- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 14, 2021
Annual Review of Analytical Chemistry - Volume 14, 2021
Volume 14, 2021
-
-
AI in Measurement Science
Chao Liu, and Jiashu SunVol. 14 (2021), pp. 1–19More LessMeasurement of biological systems containing biomolecules and bioparticles is a key task in the fields of analytical chemistry, biology, and medicine. Driven by the complex nature of biological systems and unprecedented amounts of measurement data, artificial intelligence (AI) in measurement science has rapidly advanced from the use of silicon-based machine learning (ML) for data mining to the development of molecular computing with improved sensitivity and accuracy. This review presents an overview of fundamental ML methodologies and discusses their applications in disease diagnostics, biomarker discovery, and imaging analysis. We next provide the working principles of molecular computing using logic gates and arithmetical devices, which can be employed for in situ detection, computation, and signal transduction for biological systems. This review concludes by summarizing the strengths and limitations of AI-involved biological measurement in fundamental and applied research.
-
-
-
Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines
Vol. 14 (2021), pp. 21–46More LessThe strong interplay between the various parameters at play in a bottle and in a glass of champagne or sparkling wine has been the subject of study for about two decades. After a brief overview of the history of champagne and sparkling wines, this article presents the key steps involved in the traditional method leading to the production of premium modern-day sparkling wines, with a specific focus on quantification of the dissolved CO2 found in the sealed bottles and in a glass. Moreover, a review of the literature on the various chemical and instrumental approaches used in the analysis of dissolved and gaseous CO2, effervescence, foam, and volatile organic compounds is reported.
-
-
-
3D Printed Electrochemical Sensors
Vol. 14 (2021), pp. 47–63More LessThree-dimensional (3D) printing has recently emerged as a novel approach in the development of electrochemical sensors. This approach to fabrication has provided a tremendous opportunity to make complex geometries of electrodes at high precision. The most widely used approach for fabrication is fused deposition modeling; however, other approaches facilitate making smaller geometries or expanding the range of materials that can be printed. The generation of complete analytical devices, such as electrochemical flow cells, provides an example of the array of analytical tools that can be developed. This review highlights the fabrication, design, preparation, and applications of 3D printed electrochemical sensors. Such developments have begun to highlight the vast potential that 3D printed electrochemical sensors can have compared to other strategies in sensor development.
-
-
-
Bipolar (Bio)electroanalysis
Vol. 14 (2021), pp. 65–86More LessThis contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this “wireless” electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
-
-
-
In Situ X-Ray Techniques for Electrochemical Interfaces
Vol. 14 (2021), pp. 87–107More LessThis article reviews progress in the study of materials using X-ray-based techniques from an electrochemistry perspective. We focus on in situ/in operando surface X-ray scattering, X-ray absorption spectroscopy, and the combination of both methods. The background of these techniques together with key concepts is introduced. Key examples of in situ and in operando investigation of liquid–solid and liquid–liquid interfaces are presented. X-ray scattering and spectroscopy have helped to develop an understanding of the underlying atomic and molecular processes associated with electrocatalysis, electrodeposition, and battery materials. We highlight recent developments, including resonant surface diffraction and time-resolved studies.
-
-
-
Electrochemical Affinity Assays/Sensors: Brief History and Current Status
Vol. 14 (2021), pp. 109–131More LessThe advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.
-
-
-
Active Flow Control and Dynamic Analysis in Droplet Microfluidics
Vol. 14 (2021), pp. 133–153More LessDroplet-based microfluidics has emerged as an important subfield within the microfluidic and general analytical communities. Indeed, several unique applications such as digital assay readout and single-cell sequencing now have commercial systems based on droplet microfluidics. Yet there remains room for this research area to grow. To date, most analytical readouts are optical in nature, relatively few studies have integrated sample preparation, and passive means for droplet formation and manipulation have dominated the field. Analytical scientists continue to expand capabilities by developing droplet-compatible method adaptations, for example, by interfacing to mass spectrometers or automating droplet sampling for temporally resolved analysis. In this review, we highlight recently developed fluidic control techniques and unique integrations of analytical methodology with droplet microfluidics—focusing on automation and the connections to analog/digital domains—and we conclude by offering a perspective on current challenges and future applications.
-
-
-
Environmental Toxicology Assays Using Organ-on-Chip
Vol. 14 (2021), pp. 155–183More LessAdverse effects of environmental toxicants to human health have traditionally been assayed using in vitro assays. Organ-on-chip (OOC) is a new platform that can bridge the gaps between in vitro assays (or 3D cell culture) and animal tests. Microenvironments, physical and biochemical stimuli, and adequate sensing and biosensing systems can be integrated into OOC devices to better recapitulate the in vivo tissue and organ behavior and metabolism. While OOCs have extensively been studied for drug toxicity screening, their implementation in environmental toxicology assays is minimal and has limitations. In this review, recent attempts of environmental toxicology assays using OOCs, including multiple-organs-on-chip, are summarized and compared with OOC-based drug toxicity screening. Requirements for further improvements are identified and potential solutions are suggested.
-
-
-
Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications
Vol. 14 (2021), pp. 185–205More LessIn recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.
-
-
-
Analytical Technologies for Liquid Biopsy of Subcellular Materials
Vol. 14 (2021), pp. 207–229More LessLiquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.
-
-
-
Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements
Vol. 14 (2021), pp. 231–255More LessPhase separation is a common occurrence in nature. Synthetic and natural polymers, salts, ionic liquids, surfactants, and biomacromolecules phase separate in water, resulting in an aqueous two-phase system (ATPS). This review discusses the properties, handling, and uses of ATPSs. These systems have been used for protein, nucleic acid, virus, and cell purification and have in recent years found new uses for small organics, polysaccharides, extracellular vesicles, and biopharmaceuticals. Analytical biochemistry applications such as quantifying protein–protein binding, probing for conformational changes, or monitoring enzyme activity have been performed with ATPSs. Not only are ATPSs biocompatible, they also retain their properties at the microscale, enabling miniaturization experiments such as droplet microfluidics, bacterial quorum sensing, multiplexed and point-of-care immunoassays, and cell patterning. ATPSs include coacervates and may find wider interest in the context of intracellular phase separation and origin of life. Recent advances in fundamental understanding and in commercial application are also considered.
-
-
-
New Advances and Applications in Field-Flow Fractionation
Vol. 14 (2021), pp. 257–279More LessField-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.
-
-
-
Biochemical Sensing with Nanoplasmonic Architectures: We Know How but Do We Know Why?
Vol. 14 (2021), pp. 281–297More LessHere, the research field of nanoplasmonic sensors is placed under scrutiny, with focus on affinity-based detection using refractive index changes. This review describes how nanostructured plasmonic sensors can deliver unique advantages compared to the established surface plasmon resonance technique, where a planar metal surface is used. At the same time, it shows that these features are actually only useful in quite specific situations. Recent trends in the field are also discussed and some devices that claim extraordinary performance are questioned. It is argued that the most important challenges are related to limited receptor affinity and nonspecific binding rather than instrumental performance. Although some nanoplasmonic sensors may be useful in certain situations, it seems likely that conventional surface plasmon resonance will continue to dominate biomolecular interaction analysis. For detection of analytes in complex samples, plasmonics may be an important tool, but probably not in the form of direct refractometric detection.
-
-
-
Protein Dynamics by Two-Dimensional Infrared Spectroscopy
Vol. 14 (2021), pp. 299–321More LessProteins function as ensembles of interconverting structures. The motions span from picosecond bond rotations to millisecond and longer subunit displacements. Characterization of functional dynamics on all spatial and temporal scales remains challenging experimentally. Two-dimensional infrared spectroscopy (2D IR) is maturing as a powerful approach for investigating proteins and their dynamics. We outline the advantages of IR spectroscopy, describe 2D IR and the information it provides, and introduce vibrational groups for protein analysis. We highlight example studies that illustrate the power and versatility of 2D IR for characterizing protein dynamics and conclude with a brief discussion of the outlook for biomolecular 2D IR.
-
-
-
The Role of Raman Spectroscopy Within Quantitative Metabolomics
Vol. 14 (2021), pp. 323–345More LessNinety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering–based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.
-
-
-
Noncontact Nanoscale Imaging of Cells
Vol. 14 (2021), pp. 347–361More LessThe reduction in ion current as a fine pipette approaches a cell surface allows the cell surface topography to be imaged, with nanoscale resolution, without contact with the delicate cell surface. A variety of different methods have been developed and refined to scan the topography of the dynamic cell surface at high resolution and speed. Measurement of cell topography can be complemented by performing local probing or mapping of the cell surface using the same pipette. This can be done by performing single-channel recording, applying force, delivering agonists, using pipettes fabricated to contain an electrochemical probe, or combining with fluorescence imaging. These methods in combination have great potential to image and map the surface of live cells at the nanoscale.
-
-
-
Glycan Labeling and Analysis in Cells and In Vivo
Vol. 14 (2021), pp. 363–387More LessAs one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
-
-
-
Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins
Vol. 14 (2021), pp. 389–412More LessProteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5–20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
-
-
-
Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AIEgens)
Vol. 14 (2021), pp. 413–435More LessPhysiological dynamics in living cells and tissues are crucial for maintenance and regulation of their normal activities and functionalities. Tiny fluctuations in physiological microenvironments can leverage significant influences on cell growth, metabolism, differentiation, and apoptosis as well as disease evolution. Fluorescence imaging based on aggregation-induced emission luminogens (AIEgens) exhibits superior advantages in real-time sensing and monitoring of the physiological dynamics in living systems, including its unique properties such as high sensitivity and rapid response, flexible molecular design, and versatile nano- to mesostructural fabrication. The introduction of canonic AIEgens with long-wavelength, near-infrared, or microwave emission, persistent luminescence, and diversified excitation source (e.g., chemo- or bioluminescence) offers researchers a tool to evaluate the resulting molecules with excellent performance in response to subtle fluctuations in bioactivities with broader dimensionalities and deeper hierarchies.
-
-
-
Clinical Chemistry for Developing Countries: Mass Spectrometry
Vol. 14 (2021), pp. 437–465More LessEarly disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
-