Relat. Tech., June 2011, Budapest, Hung. [Google Scholar]
  53. Bruns S, Hara T, Smarsly BM, Tallarek U. 53.  2011. Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency. J. Chromatogr. A 1218:5187–94 [Google Scholar]
  54. Fekete S, Guillarme D. 54.  2013. Kinetic evaluation of new generation of column packed with 1.3 μm core-shell particles. J. Chromatogr. A 1308:104–13 [Google Scholar]
  55. Nakanishi K, Tanaka N. 55.  2007. Sol-gel with phase separation. Hierarchically porous materials optimized for HPLC separations. Acc. Chem. Res. 40:863–73 [Google Scholar]
  56. Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS. 56.  2013. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal. Bioanal. Chem. 405:2133–45 [Google Scholar]
  57. Ou JJ, Lin H, Zhang ZB, Huang G, Dong J, Zou HF. 57.  2013. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis 34:126–40 [Google Scholar]
  58. Rozenbrand J, van Bennekom WP. 58.  2011. Silica-based and organic monolithic capillary columns for LC: recent trends in proteomics. J. Sep. Sci. 34:1934–44 [Google Scholar]
  59. Soliven A, Dennis GR, Hilder EF, Shalliker RA, Stevenson PG. 59.  2014. The development of the in situ modification of 1st generation analytical scale silica monoliths. Chromatographia 77:663–71 [Google Scholar]
  60. Laaniste A, Marechal A, El-Debs R, Randon J, Dugas V, Demesmay C. 60.  2014. “Thiol-ene” photoclick chemistry as a rapid and localizable functionalization pathway for silica capillary monolithic columns. J. Chromatogr. A 1355:296–300 [Google Scholar]
  61. Yin JF, Wang LJ, Wei XY, Yang GL, Wang HL. 61.  2008. p-tert-Butylcalix[8]arene-bonded silica monoliths for liquid chromatography. J. Chromatogr. A 1188:199–207 [Google Scholar]
  62. Chen ZL, Hobo T. 62.  2001. Chemically l-phenylalaninamide-modified monolithic silica column prepared by a sol-gel process for enantioseparation of dansyl amino acids by ligand exchange-capillary electrochromatography. Anal. Chem. 73:3348–57 [Google Scholar]
  63. Chankvetadze B, Ikai T, Yamamoto C, Okamoto Y. 63.  2004. High-performance liquid chromatographic enantioseparations on monolithic silica columns containing a covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J. Chromatogr. A 1042:55–60 [Google Scholar]
  64. Dong XL, Dong J, Ou JJ, Zhu Y, Zou HF. 64.  2007. Preparation and evaluation of a vancomycin immobilized silica monolith as chiral stationary phase for CEC. Electrophoresis 28:2606–12 [Google Scholar]
  65. Lubda D, Cabrera K, Nakanishi K, Lindner W. 65.  2003. Monolithic silica columns with chemically bonded β-cyclodextrin as a stationary phase for enantiomer separations of chiral pharmaceuticals. Anal. Bioanal. Chem. 377:892–901 [Google Scholar]
  66. Tran LN, Dixit S, Park JH. 66.  2014. Enantioseparation of basic chiral compounds on a clindamycin phosphate–silica/zirconia hybrid monolith by capillary electrochromatography. J. Chromatogr. A 1356:289–93 [Google Scholar]
  67. Lubda D, Lindner W. 67.  2004. Monolithic silica columns with chemically bonded tert-butylcarbamoylquinine chiral anion-exchanger selector as a stationary phase for enantiomer separations. J. Chromatogr. A1036135–43 [Google Scholar]
  68. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. 68.  2008. Separation efficiencies in hydrophilic interaction chromatography. J. Chromatogr. A 1184:474–503 [Google Scholar]
  69. Ye FG, Xie ZH, Wong KY. 69.  2006. Monolithic silica columns with mixed mode of hydrophilic interaction and weak anion exchange stationary phase for pressurized capillary electrochromatography. Electrophoresis 27:3373–80 [Google Scholar]
  70. Sugrue E, Nesterenko P, Paull B. 70.  2004. Ion exchange properties of monolithic and particle type iminodiacetic acid modified silica. J. Sep. Sci. 27:921–30 [Google Scholar]
  71. McGillicuddy N, Nesterenko EP, Nesterenko PN, Jones P, Paull B. 71.  2013. Chelation ion chromatography of alkaline earth and transition metals using a monolithic silica column with bonded N-hydroxyethyliminodiacetic acid functional groups. J. Chromatogr. A 1276:102–11 [Google Scholar]
  72. Sugrue E, Nesterenko PN, Paull B. 72.  2005. Fast ion chromatography of inorganic anions and cations on a lysine bonded porous silica monolith. J. Chromatogr. A 1075:167–75 [Google Scholar]
  73. Xie CH, Hu JW, Xiao H, Su XY, Dong J. 73.  et al. 2005. Preparation of monolithic silica column with strong cation-exchange stationary phase for capillary electrochromatography. J. Sep. Sci. 28:751–56 [Google Scholar]
  74. Nogueira R, Lubda D, Leitner A, Bicker W, Maier NM. 74.  et al. 2006. Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography. J. Sep. Sci. 29:966–78 [Google Scholar]
  75. Núñez O, Ikegami T, Miyamoto K, Tanaka N. 75.  2007. Study of a monolithic silica capillary column coated with poly(octadecyl methacrylate) for the reversed-phase liquid chromatographic separation of some polar and non-polar compounds. J. Chromatogr. A 1175:7–15 [Google Scholar]
  76. Soonthorntantikul W, Leepipatpiboon N, Ikegami T, Tanaka N, Nhujak T. 76.  2009. Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography. J. Chromatogr. A 1216:5868–74 [Google Scholar]
  77. Núñez O, Ikegami T, Kajiwara W, Miyamoto K, Horie K, Tanaka N. 77.  2007. Preparation of high efficiency and highly retentive monolithic silicacapillary columns for reversed-phase chromatography by chemical modification by polymerization of octadecyl methacrylate. J. Chromatogr. A 1156:35–44 [Google Scholar]
  78. Weed AMK, Dvornik J, Stefancin JJ, Gyapong AA, Svec F, Zajickova Z. 78.  2013. Photopolymerized organo-silica hybrid monolithic columns: characterization of their performance in capillary liquid chromatography. J. Sep. Sci. 36:270–78 [Google Scholar]
  79. Ali F, Cheong WJ, Al-Othman ZA, Al-Majid AM. 79.  2013. Polystyrene bound stationary phase of excellent separation efficiency based on partially sub-2 mm silica monolith particles. J. Chromatogr. A. 1303:9–17 [Google Scholar]
  80. Sancho R, Novell A, Svec F, Minguillón C. 80.  2014. Monolithic silica columns functionalized with substituted polyproline-derived chiral selectors as chiral stationary phases for high-performance liquid chromatography. J. Sep. Sci. 37:2805–13 [Google Scholar]
  81. Ghanem A, Ikegami T, Tanaka N. 81.  2011. New silica monolith bonded chiral (R)-γ butyrolactone for enantioselective micro high-performance liquid chromatography. Chirality 23:887–90 [Google Scholar]
  82. Ou JJ, Li X, Feng S, Dong J, Dong XL. 82.  et al. 2007. Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography. Anal. Chem. 79:639–46 [Google Scholar]
  83. Ikegami T, Fujita H, Horie K, Hosoya K, Tanaka N. 83.  2006. HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide. Anal. Bioanal. Chem. 386:578–85 [Google Scholar]
  84. Ikegami T, Horie K, Saad N, Hosoya K, Fiehn O, Tanaka N. 84.  2008. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal. Bioanal. Chem. 391:2533–42 [Google Scholar]
  85. Ikegami T, Horie K, Jaafar J, Hosoya K, Tanaka N. 85.  2007. Preparation of highly efficient monolithic silica capillary columns for the separations in weak cation-exchange and HILIC modes. J. Biochem. Biophys. Methods 70:31–37 [Google Scholar]
  86. Horie K, Ikegami T, Hosoya K, Saad N, Fiehn O, Tanaka N. 86.  2007. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J. Chromatogr. A 1164:198–205 [Google Scholar]
  87. Moravcová D, Planeta J, Kahle V, Roth M. 87.  2012. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. J. Chromatogr. A 1270:178–85 [Google Scholar]
  88. El-Debs R, Marechal A, Dugas V, Demesmay C. 88.  2014. Photopolymerization of acrylamide as a new functionalization way of silica monoliths for hydrophilic interaction chromatography and coated silica capillaries for capillary electrophoresis. J. Chromatogr. A 1326:89–95 [Google Scholar]
  89. Yang PL, Zhou QL, Jia L. 89.  2013. Preparation of a dextran sulfate functionalized monolithic silica column for hydrophilic interaction/cation exchange chromatography. Anal. Methods 5:3074–81 [Google Scholar]
  90. Watanabe Y, Ikegami T, Horie K, Hara T, Jaafar J, Tanaka N. 90.  2009. Improvement of separation efficiencies of anion-exchange chromatography using monolithic silica capillary columns modified with polyacrylates and polymethacrylates containing tertiary amino or quaternary ammonium groups. J. Chromatogr. A 1216:7394–401 [Google Scholar]
  91. Ikegami T, Ichimaru J, Kajiwara W, Nagasawa N, Hosoya K, Tanaka N. 91.  2007. Anion- and cation-exchange microHPLC utilizing poly(methacrylates)-coated monolithic silica capillary columns. Anal. Sci. 23:109–113 [Google Scholar]
  92. Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. 92.  2014. Monolithic silica rods grafted with thermoresponsive anionic polymer brushes for high-speed separation of basic biomolecules and peptides. Biomacromolecules 15:1204–15 [Google Scholar]
  93. Calleri E, Massolini G, Lubda D, Temporini C, Loiodice F, Caccialanza G. 93.  2004. Evaluation of a monolithic epoxy silica support for penicillin G acylase immobilization. J. Chromatogr. A 1031:93–100 [Google Scholar]
  94. Calleri E, Temporini C, Perani E, Stella C, Rudaz S. 94.  et al. 2004. Development of a bioreactor based on trypsin immobilized on monolithic support for the on-line digestion and identification of proteins. J. Chromatogr. A 1045:99–109 [Google Scholar]
  95. Moravcová D, Planeta J, Wiedmer SK. 95.  2013. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography. J. Chromatogr. A1317159–66 [Google Scholar]
  96. Liu Z, Otsuka K, Terabe S, Motokawa M, Tanaka N. 96.  2002. Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromatography. Electrophoresis 23:2973–81 [Google Scholar]
  97. Chankvetadze B, Yamamoto C, Tanaka N, Nakanishi K, Okamoto Y. 97.  2004. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with cellulose tris(3,5-dimethylphenylcarbamate). J. Sep. Sci. 27:905–11 [Google Scholar]
  98. Xu Q, Mori M, Tanaka K, Ikedo M, Hu WZ. 98.  2004. Dodecylsulfate-coated monolithic octadecyl-bonded silica stationary phase for high-speed separation of hydrogen, magnesium and calcium in rainwater. J. Chromatogr. A 1026:191–94 [Google Scholar]
  99. Glenn KM, Lucy CA, Haddad PR. 99.  2007. Ion chromatography on a latex-coated silica monolith column. J. Chromatogr. A 1155:8–14 [Google Scholar]
  100. Ibrahim MEA, Lucy CA. 100.  2012. Mixed mode HILIC/anion exchange separations on latex coated silica monoliths. Talanta 100:313–19 [Google Scholar]
  101. Kuroda Y, Hamaguchi R, Tanimoto T. 101.  2014. Phospholipid-modified ODS monolithic column for affinity prediction of hydrophobic basic drugs to phospholipids. Chromatographia 77:405–11 [Google Scholar]
  102. Lin TA, Li GY, Chau LK. 102.  2006. Sol-gel monolithic anion-exchange column for capillary electrochromatography. Anal. Chim. Acta 576:117–23 [Google Scholar]
  103. Hayes JD, Malik A. 103.  2000. Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography. Anal. Chem. 72:4090–99 [Google Scholar]
  104. Tian Y, Zhang LF, Zeng ZR, Li HB. 104.  2008. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis 29:960–70 [Google Scholar]
  105. Li L, Colón LA. 105.  2009. Hydrosilylated allyl-silica hybrid monolithic columns. J. Sep. Sci. 32:2737–46 [Google Scholar]
  106. Yan LJ, Zhang QZ, Zhang J, Zhang LY, Li T. 106.  et al. 2004. Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. J. Chromatogr. A 1046:255–61 [Google Scholar]
  107. Hu JW, Xie CH, Tian RJ, He ZK, Zou HF. 107.  2006. Hybrid silica monolithic column for capillary electrochromatography with enhanced cathodic electroosmotic flow. Electrophoresis 27:4266–72 [Google Scholar]
  108. Roux R, Puy G, Demesmay C, Rocca JL. 108.  2007. Synthesis of propyl-functionalized hybrid monolithic silica capillaries and evaluation of their performances in nano-LC and CEC. J. Sep. Sci. 30:3035–42 [Google Scholar]
  109. Yan LJ, Zhang QH, Feng YQ, Zhang WB, Li T. 109.  et al. 2006. Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography. J. Chromatogr. A 1121:92–98 [Google Scholar]
  110. Roux R, Jaoudé MA, Demesmay C, Rocca JL. 110.  2008. Optimization of the single-step synthesis of hybrid C8 silica monoliths dedicated to nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A 1209:120–27 [Google Scholar]
  111. Wu MH, Chen YZ, Wu RA, Li RB, Zou HF. 111.  et al. 2010. The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine for capillary electrochromatography separation. J. Chromatogr. A 1217:4389–94 [Google Scholar]
  112. Kato M, Sakai-Kato K, Matsumoto N, Toyo'oka T. 112.  2002. A protein-encapsulation technique by the sol-gel method for the preparation of monolithic columns for capillary electrochromatography. Anal. Chem. 74:1915–21 [Google Scholar]
  113. de Coelho Escobar C, dos Santos JHZ. 113.  2014. Effect of the sol-gel route on the textural characteristics of silica imprinted with Rhodamine B. J. Sep. Sci. 37:868–75 [Google Scholar]
  114. Wu MH, Wu RA, Wang FJ, Ren LB, Dong J. 114.  et al. 2009. “One-pot” process for fabrication of organic-silica hybrid monolithic capillary columns using organic monomer and alkoxysilane. Anal. Chem. 81:3529–36 [Google Scholar]
  115. Xu HR, Xu ZD, Yang LM, Wang QQ. 115.  2011. “One-pot” preparation of basic amino acid–silica hybrid monolithic column for capillary electrochromatography. J. Sep. Sci. 34:2314–22 [Google Scholar]
  116. Chen ML, Zhang J, Zhang Z, Yuan BF, Yu QW, Feng YQ. 116.  2013. Facile preparation of organic–silica hybrid monolith for capillary hydrophilic liquid chromatography based on “thiol-ene” click chemistry. J. Chromatogr. A 1284:118–25 [Google Scholar]
  117. Zhang ZB, Wang FJ, Ou JJ, Lin H, Dong J, Zou HF. 117.  2013. Preparation of a butyl–silica hybrid monolithic column with a “one-pot” process for bioseparation by capillary liquid chromatography. Anal. Bioanal. Chem. 405:2265–71 [Google Scholar]
  118. Lin H, Ou JJ, Zhang ZB, Dong J, Wu MH, Zou HF. 118.  2012. Facile preparation of zwitterionic organic–silica hybrid monolithic capillary column with an improved “one-pot” approach for hydrophilic-interaction liquid chromatography (HILIC). Anal. Chem. 84:2721–28 [Google Scholar]
  119. Zhang ZB, Wang FG, Dong J, Lin H, Ou JJ, Zou HF. 119.  2013. A “one step” approach for preparation of an octadecyl–silica hybrid monolithic column via a non-hydrolytic sol-gel (NHSG) method. RSC Adv. 3:22160–67 [Google Scholar]
  120. Debecker DP, Hulea V, Mutin PH. 120.  2013. Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review. Appl. Catal. A 451:192–206 [Google Scholar]
  121. Hsieh ML, Chau LK, Hon YS. 121.  2014. Single-step approach for fabrication of vancomycin-bonded silicamonolith as chiral stationary phase. J. Chromatogr. A 1358:208–16 [Google Scholar]
  122. Li QJ, CC, Li HY, Liu YC, Wang HY. 122.  et al. 2012. Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J. Chromatogr. A1256114–20 [Google Scholar]
  123. Miyazaki S, Miah MY, Morisato K, Shintani Y, Kuroha T, Nakanishi K. 123.  2005. Titania-coated monolithic silica as separation medium for high performance liquid chromatography of phosphorus-containing compounds. J. Sep. Sci. 28:39–44 [Google Scholar]
  124. Randon J, Huguet S, Demesmay C, Berthod A. 124.  2010. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines. J. Chromatogr. A 1217:1496–500 [Google Scholar]
  125. da Silva CGA, Collins CH, Bottoli CBG. 125.  2014. Monolithic capillary columns based on silica and zirconium oxides for use in hydrophilic interaction liquid chromatography. Microchem. J. 116:249–54 [Google Scholar]
  126. Zhu Y, Morisato K, Li WY, Kanamori K, Nakanishi K. 126.  2013. Synthesis of silver nanoparticles confined in hierarchically porous monolithic silica: a new function in aromatic hydrocarbon separations. Appl. Mater. Interfaces 5:2118–25 [Google Scholar]
  127. Yang PL, Wang WT, Xiao X, Jia L. 127.  2014. Hydrothermal preparation of hybrid carbon/silica monolithic capillary column for liquid chromatography. J. Sep. Sci. 37:1911–18 [Google Scholar]
  128. Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. 128.  2013. Organic monoliths for high-performance reversed-phase liquid chromatography. J. Sep. Sci. 36:2767–81 [Google Scholar]
  129. Vaast A, Nováková L, Desmet G, de Haan B, Swart R, Eeltink S. 129.  2013. High-speed gradient separations of peptides and proteins using polymer-monolithic poly(styrene-co-divinylbenzene) capillary columns at ultra-high pressure. J. Chromatogr. A. 1304:177–82 [Google Scholar]
  130. Hosoya K, Hira N, Yamamoto K, Nishimura M, Tanaka N. 130.  2006. High-performance polymer-based monolithic capillary column. Anal. Chem. 78:5729–35 [Google Scholar]
  131. Shu S, Kobayashi H, Kojima N, Sabarudin A, Umemura T. 131.  2011. Preparation and characterization of lauryl methacrylate–based monolithic microbore column for reversed-phase liquid chromatography. J. Chromatogr. A 1218:5228–34 [Google Scholar]
  132. Ou J JJ, Zhang Z ZB, Lin H, Dong J, Zou H HF. 132.  2013. Polyhedral oligomeric silsesquioxanes as functional monomer to prepare hybrid monolithic columns for capillary electrochromatography and capillary liquid chromatography. Anal. Chim. Acta 761:209–16 [Google Scholar]
  133. Wu MH, Wu RA, Li RB, Qin HQ, Dong J. 133.  et al. 2010. Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic-organic hybrid monolithic columns. Anal. Chem. 82:5447–54 [Google Scholar]
  134. Xiong XY, Yang ZH, Li YX, Xiao LH, Jiang LB. 134.  et al. 2013. Preparation of a polyhedral oligomeric silsesquioxane-based perfluorinated monolithic column. J. Chromatogr. A 1304:85–91 [Google Scholar]
  135. Liu ZS, Ou JJ, Lin H, Wang HW, Dong J, Zou HF. 135.  2014. Preparation of polyhedral oligomeric silsesquioxane–based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction. J. Chromatogr. A 1342:70–77 [Google Scholar]
  136. Causon TJ, Nischang I. 136.  2014. Critical differences in chromatographic properties of silica- and polymer-based monoliths. J. Chromatogr. A 1358:165–71 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040102
Loading
/content/journals/10.1146/annurev-anchem-071114-040102
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error