1932

Abstract

The development of structure-switching, electrochemical, aptamer-based sensors over the past ∼10 years has led to a variety of reagentless sensors capable of analytical detection in a range of sample matrices. The crux of this methodology is the coupling of target-induced conformation changes of a redox-labeled aptamer with electrochemical detection of the resulting altered charge transfer rate between the redox molecule and electrode surface. Using aptamer recognition expands the highly sensitive detection ability of electrochemistry to a range of previously inaccessible analytes. In this review, we focus on the methods of sensor fabrication and how sensor signaling is affected by fabrication parameters. We then discuss recent studies addressing the fundamentals of sensor signaling as well as quantitative characterization of the analytical performance of electrochemical aptamer-based sensors. Although the limits of detection of reported electrochemical aptamer-based sensors do not often reach that of gold-standard methods such as enzyme-linked immunosorbent assays, the operational convenience of the sensor platform enables exciting analytical applications that we address. Using illustrative examples, we highlight recent advances in the field that impact important areas of analytical chemistry. Finally, we discuss the challenges and prospects for this class of sensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041446
2016-06-12
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041446.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041446&mimeType=html&fmt=ahah

Literature Cited

  1. Lai RY, Plaxco KW, Heeger AJ. 1.  2007. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem. 79:229–33 [Google Scholar]
  2. White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW. 2.  2008. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24:10513–18 [Google Scholar]
  3. Schoukroun-Barnes L, White R. 3.  2015. Rationally designing aptamer sequences with reduced affinity for controlled sensor performance. Sensors 15:7754–67 [Google Scholar]
  4. Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY. 4.  et al. 2009. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 131:4262–66 [Google Scholar]
  5. Liu J, Wagan S, Davila Morris M, Taylor J, White RJ. 5.  2014. Achieving reproducible performance of electrochemical, folding aptamer-based sensors on microelectrodes: challenges and prospects. Anal. Chem. 86:11417–24 [Google Scholar]
  6. Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. 6.  2012. Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J. Am. Chem. Soc. 134:20601–4 [Google Scholar]
  7. Rowe AA, Miller EA, Plaxco KW. 7.  2010. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor. Anal. Chem. 82:7090–95 [Google Scholar]
  8. Liu Y, Zhou Q, Revzin A. 8.  2013. An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 138:4321–26 [Google Scholar]
  9. Kang D, Zuo X, Yang R, Xia F, Plaxco KW, White RJ. 9.  2009. Comparing the properties of electrochemical-based DNA sensors employing different redox tags. Anal. Chem. 81:9109–13 [Google Scholar]
  10. Ferapontova EE, Gothelf K V. 10.  2009. Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline. Langmuir 25:4279–83 [Google Scholar]
  11. Willner I, Zayats M. 11.  2007. Electronic aptamer-based sensors. Angew. Chem. Int. Ed. 46:6408–18 [Google Scholar]
  12. Song S, Wang L, Li J, Fan C, Zhao J. 12.  2008. Aptamer-based biosensors. Trends Anal. Chem. 27:108–17 [Google Scholar]
  13. Liu J, Morris MD, Macazo FC, Schoukroun-Barnes LR, White RJ. 13.  2014. The current and future role of aptamers in electroanalysis. J. Electrochem. Soc. 161:H301–13 [Google Scholar]
  14. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. 14.  2005. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 44:5456–59 [Google Scholar]
  15. Rajendran M, Ellington AD. 15.  2003. In vitro selection of molecular beacons. Nucleic Acids Res. 31:5700–13 [Google Scholar]
  16. Ferapontova EE, Olsen EM, Gothelf KV. 16.  2008. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J. Am. Chem. Soc. 130:4256–58 [Google Scholar]
  17. Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ. 17.  et al. 2013. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5:213ra165 [Google Scholar]
  18. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. 18.  2006. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128:3138–39 [Google Scholar]
  19. Levicky R, Herne TM, Tarlov MJ, Satija SK. 19.  1998. Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J. Am. Chem. Soc. 120:9787–92 [Google Scholar]
  20. Josephs EA, Ye T. 20.  2013. Nanoscale spatial distribution of thiolated DNA on model nucleic acid sensor surfaces. ACS Nano 7:3653–60 [Google Scholar]
  21. Macazo FC, Karpel RL, White RJ. 21.  2015. Monitoring cooperative binding using electrochemical DNA-based sensors. Langmuir 31:868–75 [Google Scholar]
  22. Lai RY, Seferos DS, Heeger AJ, Bazan GC, Plaxco KW. 22.  2006. Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir 22:10796–800 [Google Scholar]
  23. Ulman A. 23.  1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–54 [Google Scholar]
  24. Ricci F, Zari N, Caprio F, Recine S, Amine A. 24.  et al. 2009. Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry 76:208–13 [Google Scholar]
  25. Ricci F, Lai RY, Heeger AJ, Plaxco KW, Sumner JJ. 25.  2007. Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23:6827–34 [Google Scholar]
  26. Steel AB, Levicky RL, Herne TM, Tarlov MJ. 26.  2000. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79:975–81 [Google Scholar]
  27. Xiao Y, Lai RY, Plaxco KW. 27.  2007. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat. Protoc. 2:2875–80 [Google Scholar]
  28. Schoukroun-Barnes LR, Wagan S, White RJ. 28.  2014. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal. Chem. 86:1131–37 [Google Scholar]
  29. Ferapontova EE, Gothelf KV. 29.  2009. Optimization of the electrochemical RNA-aptamer based biosensor for theophylline by using a methylene blue redox label. Electroanalysis 21:1261–66 [Google Scholar]
  30. Prins R, Korswagen AR, Kortbeek AGTG. 30.  1972. Decomposition of the ferricenium cation by nucleophilic reagents. J. Organomet. Chem. 39:335–44 [Google Scholar]
  31. Han SW, Se H, Chung K, Kim K. 31.  2000. Electrochemical and vibrational spectroscopic characterization of self-assembled monolayers of 1,1′-disubstituted ferrocene derivatives on gold. Langmuir 16:9493–500 [Google Scholar]
  32. Zhang S, Zhou G, Xu X, Cao L, Liang G. 32.  et al. 2011. Development of an electrochemical aptamer-based sensor with a sensitive Fe3O4 nanopaticle-redox tag for reagentless protein detection. Electrochem. Commun. 13:928–31 [Google Scholar]
  33. Chang AL, McKeague M, Liang JC, Smolke CD. 33.  2014. Kinetic and equilibrium binding characterization of aptamers to small molecules using a label-free, sensitive, and scalable platform. Anal. Chem. 86:3273–78 [Google Scholar]
  34. Latham MP, Zimmermann GR, Pardi A. 34.  2009. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J. Am. Chem. Soc. Commun. 131:5052–53 [Google Scholar]
  35. Liu Y, Liu Y, Matharu Z, Rahimian A, Revzin A. 35.  2015. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens. Bioelectron. 64:43–50 [Google Scholar]
  36. Pheeney CG, Barton JK. 36.  2012. DNA electrochemistry with tethered methylene blue. Langmuir 2:7063–70 [Google Scholar]
  37. Uzawa T, Cheng RR, White RJ, Makarov DE, Plaxco KW. 37.  2010. A mechanistic study of electron transfer from the distal termini of electrode-bound, single-stranded DNAs. J. Am. Chem. Soc. 132:16120–26 [Google Scholar]
  38. Huang K, White RJ. 38.  2013. Random walk on a leash: a simple single-molecule diffusion model for surface-tethered redox molecules with flexible linkers. J. Am. Chem. Soc. 135:12808–17 [Google Scholar]
  39. Farjami E, Campos R, Ferapontova EE. 39.  2012. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. Langmuir 28:16218–26 [Google Scholar]
  40. Anne A, Bouchardon A, Moiroux J. 40.  2003. 3′-ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J. Am. Chem. Soc. 125:1112–13 [Google Scholar]
  41. Anne A, Demaille C. 41.  2006. Dynamics of electron transport by elastic bending of short DNA duplexes. Experimental study and quantitative modeling of the cyclic voltammetric behavior of 3′-ferrocenyl DNA end-grafted on gold. J. Am. Chem. Soc. 128:542–57 [Google Scholar]
  42. Steel AB, Herne TM, Tarlov MJ. 42.  1998. Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70:4670–77 [Google Scholar]
  43. Esteban B, Watkins HM, Pingarro JM, Plaxco KW, Palleschi G, Ricci F. 43.  2013. Determinants of the detection limit and specificity of surface-based biosensors. Anal. Chem. 85:6593–97 [Google Scholar]
  44. Schoukroun-Barnes LR, Glaser EP, White RJ. 44.  2015. Heterogeneous electrochemical aptamer-based sensor surfaces for controlled sensor response. Langmuir 31:6563–69 [Google Scholar]
  45. White RJ, Plaxco KW. 45.  2010. Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal. Chem. 82:73–76 [Google Scholar]
  46. Ricci F, Lai RY, Plaxco KW. 46.  2007. Linear, redox modified DNA probes as electrochemical DNA sensors. Chem. Commun. 2007:3768–70 [Google Scholar]
  47. Zuker M, Jacobson AB. 47.  1998. Using reliability information to annotate RNA secondary structures. RNA 4:669–79 [Google Scholar]
  48. Zuker M. 48.  2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–15 [Google Scholar]
  49. White RJ, Rowe AA, Plaxco KW. 49.  2010. Re-engineeing aptamers to support reagentless, self-reporting electrochemical sensors. Analyst 135:589–94 [Google Scholar]
  50. White RJ, Plaxco KW. 50.  2009. Engineering new aptamer geometries for electrochemical aptamer-based sensors. Proc. SPIE Int. Soc. Opt. Eng. 7321:732105 [Google Scholar]
  51. Catherine AT, Shishido SN, Robbins-Welty GA, Diegelman-Parente A. 51.  2014. Rational design of a structure-switching DNA aptamer for potassium ions. FEBS Open Bio 4:788–95 [Google Scholar]
  52. Fetter L, Richards J, Daniel J, Roon L, Rowland TJ, Bonham AJ. 52.  2015. Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins. Chem. Commun. 51:15137–40 [Google Scholar]
  53. Jiang L, Patel D. 53.  1998. Solution structure of the tobramycin-RNA aptamer complex. Nat. Struct. Biol. 5:769–74 [Google Scholar]
  54. Wang Y, Rando RR. 54.  1995. Specific binding of aminoglycoside antibiotics to RNA. Chem. Biol. 2:281–90 [Google Scholar]
  55. Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW. 55.  2006. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal. Chem. 78:5671–77 [Google Scholar]
  56. Radi A-E, O'Sullivan CK. 56.  2006. Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem. Commun. 2006:3432–34 [Google Scholar]
  57. Hu J, Stein A, Bühlmann P. 57.  2016. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 76:102–14 [Google Scholar]
  58. Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E. 58.  2006. Solid contact potentiometric sensors for trace level measurements. Anal. Chem. 78:1318–22 [Google Scholar]
  59. Mensah ST, Gonzalez Y, Calvo-Marzal P, Chumbimuni-Torres KY. 59.  2014. Nanomolar detection limits of Cd2+, Ag+, and K+ using paper-strip ion-selective electrodes. Anal. Chem. 86:7269–73 [Google Scholar]
  60. Blouin S, Lafontaine DA. 60.  2007. A loop-loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA 13:1256–67 [Google Scholar]
  61. Zayats M, Huang Y, Gill R, Ma CA, Willner I. 61.  2006. Label-free and reagentless aptamer-based sensors for small molecules. J. Am. Chem. Soc. 128:13666–67 [Google Scholar]
  62. Wu Z-S, Guo M-M, Zhang S-B, Chen C-R, Jiang J-H. 62.  et al. 2007. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal. Chem. 79:2933–39 [Google Scholar]
  63. Zhang S, Xia J, Li X. 63.  2008. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem. 80:8382–88 [Google Scholar]
  64. Bucher ES, Wightman RM. 64.  2015. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8:239–61 [Google Scholar]
  65. Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG. 65.  et al. 2013. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammatery. Anal. Chem. 85:8780–86 [Google Scholar]
  66. Liu Y, Tuleouva N, Ramanculov E, Revzin A. 66.  2010. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal. Chem. 82:8131–36 [Google Scholar]
  67. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K. 67.  et al. 2002. Protein detection using proximity-dependent DNA ligation assays. Nature Biotech. 20:473–77 [Google Scholar]
  68. Liu Y, Kwa T, Revzin A. 68.  2012. Simultaneous detection of cell-secreted TNF-α and IFN-γ using micropatterned aptamer-modified electrodes. Biomaterials 33:7347–55 [Google Scholar]
  69. Matharu Z, Patel D, Gao Y, Haque A, Zhou Q, Revzin A. 69.  2014. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem. 86:8865–72 [Google Scholar]
  70. Connel TG, Curtis N, Ranganathan SC, Buttery JP. 70.  2006. Performance of a whole blood interferon gamma assay for detecting latent infenction with Mycobacterium tuberculosis in children. Thorax 61:616–20 [Google Scholar]
  71. Bayley H, Cremer PS. 71.  2001. Stochastic sensors inspired by biology. Nature 413:226–30 [Google Scholar]
  72. Bayley H, Martin CR. 72.  2000. Resistive-pulse sensing—from microbes to molecules. Chem. Rev. 100:2575–94 [Google Scholar]
  73. Macazo FC, White RJ. 73.  2014. Monitoring charge flux to quantify unusual ligand-induced ion channel activity for use in biological nanopore-based sensors. Anal. Chem. 86:5519–25 [Google Scholar]
  74. Rotem D, Jayasinghe L, Salichou M, Bayley H. 74.  2012. Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134:2781–87 [Google Scholar]
  75. Li T, Liu L, Li Y, Xie J, Wu H-C. 75.  2015. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin. Angew. Chem. Int. Ed. 54:7568–71 [Google Scholar]
  76. Zhang L, Zhang K, Liu G, Liu M, Liu Y, Li J. 76.  2015. Rapid and label-free nanopore proximity bioassay for platelet-derived growth factor detection. Anal. Chem. 87:5677–82 [Google Scholar]
  77. Cho EJ, Lee J-W, Ellington AD. 77.  2009. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2:241–64 [Google Scholar]
  78. Xiao Y, Uzawa T, White RJ, DeMartini D, Plaxco KW. 78.  2009. On the signaling of electrochemical aptamer-based sensors: collision- and folding-based mechanisms. Electroanalysis 21:1267–71 [Google Scholar]
  79. Mao Y, Luo C, Ouyang Q. 79.  2003. Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 31:e108 [Google Scholar]
  80. Hianik T, Ostatná V, Sonlajtnerova M, Grman I. 80.  2007. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 70:127–33 [Google Scholar]
  81. McKeague M, De Girolamo A, Valenzano S, Pascale M, Ruscito A. 81.  et al. 2015. Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. Anal. Chem. 87:8608–12 [Google Scholar]
  82. Stojanovic MN, de Prada P, Landry DW. 82.  2001. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123:4928–31 [Google Scholar]
  83. Zuo X, Xiao Y, Plaxco KW. 83.  2009. High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J. Am. Chem. Soc. 131:6944–45 [Google Scholar]
  84. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. 84.  2007. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc. 129:1042–43 [Google Scholar]
  85. Ikebukuro K, Kiyohara C, Sode K. 85.  2005. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens. Bioelectron. 20:2168–72 [Google Scholar]
  86. Miao P, Tang Y, Wang B, Han K, Chen X, Sun H. 86.  2014. An aptasensor for detection of potassium ions based on RecJf exonuclease mediated signal amplification. Analyst 139:5695–99 [Google Scholar]
  87. Cox JT, Zhang B. 87.  2012. Nanoelectrodes: recent advances and new directions. Annu. Rev. Anal. Chem. 5:253–72 [Google Scholar]
  88. Wang T, Viennois E, Merlin D, Wang G. 88.  2015. Microelectrode miRNA sensors enabled by enzymeless electrochemical signal amplification. Anal. Chem. 87:8173–80 [Google Scholar]
  89. Hu K, Gao Y, Wang Y, Yu Y, Zhao X. 89.  et al. 2013. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. J. Solid State Electrochem. 17:2971–77 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041446
Loading
/content/journals/10.1146/annurev-anchem-071015-041446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error