1932

Abstract

Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041415
2016-06-12
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041415.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041415&mimeType=html&fmt=ahah

Literature Cited

  1. Samec Z. 1.  2004. Electrochemistry at the interface between two immiscible electrolyte solutions. Pure Appl. Chem. 76:2147–80 [Google Scholar]
  2. Peljo P, Girault HH. 2.  2006. Liquid/liquid interfaces, electrochemistry at. Encyclopedia of Analytical Chemistry9908–29 New York: Wiley & Sons [Google Scholar]
  3. Shao Y, Mirkin MV. 3.  1997. Fast kinetic measurements with nanometer-sized pipets. Transfer of potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6. J. Am. Chem. Soc. 119:8103–4 [Google Scholar]
  4. Taylor G, Girault HHJ. 4.  1986. Ion transfer-reactions across a liquid–liquid interface supported on a micropipette tip. J. Electroanal. Chem. 208:179–83 [Google Scholar]
  5. Arrigan DWM. 5.  2004. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–65 [Google Scholar]
  6. Amemiya S, Wang Y, Mirkin MV. 6.  2014. Nanoelectrochemistry at the liquid/liquid interfaces. Electrochemistry 12 JD Wadhawan, RG Compton 1–43 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  7. Herzog G. 7.  2015. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 140:3888–96 [Google Scholar]
  8. Liu S, Li Q, Shao Y. 8.  2011. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem. Soc. Rev. 40:2236–53 [Google Scholar]
  9. Yuan Y, Su B, Shao YH. 9.  2001. Investigation of proton transfer across the water/1,2-dichloroethane interface by o-phenanthroline using glass micro/nano-pipets and cyclic voltammetry. Chem. J. Chin. U. 22:1819–23 [Google Scholar]
  10. Hu, Xie S, Meng X, Jing P, Zhang M. 10.  et al. 2006. Fabrication and characterization of submicrometer- and nanometer-sized double-barrel pipets. Anal. Chem. 78:7034–39 [Google Scholar]
  11. Elsamadisi P, Wang Y, Velmurugan J, Mirkin MV. 11.  2011. Polished nanopipets: new probes for high-resolution scanning electrochemical microscopy. Anal. Chem. 83:671–73 [Google Scholar]
  12. Laforge FO, Carpino J, Rotenberg SA, Mirkin MV. 12.  2007. Electrochemical attosyringe. PNAS 104:11895–900 [Google Scholar]
  13. Cai C, Tong Y, Mirkin MV. 13.  2004. Probing rapid ion transfer across a nanoscopic liquid-liquid interface. J. Phys. Chem. B 108:17872–78 [Google Scholar]
  14. Yuan Y, Shao Y. 14.  2002. Systematic investigation of alkali metal ion transfer across the micro- and nano-water/1,2-dichloroethane interfaces facilitated by dibenzo-18-crown-6. J. Phys. Chem. B 106:7809–14 [Google Scholar]
  15. Ishimatsu R, Kim J, Jing P, Striemer CC, Fang DZ. 15.  et al. 2010. Ion-selective permeability of an ultrathin nanoporous silicon membrane as probed by scanning electrochemical microscopy using micropipet-supported ITIES tips. Anal. Chem. 82:7127–34 [Google Scholar]
  16. Sun P, Laforge FO, Mirkin MV. 16.  2005. Ion transfer at nanointerfaces between water and neat organic solvents. J. Am. Chem. Soc. 127:8596–97 [Google Scholar]
  17. Cai C, Mirkin MV. 17.  2006. Electron transfer kinetics at polarized nanoscopic liquid/liquid interfaces. J. Am. Chem. Soc. 128:171–79 [Google Scholar]
  18. Colombo ML, Sweedler JV, Shen M. 18.  2015. Nanopipet-based liquid–liquid interface probes for the electrochemical detection of acetylcholine, tryptamine, and serotonin via ionic transfer. Anal. Chem. 87:5095–100 [Google Scholar]
  19. Shao Y, Mirkin MV. 19.  1998. Voltammetry at micropipet electrodes. Anal. Chem. 70:3155–61 [Google Scholar]
  20. Wang Y, Velmurugan J, Mirkin MV, Rodgers PJ, Kim J, Amemiya S. 20.  2010. Kinetic study of rapid transfer of tetraethylammonium at the 1,2-dichloroethane/water interface by nanopipet voltammetry of common ions. Anal. Chem. 82:77–83 [Google Scholar]
  21. Dryfe RAW, Kralj B. 21.  1999. Voltammetric ion transfer in the presence of a nanoporous material. Electrochem. Commun. 1:128–30 [Google Scholar]
  22. Kralj B, Dryfe RAW. 22.  2001. Membrane voltammetry: the interface between two immiscible electrolyte solutions. Phys. Chem. Chem. Phys. 3:5274–82 [Google Scholar]
  23. Chen Y, Bian S, Gao K, Cao Y, Wu H. 23.  et al. 2014. Studies on the meso-sized selectivity of a novel organic/inorganic hybrid mesoporous silica membrane. J. Membr. Sci. 457:9–18 [Google Scholar]
  24. Gao K, Jiang X-H, Hu D-P, Bian S-J, Wang M, Chen Y. 24.  2015. Impact of an ionic surfactant on the ion transfer behaviors at meso-liquid/liquid interface arrays. Chin. Chem. Lett. 26:285–88 [Google Scholar]
  25. Jiang X, Gao K, Hu D, Wang H, Bian S, Chen Y. 25.  2015. Ion-transfer voltammetric determination of folic acid at meso-liquid-liquid interface arrays. Analyst 140:2823–33 [Google Scholar]
  26. Poltorak L, Herzog G, Walcarius A. 26.  2013. In-situ formation of mesoporous silica films controlled by ion transfer voltammetry at the polarized liquid-liquid interface. Electrochem. Commun. 37:76–79 [Google Scholar]
  27. Poltorak L, Dossot M, Herzog G, Walcarius A. 27.  2014. Interfacial processes studied by coupling electrochemistry at the polarised liquid-liquid interface with in situ confocal Raman spectroscopy. Phys. Chem. Chem. Phys. 16:26955–62 [Google Scholar]
  28. Poltorak L, Hébrant M, Afsharian M, Etienne M, Herzog G, Walcarius A. 28.  2016. Local pH changes triggered by photoelectrochemistry for silica condensation at the liquid-liquid interface. Electrochim. Acta 188:71–77 [Google Scholar]
  29. Scanlon MD, Strutwolf J, Blake A, Iacopino D, Quinn AJ, Arrigan DWM. 29.  2010. Ion-transfer electrochemistry at arrays of nanointerfaces between immiscible electrolyte solutions confined within silicon nitride nanopore membranes. Anal. Chem. 82:6115–23 [Google Scholar]
  30. Ellis JS, Herzog G, Glynn B, Arrigan D. 30.  2011. Electrochemical characterization of regularly-aligned nanopore array membranes filled with electrolyte solutions and their use for detection of nucleic acid hybridization. ECS Trans. 35:29–44 [Google Scholar]
  31. Liu Y, Strutwolf J, Arrigan DW. 31.  2015. Ion-transfer voltammetric behavior of propranolol at nanoscale liquid-liquid interface arrays. Anal. Chem. 87:4487–94 [Google Scholar]
  32. Sairi M, Strutwolf J, Mitchell RA, Silvester DS, Arrigan DWM. 32.  2013. Chronoamperometric response at nanoscale liquid-liquid interface arrays. Electrochim. Acta 101:177–85 [Google Scholar]
  33. Scanlon MD, Arrigan DWM. 33.  2011. Enhanced electroanalytical sensitivity via interface miniaturisation: ion transfer voltammetry at an array of nanometre liquid-liquid interfaces. Electroanalysis 23:1023–28 [Google Scholar]
  34. Rimboud M, Hart RD, Becker T, Arrigan DWM. 34.  2011. Electrochemical behaviour and voltammetric sensitivity at arrays of nanoscale interfaces between immiscible liquids. Analyst 136:4674–81 [Google Scholar]
  35. Errachid A, Mills CA, Pla-Roca M, Lopez MJ, Villanueva G. 35.  et al. 2008. Focused ion beam production of nanoelectrode arrays. Mater. Sci. Eng. 28:777–80 [Google Scholar]
  36. Dekker C. 36.  2007. Solid-state nanopores. Nat. Nanotechnol. 2:209–15 [Google Scholar]
  37. Cannon DM, Flachsbart BR, Shannon MA, Sweedler JV, Bohn PW. 37.  2004. Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl. Phys. Lett. 85:1241–43 [Google Scholar]
  38. Sairi M, Chen-Tan N, Neusser G, Kranz C, Arrigan DWM. 38.  2015. Electrochemical characterisation of nanoscale liquid/liquid interfaces located at focused ion beam-milled silicon nitride membranes. ChemElectroChem 2:98–105 [Google Scholar]
  39. Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DWM. 39.  2015. Achievement of diffusional independence at nanoscale liquid-liquid interfaces within arrays. Anal. Chem. 87:5486–90 [Google Scholar]
  40. Clarke DJ, Schiffrin DJ, Wiles MC. 40.  1989. A tetraphenylborate internal reference electrode for immiscible electrolyte solutions and ion selective electrodes. Electrochim. Acta 34:767–69 [Google Scholar]
  41. Bond AM, Luscombe D, Oldham KB, Zoski CG. 41.  1988. A comparison of the chronoamperometric response at inlaid and recessed disk microelectrodes. J. Electroanal. Chem. 249:1–14 [Google Scholar]
  42. Saito Y. 42.  1968. A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev. Polarogr. 15:177–87 [Google Scholar]
  43. Alfred LCR, Oldham KB. 43.  1995. The steady-state at a pair of hemispherical microelectrodes. J. Electroanal. Chem. 396:257–63 [Google Scholar]
  44. Fletcher S, Horne MD. 44.  1999. Random assemblies of microelectrodes (RAM™ electrodes) for electrochemical studies. Electrochem. Commun. 1:502–12 [Google Scholar]
  45. Godino N, Borrise X, Munoz FX, del Campo FJ, Compton RG. 45.  2009. Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J. Phys. Chem. C 113:11119–25 [Google Scholar]
  46. Molina A, Laborda E, Compton RG. 46.  2014. Cyclic and square-wave voltammetry at diffusionally asymmetric microscopic and nanoscopic liquid-liquid interfaces: a simple theoretical approach. J. Phys. Chem. C 118:18249–56 [Google Scholar]
  47. Molina A, Laborda E, González J, Compton RG. 47.  2015. Linear sweep and cyclic voltammetries of reversible ion transfer processes at macro- and microcapillaries under transient regime. Electroanalysis 27:93–100 [Google Scholar]
  48. Li Q, Xie SB, Liang ZW, Meng X, Liu SJ. 48.  et al. 2009. Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew. Chem. Int. Ed. 48:8010–13 [Google Scholar]
  49. Jing P, Zhang MQ, Hu H, Xu XD, Liang ZW. 49.  et al. 2006. Ion-transfer reactions at the nanoscopic water/n-octanol interface. Angew. Chem. Int. Ed. 45:6861–64 [Google Scholar]
  50. Li F, Chen Y, Zhang M, Jing P, Gao Z, Shao Y. 50.  2005. Ion transfer reactions in media of low ionic strength. J. Electroanal. Chem. 579:89–102 [Google Scholar]
  51. Samec Z. 51.  2012. Dynamic electrochemistry at the interface between two immiscible electrolytes. Electrochim. Acta 84:21–28 [Google Scholar]
  52. Rodgers PJ, Amemiya S, Wang Y, Mirkin MV. 52.  2010. Nanopipet voltammetry of common ions across the liquid-liquid interface. theory and limitations in kinetic analysis of nanoelectrode voltammograms. Anal. Chem. 82:84–90 [Google Scholar]
  53. Shen M, Colombo ML. 53.  2015. Electrochemical nanoprobes for the chemical detection of neurotransmitters. Anal. Methods 7:7095–105 [Google Scholar]
  54. Zhan DP, Mao SN, Zhao Q, Chen Z, Hu H. 54.  et al. 2004. Electrochemical investigation of dopamine at the water/1,2-dichloroethane interface. Anal. Chem. 76:4128–36 [Google Scholar]
  55. Berduque A, Zazpe R, Arrigan DWM. 55.  2008. Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes. Anal. Chim. Acta 611:156–62 [Google Scholar]
  56. Colombo ML, McNeil S, Iwai N, Chang A, Shen M. 56.  2016. Electrochemical detection of dopamine via assisted ion transfer at nanopipet electrode using cyclic voltammetry. J. Electrochem. Soc. 163:H3072–76 [Google Scholar]
  57. Hu D, Wang H, Gao K, Jiang X, Wang M. 57.  et al. 2014. Anion transfer across “anion channels” at the liquid/liquid interface modified by anion-exchange membrane. RSC Adv. 4:57035–40 [Google Scholar]
  58. Amemiya S, Bard AJ, Fan F-RF, Mirkin MV, Unwin PR. 58.  2008. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 195–131 [Google Scholar]
  59. Sun P, Zhang Z, Gao Z, Shao Y. 59.  2002. Probing fast facilitated ion transfer across an externally polarized liquid-liquid interface by scanning electrochemical microscopy. Angew. Chem. 41:3445–48 [Google Scholar]
  60. Shen M, Ishimatsu R, Kim J, Amemiya S. 60.  2012. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J. Am. Chem. Soc. 134:9856–59 [Google Scholar]
  61. Yamada H, Haraguchi D, Yasunaga K. 61.  2014. Fabrication and characterization of a K+-selective nanoelectrode and simultaneous imaging of topography and local K+ flux using scanning electrochemical microscopy. Anal. Chem. 86:8547–52 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041415
Loading
/content/journals/10.1146/annurev-anchem-071015-041415
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error