1932

Abstract

This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this “wireless” electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-090820-093307
2021-07-27
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-090820-093307.html?itemId=/content/journals/10.1146/annurev-anchem-090820-093307&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bard AJ, Faulkner LR. 2001. Electrochemical Methods: Fundamentals and Applications New York: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  2. 2. 
    Hiddleston JN, Douglad AF. 1968. Fluidized bed electrodes—fundamental measurements and implications. Nature 218:601–02
    [Google Scholar]
  3. 3. 
    van der Heiden CM, Raats SM, Boon JF. 1978. Fluidised bed electrolysis for removal or recovery of metals from dilute solutions. Chem. Ind. 1:465–68
    [Google Scholar]
  4. 4. 
    Fleischmann M, Goodridge F, King CJH. 1978. Electrochemical processes US Patent 4,124,453
    [Google Scholar]
  5. 5. 
    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. 2013. Bipolar electrochemistry: from materials science to motion and beyond. Acc. Chem. Res. 46:2513–23
    [Google Scholar]
  6. 6. 
    Fosdick SE, Knust KN, Scida K, Crooks RM. 2013. Bipolar electrochemistry. Angew. Chem. Int. Ed. 52:10438–56
    [Google Scholar]
  7. 7. 
    Shida N, Zhou Y, Inagi S. 2019. Bipolar electrochemistry: a powerful tool for electrifying functional material synthesis. Acc. Chem. Res. 52:2598–608
    [Google Scholar]
  8. 8. 
    Koefoed L, Pedersen SU, Daasbjerg K. 2017. Bipolar electrochemistry—a wireless approach for electrode reactions. Curr. Opin. Electrochem. 2:13–17
    [Google Scholar]
  9. 9. 
    Sequeira CAC, Cardoso DSP, Gameiro MLF. 2016. Bipolar electrochemistry, a focal point of future research. Chem. Eng. Commun. 203:1001–8
    [Google Scholar]
  10. 10. 
    Loget G, Kuhn A. 2011. Shaping and exploring the micro- and nanoworld using bipolar electrochemistry. Anal. Bioanal. Chem. 400:1691–704
    [Google Scholar]
  11. 11. 
    Karimian N, Hashemi P, Afkhami A, Bagheri H. 2019. The principles of bipolar electrochemistry and its electroanalysis applications. Curr. Opin. Electrochem. 17:30–37
    [Google Scholar]
  12. 12. 
    Pébère N, Vivier V. 2016. Local electrochemical measurements in bipolar experiments for corrosion studies. ChemElectroChem 3:415–21
    [Google Scholar]
  13. 13. 
    Munktell S, Tydén M, Högström J, Nyholm L, Björefors F. 2013. Bipolar electrochemistry for high-throughput corrosion screening. Electrochem. Commun. 34:274–77
    [Google Scholar]
  14. 14. 
    Zhou Y, Engelberg DL. 2020. Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments. Electrochem. Commun. 117:106779
    [Google Scholar]
  15. 15. 
    Ndungu PG. 2004. The use of bipolar electrochemistry in nanoscience: contact free methods for the site selective modification of nanostructured carbon materials. PhD Thesis Drexel Univ. Philadelphia, PA:
    [Google Scholar]
  16. 16. 
    Guerrette JP, Oja SM, Zhang B. 2012. Coupled electrochemical reactions at bipolar microelectrodes and nanoelectrodes. Anal. Chem. 84:1609–16
    [Google Scholar]
  17. 17. 
    Cox JT, Guerrette JP, Zhang B. 2012. Steady-state voltammetry of a microelectrode in a closed bipolar cell. Anal. Chem. 84:8797–804
    [Google Scholar]
  18. 18. 
    Wood M, Zhang B. 2015. A bipolar electrochemical method for dynamic in situ control of single metal nanowire growth. ACS Nano 9:2454–64
    [Google Scholar]
  19. 19. 
    Zhang X, Li J, Jia X, Li D, Wang E 2014. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal. Chem. 86:5595–99
    [Google Scholar]
  20. 20. 
    Comninellis C, Plattner E, Bolomey P. 1991. Estimation of current bypass in a bipolar electrode stack from current-potential curves. J. Appl. Electrochem. 21:415–18
    [Google Scholar]
  21. 21. 
    Hänni W, Perret A, Comninellis C. 2001. Electrolytic cell with bipolar electrode including diamond US Patent 6,306,270B1
    [Google Scholar]
  22. 22. 
    Sudoh M, Kodera T, Hino H, Shimamura H. 1988. Effect of anodic and cathodic reactions on oxidative degradation of phenol in an undivided bipolar electrolyser. J. Chem. Eng. Jpn. 21:198–203
    [Google Scholar]
  23. 23. 
    Alkire RC, Engelmaier W, Kessler TJ. 1977. Electrolytic cell with bipolar electrodes US Patent 4,043,891
    [Google Scholar]
  24. 24. 
    Kusakabe K, Morooka S, Kato Y. 1982. Current paths and electrolysis efficiency in bipolar packed-bed electrodes. J. Chem. Eng. Jpn. 15:45–50
    [Google Scholar]
  25. 25. 
    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A, Sojic N. 2015. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem. Sci. 6:4433–37
    [Google Scholar]
  26. 26. 
    Ordeig O, Godino N, del Campo J, Muñoz FX, Nikolajeff F, Nyholm L. 2008. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal. Chem. 80:3622–32
    [Google Scholar]
  27. 27. 
    Warakulwit C, Nguyen T, Majimel J, Delville M-H, Lapeyre V et al. 2008. Dissymmetric carbon nanotubes by bipolar electrochemistry. Nano Lett 8:500–4
    [Google Scholar]
  28. 28. 
    Bouffier L, Sojic N, Kuhn A. 2017. Capillary-assisted bipolar electrochemistry: a focused mini review. Electrophoresis 38:2687–94
    [Google Scholar]
  29. 29. 
    Fattah Z, Garrigue P, Goudeau B, Lapeyre V, Kuhn A, Bouffier L. 2013. Capillary electrophoresis as a production tool for asymmetric microhybrids. Electrophoresis 34:1985–90
    [Google Scholar]
  30. 30. 
    de Poulpiquet A, Diez-Buitrago B, Dumont Milutinovic M, Sentic M, Arbault S et al. 2016. Dual enzymatic detection by bulk electrogenerated chemiluminescence. Anal. Chem. 88:6585–92
    [Google Scholar]
  31. 31. 
    de Poulpiquet A, Diez-Buitrago B, Milutinovic M, Goudeau B, Bouffier L et al. 2016. Dual-color electrogenerated chemiluminescence from dispersions of conductive microbeads addressed by bipolar electrochemistry. ChemElectroChem 3:404–9
    [Google Scholar]
  32. 32. 
    Loget G, Kuhn A. 2012. Dissymmetric particles (Janus particles), and method for synthesizing same by means of bipolar electrochemistry WO Patent 2012/085399A1
    [Google Scholar]
  33. 33. 
    Bouffier L, Arbault S, Kuhn A, Sojic N. 2016. Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Anal. Bioanal. Chem. 408:7003–11
    [Google Scholar]
  34. 34. 
    Li H-N, Yang D, Liu A-X, Liu G-H, Shan Y-P et al. 2019. Facile fabrication of gold functionalized nanopipette for nanoscale electrochemistry and surface enhanced Raman spectroscopy. Chin. J. Anal. Chem. 47:e19104–12
    [Google Scholar]
  35. 35. 
    Gao R, Ying Y-L, Li Y-J, Hu Y-X, Yu R-J et al. 2018. A 30 nm nanopore electrode: facile fabrication and direct insights into the intrinsic feature of single nanoparticle collisions. Angew. Chem. Int. Ed. 57:1011–15
    [Google Scholar]
  36. 36. 
    Wang Y, Jin R, Sojic N, Jiang D, Chen H-Y 2020. Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in nanopipette. Angew. Chem. Int. Ed. 59:10416–20
    [Google Scholar]
  37. 37. 
    Wang Y-Z, Ji S-Y, Xu H-Y, Zhao W, Xu J-J, Chen H-Y 2018. Bidirectional electrochemiluminescence color switch: an application in detecting multimarkers of prostate cancer. Anal. Chem. 90:3570–75
    [Google Scholar]
  38. 38. 
    Zhang H-R, Wang Y-Z, Zhao W, Xu J-J, Chen H-Y. 2016. Visual color-switch electrochemiluminescence biosensing of cancer cell based on multichannel bipolar electrode chip. Anal. Chem. 88:2884–90
    [Google Scholar]
  39. 39. 
    Xiao Y, Xu L, Qi L-W. 2017. Electrochemiluminescence bipolar electrode array for the multiplexed detection of glucose, lactate and choline based on a versatile enzymatic approach. Talanta 165:577–83
    [Google Scholar]
  40. 40. 
    Wu M-S, Liu Z, Xu J-J, Chen H-Y. 2016. Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem 3:429–35
    [Google Scholar]
  41. 41. 
    Ino K, Yaegaki R, Hiramoto K, Nashimoto Y, Shiku H. 2020. Closed bipolar electrode array for on-chip analysis of cellular respiration by cell aggregates. ACS Sens 5:740–45
    [Google Scholar]
  42. 42. 
    Rahn KL, Rhoades TD, Anand RK. 2020. Alternating current voltammetry at a bipolar electrode with smartphone luminescence imaging for point-of-need sensing. ChemElectroChem 7:1172–81
    [Google Scholar]
  43. 43. 
    Li M, Anand RK. 2019. Integration of marker-free selection of single cells at a wireless electrode array with parallel fluidic isolation and electrical lysis. Chem. Sci. 10:1506–13
    [Google Scholar]
  44. 44. 
    Eden A, Scida K, Arroyo-Currás N, Eijkel JCT, Meinhart CD, Pennathur S. 2019. Modeling faradaic reactions and electrokinetic phenomena at a nanochannel-confined bipolar electrode. J. Phys. Chem. C 123:5353–64
    [Google Scholar]
  45. 45. 
    Zhang X, Zhai Q, Xu L, Li J, Wang E 2016. Paper-based electrochemiluminescence bipolar conductivity sensing mechanism: a critical supplement for the bipolar system. J. Electroanal. Chem. 781:15–19
    [Google Scholar]
  46. 46. 
    Chen L, Zhang C, Xing D. 2016. Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: a handheld ECL system for biochemical analysis at the point-of-care level. Sens. Actuators B 237:308–17
    [Google Scholar]
  47. 47. 
    Ge S, Zhao J, Wang S, Lan F, Yan M, Yu J 2018. Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosens. Bioelectron. 102:411–17
    [Google Scholar]
  48. 48. 
    Liu H, Zhou X, Liu W, Yang X, Xing D 2016. Paper-based bipolar electrode electrochemiluminescence switch for label-free and sensitive genetic detection of pathogenic bacteria. Anal. Chem. 88:10191–97
    [Google Scholar]
  49. 49. 
    Lu H-J, Zhao W, Xu J-J, Chen H-Y. 2018. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens. Bioelectron. 102:624–30
    [Google Scholar]
  50. 50. 
    Zhang X, Bao N, Luo X, Ding S-N. 2018. Patchy gold coated Fe3O4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosens. Bioelectron. 114:44–51
    [Google Scholar]
  51. 51. 
    Wu M, Xu N, Qiao J, Chen J, Jin L 2019. Bipolar electrode-electrochemiluminescence (ECL) biosensor based on a hybridization chain reaction. Analyst 144:4633–38
    [Google Scholar]
  52. 52. 
    Ding S-N, Wang X-Y, Lu W-X. 2019. Switches-controlled bipolar electrode electrochemiluminescence arrays for high-throughput detection of cancer biomarkers. J. Electroanal. Chem. 844:99–104
    [Google Scholar]
  53. 53. 
    Zhai Q, Zhang X, Han Y, Zhai J, Li J, Wang E 2016. A nanoscale multichannel closed bipolar electrode array for electrochemiluminescence sensing platform. Anal. Chem. 88:945–51
    [Google Scholar]
  54. 54. 
    Ongaro M, Gambirasi A, Ugo P 2016. Closed bipolar electrochemistry for the low-potential asymmetrical functionalization of micro- and nanowires. ChemElectroChem 3:450–56
    [Google Scholar]
  55. 55. 
    Anderson TJ, Defnet PA, Zhang B. 2020. Electrochemiluminescence (ECL)-based electrochemical imaging using a massive array of bipolar ultramicroelectrodes. Anal. Chem. 92:6748–55
    [Google Scholar]
  56. 56. 
    Chen J, Zhang J, Qiao J, Wu M. 2020. Closed bipolar electrochemical biosensor based on ohmic loss mechanism for noncontact measurements. J. Electroanal. Chem. 860:113873
    [Google Scholar]
  57. 57. 
    Stefano JS, Conzuelo F, Masa J, Munoz RAA, Schuhmann W. 2020. Coupling electrochemistry with a fluorescence reporting reaction enabled by bipolar electrochemistry. J. Electroanal. Chem. 872:113921
    [Google Scholar]
  58. 58. 
    Loget G, Fabre B. 2016. Light-driven bipolar electrochemical logic gates with electrical or optical outputs. ChemElectroChem 3:366–71
    [Google Scholar]
  59. 59. 
    Moghaddam MR, Carrara S, Hogan CF. 2019. Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chem. Commun. 55:1024–27
    [Google Scholar]
  60. 60. 
    Oja SM, Zhang B. 2016. Electrogenerated chemiluminescence reporting on closed bipolar microelectrodes and the influence of electrode size. ChemElectroChem 3:457–64
    [Google Scholar]
  61. 61. 
    Defnet PA, Zhang B. 2020. Detection of transient nanoparticle collision events using electrochemiluminescence on a closed bipolar microelectrode. ChemElectroChem 7:252–59
    [Google Scholar]
  62. 62. 
    Santos CS, Conzuelo F, Eßmann V, Bertotti M, Schuhmann W. 2019. Enhanced sensitivity of scanning bipolar electrochemical microscopy for O2 detection. Anal. Chim. Acta 1087:36–43
    [Google Scholar]
  63. 63. 
    Gamero-Quijano A, Herzog G, Scanlon MD. 2020. Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochim. Acta 330:135328
    [Google Scholar]
  64. 64. 
    Zhao W, Ma Y, Ye J, Jin J 2020. A closed bipolar electrochemiluminescence sensing platform based on quantum dots: a practical solution for biochemical analysis and detection. Sens. Actuators B 311:127930
    [Google Scholar]
  65. 65. 
    Gamero-Quijano A, Molina-Osorio AF, Peljo P, Scanlon MD. 2019. Closed bipolar electrochemistry in a four-electrode configuration. Phys. Chem. Chem. Phys. 21:9627–40
    [Google Scholar]
  66. 66. 
    Gao W, Muzyka K, Ma X, Lou B, Xu G. 2018. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem. Sci. 9:3911–16
    [Google Scholar]
  67. 67. 
    Wang Y-Z, Xu C-H, Zhao W, Guan Q-Y, Chen H-Y, Xu J-J. 2017. Bipolar electrode based multicolor electrochemiluminescence biosensor. Anal. Chem. 89:8050–56
    [Google Scholar]
  68. 68. 
    Li H, Bouffier L, Arbault S, Kuhn A, Hogan CF, Sojic N. 2017. Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochem. Commun. 77:10–13
    [Google Scholar]
  69. 69. 
    Scida K, Eden A, Arroyo-Currás N, MacKenzie S, Satik Y et al. 2019. Fluorescence-based observation of transient electrochemical and electrokinetic effects at nanoconfined bipolar electrodes. ACS Appl. Mater. Interfaces 11:13777–86
    [Google Scholar]
  70. 70. 
    Xu W, Ma C, Bohn PW. 2016. Coupling of independent electrochemical reactions and fluorescence at closed bipolar interdigitated electrode arrays. ChemElectroChem 3:422–28
    [Google Scholar]
  71. 71. 
    Zhai Q, Zhang X, Xia Y, Li J, Wang E 2016. Electrochromic sensing platform based on steric hindrance effects for CEA detection. Analyst 141:3985–88
    [Google Scholar]
  72. 72. 
    Crouch GM, Oh C, Fu K, Bohn PW. 2019. Tunable optical metamaterial-based sensors enabled by closed bipolar electrochemistry. Analyst 144:6240–46
    [Google Scholar]
  73. 73. 
    Xu W, Fu K, Ma C, Bohn PW. 2016. Closed bipolar electrode-enabled dual-cell electrochromic detectors for chemical sensing. Analyst 141:6018–24
    [Google Scholar]
  74. 74. 
    Jansod S, Cherubini T, Soda Y, Bakker E. 2020. Optical sensing with a potentiometric sensing array by prussian blue film integrated closed bipolar electrodes. Anal. Chem. 92:9138–45
    [Google Scholar]
  75. 75. 
    Seo M, Yeon SY, Yun J, Chung TD 2019. Nanoporous ITO implemented bipolar electrode sensor for enhanced electrochemiluminescence. Electrochim. Acta 314:89–95
    [Google Scholar]
  76. 76. 
    Yuan F, Qi L, Fereja TH, Snizhko DV, Liu Z et al. 2018. Regenerable bipolar electrochemiluminescence device using glassy carbon bipolar electrode, stainless steel driving electrode and cold patch. Electrochim. Acta 262:182–86
    [Google Scholar]
  77. 77. 
    Dauphin AL, Akchach A, Voci S, Kuhn A, Xu G et al. 2019. Tracking magnetic rotating objects by bipolar electrochemiluminescence. J. Phys. Chem. Lett. 10:5318–24
    [Google Scholar]
  78. 78. 
    Cao J-T, Wang Y-L, Zhang J-J, Dong Y-X, Liu F-R et al. 2018. Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal. Chem. 90:10334–39
    [Google Scholar]
  79. 79. 
    Hao N, Lu J, Dai Z, Qian J, Zhang J et al. 2019. Analysis of aqueous systems using all-inorganic perovskite CsPbBr3 quantum dots with stable electrochemiluminescence performance using a closed bipolar electrode. Electrochem. Commun. 108:106559
    [Google Scholar]
  80. 80. 
    Li H, Garrigue P, Bouffier L, Arbault S, Kuhn A, Sojic N. 2016. Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. Analyst 141:4299–304
    [Google Scholar]
  81. 81. 
    Ibañez D, Heras A, Colina A. 2017. Bipolar spectroelectrochemistry. Anal. Chem. 89:3879–83
    [Google Scholar]
  82. 82. 
    Eßmann V, Barwe S, Masa J, Schuhmann W. 2016. Bipolar electrochemistry for concurrently evaluating the stability of anode and cathode electrocatalysts and the overall cell performance during long-term water electrolysis. Anal. Chem. 88:8835–40
    [Google Scholar]
  83. 83. 
    Takano S, Inoue KY, Ikegawa M, Takahashi Y, Ino K et al. 2016. Liquid-junction-free system for substitutional stripping voltammetry using a closed bipolar electrode system. Electrochem. Commun. 66:34–37
    [Google Scholar]
  84. 84. 
    Zhang J-D, Zhao W-W, Xu J-J, Chen H-Y. 2016. Electrochemical behaviors in closed bipolar system with three-electrode driving mode. J. Electroanal. Chem. 781:56–61
    [Google Scholar]
  85. 85. 
    Zhang L, Gupta B, Goudeau B, Mano N, Kuhn A. 2018. Wireless electromechanical readout of chemical information. J. Am. Chem. Soc. 140:15501–6
    [Google Scholar]
  86. 86. 
    Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. 2019. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. Chem. Commun. 55:10956–59
    [Google Scholar]
  87. 87. 
    Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. 2020. Absolute chiral recognition with hybrid wireless electrochemical actuators. Anal. Chem. 92:10042–47
    [Google Scholar]
  88. 88. 
    Naser-Sadrabadi A, Zare HR. 2019. A highly-sensitive electrocatalytic measurement of nitrate ions in soil and different fruit vegetables at the surface of palladium nanoparticles modified DVD using the open bipolar system. Microchem. J. 148:206–13
    [Google Scholar]
  89. 89. 
    Han C, Hao R, Fan Y, Edwards MA, Gao H, Zhang B. 2019. Observing transient bipolar electrochemical coupling on single nanoparticles translocating through a nanopore. Langmuir 35:7180–90
    [Google Scholar]
  90. 90. 
    Gupta B, Goudeau B, Kuhn A. 2017. Wireless electrochemical actuation of conducting polymers. Angew. Chem. Int. Ed. 56:14183–86
    [Google Scholar]
  91. 91. 
    Gupta B, Goudeau B, Garrigue P, Kuhn A. 2018. Bipolar conducting polymer crawlers based on triple symmetry breaking. Adv. Funct. Mater. 28:1705825
    [Google Scholar]
  92. 92. 
    Gupta B, Afonso MC, Zhang L, Ayela C, Garrigue P et al. 2019. Wireless coupling of conducting polymer actuators with light emission. ChemPhysChem 20:941–45
    [Google Scholar]
  93. 93. 
    Arora A, Eijkel JCT, Morf WE, Manz A. 2001. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem. 73:3282–88
    [Google Scholar]
  94. 94. 
    Bouffier L, Manojlovic D, Kuhn A, Sojic N. 2019. Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Curr. Opin. Electrochem. 16:28–34
    [Google Scholar]
  95. 95. 
    Xu W, Fu K, Bohn PW. 2017. Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling. ACS Sens 2:1020–26
    [Google Scholar]
  96. 96. 
    Yu X, Liang J, Yang T, Gong M, Xi D, Liu H. 2018. A resettable and reprogrammable keypad lock based on electrochromic Prussian blue films and biocatalysis of immobilized glucose oxidase in a bipolar electrode system. Biosens. Bioelectron. 99:163–69
    [Google Scholar]
  97. 97. 
    Liu Z, Qi W, Xu G. 2015. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 44:3117–42
    [Google Scholar]
  98. 98. 
    Liu M, Liu R, Wang D, Liu C, Zhang C. 2016. A low-cost, ultraflexible cloth-based microfluidic device for wireless electrochemiluminescence application. Lab Chip 16:2860–70
    [Google Scholar]
  99. 99. 
    Xiong X, Li Y, Yuan W, Lu Y, Xiong X et al. 2020. Screen printed bipolar electrode for sensitive electrochemiluminescence detection of aflatoxin B1 in agricultural products. Biosens. Bioelectron. 150:111873
    [Google Scholar]
  100. 100. 
    Liu C, Wang D, Zhang C. 2018. A novel paperfluidic closed bipolar electrode-electrochemiluminescence sensing platform: potential for multiplex detection at crossing-channel closed bipolar electrodes. Sens. Actuators B 270:341–52
    [Google Scholar]
  101. 101. 
    Hao R, Fan Y, Zhang B. 2017. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J. Am. Chem. Soc. 139:12274–82
    [Google Scholar]
  102. 102. 
    Ying Y-L, Hu Y-X, Gao R, Yu R-J, Gu Z et al. 2018. Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J. Am. Chem. Soc. 140:5385–92
    [Google Scholar]
  103. 103. 
    Ismail A, Voci S, Pham P, Leroy L, Maziz A et al. 2019. Enhanced bipolar electrochemistry at solid-state micropores: demonstration by wireless electrochemiluminescence imaging. Anal. Chem. 91:8900–7
    [Google Scholar]
  104. 104. 
    Gholami F, Navaee A, Salimi A, Ahmadi R, Korani A, Hallaj R. 2018. Direct enzymatic glucose/O2 biofuel cell based on poly-thiophene carboxylic acid alongside gold nanostructures substrates derived through bipolar electrochemistry. Sci. Rep. 8:15103
    [Google Scholar]
  105. 105. 
    Eßmann V, Zhao F, Hartmann V, Nowaczyk MM, Schuhmann W, Conzuelo F. 2017. In operando investigation of electrical coupling of photosystem 1 and photosystem 2 by means of bipolar electrochemistry. Anal. Chem. 89:7160–65
    [Google Scholar]
  106. 106. 
    Gamero-Quijano A, Herzog G, Scanlon MD. 2019. Bioelectrochemistry of Cytochrome c in a closed bipolar electrochemical cell. Electrochem. Commun. 109:106600
    [Google Scholar]
  107. 107. 
    Chow K-F, Mavré F, Crooks RM. 2008. Wireless electrochemical DNA microarray sensor. J. Am. Chem. Soc. 130:7544–45
    [Google Scholar]
  108. 108. 
    Mavré F, Anand RK, Laws DR, Chow K-F, Chang B-Y et al. 2010. Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Anal. Chem. 82:8766–74
    [Google Scholar]
  109. 109. 
    Zhang X, Zhai Q, Xing H, Li J, Wang E 2017. Bipolar electrodes with 100% current efficiency for sensors. ACS Sens 2:320–26
    [Google Scholar]
  110. 110. 
    Shi H-W, Zhao W, Liu Z, Liu X-C, Wu M-S et al. 2016. Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta 154:169–74
    [Google Scholar]
  111. 111. 
    Shi H-W, Zhao W, Liu Z, Liu X-C, Xu J-J, Chen H-Y. 2016. Temporal sensing platform based on bipolar electrode for the ultrasensitive detection of cancer cells. Anal. Chem. 88:8795–801
    [Google Scholar]
  112. 112. 
    Poorghasem R, Saberi RS, Shayan M, Mehrgardi MA, Kiani A. 2016. Closed bipolar electrochemistry for the detection of human immunodeficiency virus short oligonucleotide. Electrochim. Acta 222:1483–90
    [Google Scholar]
  113. 113. 
    Liu H, Zhou X, Shen J, Xing D. 2017. Sensitive detection of Hg2+ with switchable electrochemiluminescence luminophore and disposable bipolar electrode. ChemElectroChem 4:1681–85
    [Google Scholar]
  114. 114. 
    Jin L, Qiao J, Chen J, Xu N, Wu M. 2020. Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta 208:120404
    [Google Scholar]
  115. 115. 
    Wang Y-Z, Zhao W, Dai P-P, Lu H-J, Xu J-J et al. 2016. Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis. Biosens. Bioelectron. 86:683–89
    [Google Scholar]
  116. 116. 
    Li M, Anand RK. 2017. High-throughput selective capture of single circulating tumor cells by dielectrophoresis at a wireless electrode array. J. Am. Chem. Soc. 139:8950–59
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-090820-093307
Loading
/content/journals/10.1146/annurev-anchem-090820-093307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error