1932

Abstract

Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering–based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091420-092323
2021-07-27
2024-10-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091420-092323.html?itemId=/content/journals/10.1146/annurev-anchem-091420-092323&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. 2007. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–66
    [Google Scholar]
  2. 2. 
    Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. 2011. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40:387–426
    [Google Scholar]
  3. 3. 
    Goodacre R. 2007. Metabolomics of a superorganism. J. Nutr. 137:259S–66S
    [Google Scholar]
  4. 4. 
    Wishart DS. 2016. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 15:473–84
    [Google Scholar]
  5. 5. 
    Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. 2014. The blood exposome and its role in discovering causes of disease. Environ. Health Perspect. 122:769–74
    [Google Scholar]
  6. 6. 
    Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. 2020. The exposome and health: where chemistry meets biology. Science 367:392–96
    [Google Scholar]
  7. 7. 
    Kumar A, Misra BB. 2019. Challenges and opportunities in cancer metabolomics. Proteomics 19:e1900042
    [Google Scholar]
  8. 8. 
    Lane AN, Higashi RM, Fan TW. 2019. NMR and MS-based stable isotope-resolved metabolomics and applications in cancer metabolism. TrAC Trends Anal. Chem. 120:115322
    [Google Scholar]
  9. 9. 
    Arneth B, Arneth R, Shams M. 2019. Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci 20:2467
    [Google Scholar]
  10. 10. 
    Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I et al. 2018. The growing role of precision and personalized medicine for cancer treatment. Technology 6:79–100
    [Google Scholar]
  11. 11. 
    Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA et al. 2016. Metabolomics enables precision medicine: “A White Paper, Community Perspective. .” Metabolomics 12:149
    [Google Scholar]
  12. 12. 
    Azad RK, Shulaev V. 2019. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 20:1957–71
    [Google Scholar]
  13. 13. 
    Trivedi DK, Hollywood KA, Goodacre R. 2017. Metabolomics for the masses: the future of metabolomics in a personalized world. New Horiz. Transl. Med. 3:294–305
    [Google Scholar]
  14. 14. 
    Johnson CH, Ivanisevic J, Siuzdak G. 2016. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17:451–59
    [Google Scholar]
  15. 15. 
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–52
    [Google Scholar]
  16. 16. 
    Hollywood K, Brison DR, Goodacre R. 2006. Metabolomics: current technologies and future trends. Proteomics 6:4716–23
    [Google Scholar]
  17. 17. 
    Dunn WB, Bailey NJ, Johnson HE. 2005. Measuring the metabolome: current analytical technologies. Analyst 130:606–25
    [Google Scholar]
  18. 18. 
    Ren J-L, Zhang A-H, Kong L, Wang X-J. 2018. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8:22335–50
    [Google Scholar]
  19. 19. 
    Zhang X-W, Li Q-H, Xu Z-D, Dou J-J. 2020. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Adv 10:3092–104
    [Google Scholar]
  20. 20. 
    Pinu FR, Goldansaz SA, Jaine J 2019. Translational metabolomics: current challenges and future opportunities. Metabolites 9:108
    [Google Scholar]
  21. 21. 
    Kapoore RV, Vaidyanathan S. 2016. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. A Math. Phys. Eng. Sci. 374: https://doi.org/10.1098/rsta.2015.0363
    [Crossref] [Google Scholar]
  22. 22. 
    Yang Q, Zhang A-H, Miao J-H, Sun H, Han Y et al. 2019. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 9:37245–57
    [Google Scholar]
  23. 23. 
    Ellis DI, Goodacre R. 2006. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131:875–85
    [Google Scholar]
  24. 24. 
    Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G et al. 2019. Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials 12:2884
    [Google Scholar]
  25. 25. 
    Ellis DI, Muhamadali H, Haughey SA, Elliott CT, Goodacre R. 2015. Point-and-shoot: rapid quantitative detection methods for on-site food fraud analysis—moving out of the laboratory and into the food supply chain. Anal. Methods 7:9401–14
    [Google Scholar]
  26. 26. 
    Raman CV, Krishnan KS. 1928. A new type of secondary radiation. Nature 121:501–2
    [Google Scholar]
  27. 27. 
    Krishnan RS, Shankar RK. 1981. Raman effect: history of the discovery. J. Raman Spectrosc. 10:1–8
    [Google Scholar]
  28. 28. 
    Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK. 2019. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14:231
    [Google Scholar]
  29. 29. 
    Mitsutake H, Poppi RJ, Breitkreitz MC. 2019. Raman imaging spectroscopy: history, fundamentals and current scenario of the technique. J. Braz. Chem. Soc. 30:2243–58
    [Google Scholar]
  30. 30. 
    Wilson EB, Decius JC, Cross PC. 1980. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra New York: Dover
    [Google Scholar]
  31. 31. 
    Goodman BA. 1994. Molecular spectroscopy: introduction and general principles. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods MJ Wilson 1–10 Dordrecht: Springer
    [Google Scholar]
  32. 32. 
    Fung AA, Shi L. 2020. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Wiley Interdiscip. Rev. Syst. Biol. Med. 12:e1501
    [Google Scholar]
  33. 33. 
    Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthaus C et al. 2017. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew. Chem. Int. Ed. 56:4392–430
    [Google Scholar]
  34. 34. 
    Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. 2016. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem. Soc. Rev. 45:1819–49
    [Google Scholar]
  35. 35. 
    Fu D. 2017. Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr. Opin. Chem. Biol. 39:24–31
    [Google Scholar]
  36. 36. 
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguie B et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano 14:28–117
    [Google Scholar]
  37. 37. 
    Zong C, Xu M, Xu LJ, Wei T, Ma X et al. 2018. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118:4946–80
    [Google Scholar]
  38. 38. 
    Chisanga M, Muhamadali H, Ellis DI, Goodacre R. 2018. Surface-enhanced Raman scattering (SERS) in microbiology: illumination and enhancement of the microbial world. Appl. Spectrosc 72:987–1000
    [Google Scholar]
  39. 39. 
    Cialla-May D, Zheng XS, Weber K, Popp J. 2017. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46:3945–61
    [Google Scholar]
  40. 40. 
    Kaminska A, Witkowska E, Kowalska A, Skoczynska A, Gawryszewska I et al. 2016. Highly efficient SERS-based detection of cerebrospinal fluid neopterin as a diagnostic marker of bacterial infection. Anal. Bioanal. Chem. 408:4319–27
    [Google Scholar]
  41. 41. 
    Ye S, Li X, Wang M, Tang B. 2017. Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal. Chem. 89:5124–30
    [Google Scholar]
  42. 42. 
    Chisanga M, Muhamadali H, Kimber R, Goodacre R 2017. Quantitative detection of isotopically enriched E. coli cells by SERS. Faraday Discuss 205:331–43
    [Google Scholar]
  43. 43. 
    Muhamadali H, Weaver D, Subaihi A, AlMasoud N, Trivedi DK et al. 2016. Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry. Analyst 141:111–22
    [Google Scholar]
  44. 44. 
    Alonso-Pernas P, Arias-Cordero E, Novoselov A, Ebert C, Rybak J et al. 2017. Bacterial community and PHB-accumulating bacteria associated with the wall and specialized niches of the hindgut of the forest cockchafer (Melolontha hippocastani). Front. Microbiol. 8:291
    [Google Scholar]
  45. 45. 
    El-Said WA, Kim SU, Choi J-W. 2015. Monitoring in vitro neural stem cell differentiation based on surface-enhanced Raman spectroscopy using a gold nanostar array. J. Mater. Chem. C 3:3848–59
    [Google Scholar]
  46. 46. 
    Chen F, Flaherty BR, Cohen CE, Peterson DS, Zhao Y. 2016. Direct detection of malaria infected red blood cells by surface enhanced Raman spectroscopy. Nanomedicine 12:1445–51
    [Google Scholar]
  47. 47. 
    Zhao Z, Shen Y, Hu F, Min W 2017. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 142:4018–29
    [Google Scholar]
  48. 48. 
    Wegener G, Kellermann MY, Elvert M. 2016. Tracking activity and function of microorganisms by stable isotope probing of membrane lipids. Curr. Opin. Biotechnol. 41:43–52
    [Google Scholar]
  49. 49. 
    Lane AN, Tan J, Wang Y, Yan J, Higashi RM, Fan TW. 2017. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics. Metab. Eng. 43:125–36
    [Google Scholar]
  50. 50. 
    Muhamadali H, Chisanga M, Subaihi A, Goodacre R. 2015. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal. Chem. 87:4578–86
    [Google Scholar]
  51. 51. 
    Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R et al. 2016. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal. Chem. 88:9443–50
    [Google Scholar]
  52. 52. 
    Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J 2020. Imaging the invisible-bioorthogonal Raman probes for imaging of cells and tissues. J. Biophoton. 13:e202000129
    [Google Scholar]
  53. 53. 
    Premasiri WR, Lee JC, Sauer-Budge A, Theberge R, Costello CE, Ziegler LD. 2016. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal. Bioanal. Chem. 408:4631–47
    [Google Scholar]
  54. 54. 
    Xu J, Zhu D, Ibrahim AD, Allen CCR, Gibson CM et al. 2017. Raman deuterium isotope probing reveals microbial metabolism at the single-cell level. Anal. Chem. 89:13305–12
    [Google Scholar]
  55. 55. 
    Wang Y, Xu J, Kong L, Liu T, Yi L et al. 2020. Raman-deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota. Microb. Biotechnol. 13:572–83
    [Google Scholar]
  56. 56. 
    Lee KS, Palatinszky M, Pereira FC, Nguyen J, Fernandez VI et al. 2019. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4:1035–48
    [Google Scholar]
  57. 57. 
    Yonamine Y, Hiramatsu K, Ideguchi T, Ito T, Fujiwara T et al. 2020. Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Adv 10:16679–86
    [Google Scholar]
  58. 58. 
    Shi L, Zheng C, Shen Y, Chen Z, Silveira ES et al. 2018. Optical imaging of metabolic dynamics in animals. Nat. Commun. 9:2995
    [Google Scholar]
  59. 59. 
    Zhang L, Shi L, Shen Y, Miao Y, Wei M et al. 2019. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 3:402–13
    [Google Scholar]
  60. 60. 
    Goodacre R, Graham D, Faulds K. 2018. Recent developments in quantitative SERS: moving towards absolute quantification. TrAC Trends Anal. Chem. 102:359–68
    [Google Scholar]
  61. 61. 
    Zhang K, Liu Y, Wang Y, Zhang R, Liu J et al. 2018. Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl. Mater. Interfaces 10:15388–94
    [Google Scholar]
  62. 62. 
    Ranc V, Markova Z, Hajduch M, Prucek R, Kvitek L et al. 2014. Magnetically assisted surface-enhanced Raman scattering selective determination of dopamine in an artificial cerebrospinal fluid and a mouse striatum using Fe3O4/Ag nanocomposite. Anal. Chem. 86:2939–46
    [Google Scholar]
  63. 63. 
    Liu S, Ma H, Zhu J, Han XX, Zhao B. 2020. Ferrous cytochrome c-nitric oxide oxidation for quantification of protein S-nitrosylation probed by resonance Raman spectroscopy. Sens. Actuators B 308:127706
    [Google Scholar]
  64. 64. 
    Jarvis RM, Goodacre R. 2004. Discrimination of bacteria using surface enhanced Raman spectroscopy. Anal. Chem. 76:40–47
    [Google Scholar]
  65. 65. 
    Jarvis RM, Goodacre R. 2008. Characterisation and identification of bacteria using SERS. Chem. Soc. Rev. 37:931–36
    [Google Scholar]
  66. 66. 
    Muhamadali H, Subaihi A, Mohammadtaheri M, Xu Y, Ellis DI et al. 2016. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 141:5127–36
    [Google Scholar]
  67. 67. 
    Dina NE, Zhou H, Colnita A, Leopold N, Szoke-Nagy T et al. 2017. Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst 142:1782–89
    [Google Scholar]
  68. 68. 
    Pang Y, Wan N, Shi L, Wang C, Sun Z et al. 2019. Dual-recognition surface-enhanced Raman scattering (SERS) biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal. Chim. Acta 1077:288–96
    [Google Scholar]
  69. 69. 
    Akanny E, Bonhomme A, Commun C, Doleans-Jordheim A, Bessueille F et al. 2019. Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 411:5563–76
    [Google Scholar]
  70. 70. 
    Nguyen CQ, Thrift WJ, Bhattacharjee A, Ranjbar S, Gallagher T et al. 2018. Longitudinal monitoring of biofilm formation via robust surface-enhanced Raman scattering quantification of Pseudomonas aeruginosa-produced metabolites. ACS Appl. Mater. Interfaces 10:12364–73
    [Google Scholar]
  71. 71. 
    Cheung M, Lee WW, Cowcher DP, Goodacre R, Bell SE. 2016. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem. Commun. 52:9925–28
    [Google Scholar]
  72. 72. 
    Bergholt MS, Serio A, Albro MB. 2019. Raman spectroscopy: guiding light for the extracellular matrix. Front. Bioeng. Biotechnol. 7:303
    [Google Scholar]
  73. 73. 
    Shao Y, Fang H, Zhou H, Wang Q, Zhu Y, He Y. 2017. Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy. Biotechnol. Biofuels 10:300
    [Google Scholar]
  74. 74. 
    Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T et al. 2014. In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy. Anal. Chem. 86:8224–30
    [Google Scholar]
  75. 75. 
    Anna I, Bartosz P, Lech P, Halina A 2017. Novel strategies of Raman imaging for brain tumor research. Oncotarget 8:85290–310
    [Google Scholar]
  76. 76. 
    Dybas J, Marzec KM, Pacia MZ, Kochan K, Czamara K et al. 2016. Raman spectroscopy as a sensitive probe of soft tissue composition—imaging of cross-sections of various organs versus single spectra of tissue homogenates. TrAC Trends Anal. Chem. 85:117–27
    [Google Scholar]
  77. 77. 
    Hedegaard MA, Bergholt MS, Stevens MM. 2016. Quantitative multi-image analysis for biomedical Raman spectroscopic imaging. J. Biophoton. 9:542–50
    [Google Scholar]
  78. 78. 
    You A, Bergholt M, St-Pierre JP, Kit-Anan W, Pence I et al. 2017. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci. Adv. 3:e1701156
    [Google Scholar]
  79. 79. 
    Albro MB, Bergholt MS, St-Pierre JP, Vinals Guitart A, Zlotnick HM et al. 2018. Raman spectroscopic imaging for quantification of depth-dependent and local heterogeneities in native and engineered cartilage. NPJ Regen. Med. 3:3
    [Google Scholar]
  80. 80. 
    Liu XY, Guo S, Ramoji A, Bocklitz T, Rosch P et al. 2020. Spatiotemporal organization of biofilm matrix revealed by confocal Raman mapping integrated with non-negative matrix factorization analysis. Anal. Chem. 92:707–15
    [Google Scholar]
  81. 81. 
    Yan J, Yu Y, Kang JW, Tam ZY, Xu S et al. 2017. Development of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy. J. Biophoton. 10:1703–13
    [Google Scholar]
  82. 82. 
    Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC et al. 2017. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat. Commun. 8:14843
    [Google Scholar]
  83. 83. 
    Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. 2020. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 145:2070–105
    [Google Scholar]
  84. 84. 
    Bi Y, Yang C, Chen Y, Yan S, Yang G et al. 2018. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7:81
    [Google Scholar]
  85. 85. 
    Hu F, Shi L, Min W 2019. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. Methods 16:830–42
    [Google Scholar]
  86. 86. 
    Karuna A, Masia F, Wiltshire M, Errington R, Borri P, Langbein W. 2019. Label-free volumetric quantitative imaging of the human somatic cell division by hyperspectral coherent anti-stokes Raman scattering. Anal. Chem. 91:2813–21
    [Google Scholar]
  87. 87. 
    Bae K, Zheng W, Ma Y, Huang Z. 2020. Real-time monitoring of pharmacokinetics of mitochondria-targeting molecules in live cells with bioorthogonal hyperspectral stimulated Raman scattering microscopy. Anal. Chem. 92:740–48
    [Google Scholar]
  88. 88. 
    Cao C, Zhou D, Chen T, Streets AM, Huang Y. 2016. Label-free digital quantification of lipid droplets in single cells by stimulated Raman microscopy on a microfluidic platform. Anal. Chem. 88:4931–39
    [Google Scholar]
  89. 89. 
    Zhang C, Li J, Lan L, Cheng JX. 2017. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated Raman scattering imaging. Anal. Chem. 89:4502–7
    [Google Scholar]
  90. 90. 
    Wei L, Hu F, Chen Z, Shen Y, Zhang L, Min W 2016. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Acc. Chem. Res. 49:1494–502
    [Google Scholar]
  91. 91. 
    Yan S, Cui S, Ke K, Zhao B, Liu X et al. 2018. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. Anal. Chem. 90:6362–66
    [Google Scholar]
  92. 92. 
    Shin KS, Laohajaratsang M, Men S, Figueroa B, Dintzis SM, Fu D. 2020. Quantitative chemical imaging of breast calcifications in association with neoplastic processes. Theranostics 10:5865–78
    [Google Scholar]
  93. 93. 
    Wei M, Shi L, Shen Y, Zhao Z, Guzman A et al. 2019. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. PNAS 116:6608–17
    [Google Scholar]
  94. 94. 
    Sarri B, Canonge R, Audier X, Simon E, Wojak J et al. 2019. Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection. Sci. Rep. 9:10052
    [Google Scholar]
  95. 95. 
    Cicerone MT, Camp CH. 2017. Histological coherent Raman imaging: a prognostic review. Analyst 143:33–59
    [Google Scholar]
  96. 96. 
    Zhang M, Hong W, Abutaleb NS, Li J, Dong PT et al. 2020. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv. Sci. 7:2001452
    [Google Scholar]
  97. 97. 
    Bae K, Zheng W, Ma Y, Huang Z. 2019. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy. Theranostics 9:1348–57
    [Google Scholar]
  98. 98. 
    Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X et al. 2018. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Anal. Chem. 90:3737–43
    [Google Scholar]
  99. 99. 
    Li X, Li Y, Jiang M, Wu W, He S et al. 2019. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Anal. Chem. 91:2279–87
    [Google Scholar]
  100. 100. 
    Hu F, Chen Z, Zhang L, Shen Y, Wei L, Min W 2015. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. 54:9821–25
    [Google Scholar]
  101. 101. 
    Shen Y, Hu F, Min W 2019. Raman imaging of small biomolecules. Annu. Rev. Biophys. 48:347–69
    [Google Scholar]
  102. 102. 
    Moody AS, Payne TD, Barth BA, Sharma B. 2020. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations. Analyst 145:1885–93
    [Google Scholar]
  103. 103. 
    Moody AS, Sharma B. 2018. Multi-metal, multi-wavelength surface-enhanced Raman spectroscopy detection of neurotransmitters. ACS Chem. Neurosci. 9:1380–87
    [Google Scholar]
  104. 104. 
    Maurer V, Frank C, Porsiel JC, Zellmer S, Garnweitner G, Stosch R. 2020. Step-by-step monitoring of a magnetic and SERS-active immunosensor assembly for purification and detection of tau protein. J. Biophoton. 13:e201960090
    [Google Scholar]
  105. 105. 
    Zhang X, Liu S, Song X, Wang H, Wang J et al. 2019. Robust and universal SERS sensing platform for multiplexed detection of Alzheimer's disease core biomarkers using PAapt-AuNPs conjugates. ACS Sens 4:2140–49
    [Google Scholar]
  106. 106. 
    Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F et al. 2017. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci. Rep. 7:3328
    [Google Scholar]
  107. 107. 
    Saugstad JA, Lusardi TA, Van Keuren-Jensen KR, Phillips JI, Lind B et al. 2017. Analysis of extracellular RNA in cerebrospinal fluid. J. Extracell. Vesicles 6:1317577
    [Google Scholar]
  108. 108. 
    Hernández-Arteaga A, de Jesús Zermeño Nava J, Kolosovas-Machuca ES, Velázquez-Salazar JJ, Vinogradova E et al. 2017. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res 10:3662–70
    [Google Scholar]
  109. 109. 
    Yang H, Xiang Y, Guo X, Wu Y, Wen Y, Yang H. 2018. Diazo-reaction-based SERS substrates for detection of nitrite in saliva. Sens. Actuators B 271:118–21
    [Google Scholar]
  110. 110. 
    Žukovskaja O, Jahn IJ, Weber K, Cialla-May D, Popp J. 2017. Detection of Pseudomonas aeruginosa metabolite pyocyanin in water and saliva by employing the SERS technique. Sensors 17:1704
    [Google Scholar]
  111. 111. 
    Falamas A, Rotaru H, Hedesiu M. 2020. Surface-enhanced Raman spectroscopy (SERS) investigations of saliva for oral cancer diagnosis. Lasers Med. Sci. 35:1393–401
    [Google Scholar]
  112. 112. 
    Hu S, Gao Y, Wu Y, Guo X, Ying Y et al. 2019. Raman tracking the activity of urease in saliva for healthcare. Biosens. Bioelectron. 129:24–28
    [Google Scholar]
  113. 113. 
    Cottat M, D'Andrea C, Yasukuni R, Malashikhina N, Grinyte R et al. 2015. High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J. Phys. Chem. C 119:15532–40
    [Google Scholar]
  114. 114. 
    Sivashanmugan K, Squire K, Tan A, Zhao Y, Kraai JA et al. 2019. Trace detection of tetrahydrocannabinol in body fluid via surface-enhanced Raman scattering and principal component analysis. ACS Sens. 4:1109–17
    [Google Scholar]
  115. 115. 
    Shende C, Brouillette C, Farquharson S. 2019. Detection of codeine and fentanyl in saliva, blood plasma and whole blood in 5-minutes using a SERS flow-separation strip. Analyst 144:5449–54
    [Google Scholar]
  116. 116. 
    Deriu C, Conticello I, Mebel AM, McCord B. 2019. Micro solid phase extraction surface-enhanced Raman spectroscopy (mu-SPE/SERS) screening test for the detection of the synthetic cannabinoid JWH-018 in oral fluid. Anal. Chem. 91:4780–89
    [Google Scholar]
  117. 117. 
    Farquharson S, Dana K, Shende C, Gladding Z, Newcomb J et al. 2017. Rapid identification of buprenorphine in patient saliva. J. Anal. Bioanal. Tech. 8:368
    [Google Scholar]
  118. 118. 
    Dana K, Shende C, Huang H, Farquharson S. 2015. Rapid analysis of cocaine in saliva by surface-enhanced Raman spectroscopy. J. Anal. Bioanal. Tech. 6:1–5
    [Google Scholar]
  119. 119. 
    Westley C, Xu Y, Thilaganathan B, Carnell AJ, Turner NJ, Goodacre R. 2017. Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method. Anal. Chem. 89:2472–77
    [Google Scholar]
  120. 120. 
    Kao YC, Han X, Lee YH, Lee HK, Phan-Quang GC et al. 2020. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min. ACS Nano 14:2542–52
    [Google Scholar]
  121. 121. 
    Saatkamp CJ, de Almeida ML, Bispo JA, Pinheiro AL, Fernandes AB, Silveira L Jr. 2016. Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease. J. Biomed. Opt. 21:37001
    [Google Scholar]
  122. 122. 
    Tian Y-F, Zhou W, Yin B-C, Ye B-C. 2017. Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core–satellite assemblies. Anal. Methods 9:6038–43
    [Google Scholar]
  123. 123. 
    Ankudze B, Philip A, Pakkanen TT. 2019. Ultrasensitive and recyclable superstructure of AuSiO2@Ag wire for surface-enhanced Raman scattering detection of thiocyanate in urine and human serum. Anal. Chim. Acta 1049:179–87
    [Google Scholar]
  124. 124. 
    Alharbi O, Xu Y, Goodacre R. 2015. Detection and quantification of the opioid tramadol in urine using surface enhanced Raman scattering. Analyst 140:5965–70
    [Google Scholar]
  125. 125. 
    Stefancu A, Moisoiu V, Bocsa C, Balint Z, Cosma DT et al. 2018. SERS-based quantification of albuminuria in the normal-to-mildly increased range. Analyst 143:5372–79
    [Google Scholar]
  126. 126. 
    Subaihi A, Almanqur L, Muhamadali H, AlMasoud N, Ellis DI et al. 2016. Rapid, accurate, and quantitative detection of propranolol in multiple human biofluids via surface-enhanced Raman scattering. Anal. Chem. 88:10884–92
    [Google Scholar]
  127. 127. 
    Dong R, Weng S, Yang L, Liu J 2015. Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87:2937–44
    [Google Scholar]
  128. 128. 
    Han Z, Liu H, Meng J, Yang L, Liu J, Liu J. 2015. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal. Chem. 87:9500–6
    [Google Scholar]
  129. 129. 
    Meng J, Tang X, Zhou B, Xie Q, Yang L 2017. Designing of ordered two-dimensional gold nanoparticles film for cocaine detection in human urine using surface-enhanced Raman spectroscopy. Talanta 164:693–99
    [Google Scholar]
  130. 130. 
    Subaihi A, Trivedi DK, Hollywood KA, Bluett J, Xu Y et al. 2017. Quantitative online liquid chromatography-surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. Anal. Chem. 89:6702–9
    [Google Scholar]
  131. 131. 
    Cui Y, Wang H, Liu S, Wang Y, Huang J. 2020. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Analyst 145:445–52
    [Google Scholar]
  132. 132. 
    Cheng L, Zhang Z, Zuo D, Zhu W, Zhang J et al. 2018. Ultrasensitive detection of serum microRNA using branched DNA-based SERS platform combining simultaneous detection of α-fetoprotein for early diagnosis of liver cancer. ACS Appl. Mater. Interfaces 10:34869–77
    [Google Scholar]
  133. 133. 
    He X, Ge C, Zheng X, Tang B, Chen L et al. 2020. Rapid identification of α-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au nanocomposites. Sens. Actuators B 317:128196
    [Google Scholar]
  134. 134. 
    Bizzarri AR, Moscetti I, Cannistraro S. 2018. Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Anal. Chim. Acta 1029:86–96
    [Google Scholar]
  135. 135. 
    Gholami MD, Sonar P, Ayoko GA, Izake EL. 2020. A highly sensitive SERS quenching nanosensor for the determination of tumor necrosis factor alpha in blood. Sens. Actuators B 310:127867
    [Google Scholar]
  136. 136. 
    Yang L, Fu C, Wang H, Xu S, Xu W. 2017. Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling. Anal. Bioanal. Chem. 409:235–42
    [Google Scholar]
  137. 137. 
    Shao H, Lin H, Guo Z, Lu J, Jia Y et al. 2019. A multiple signal amplification sandwich-type SERS biosensor for femtomolar detection of miRNA. Biosens. Bioelectron. 143:111616
    [Google Scholar]
  138. 138. 
    Lee JU, Kim WH, Lee HS, Park KH, Sim SJ. 2019. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small 15:e1804968
    [Google Scholar]
  139. 139. 
    Lee T, Mohammadniaei M, Zhang H, Yoon J, Choi HK et al. 2020. Single functionalized pRNA/gold nanoparticle for ultrasensitive microRNA detection using electrochemical surface-enhanced Raman spectroscopy. Adv. Sci. 7:1902477
    [Google Scholar]
  140. 140. 
    Subaihi A, Muhamadali H, Mutter ST, Blanch E, Ellis DI, Goodacre R 2017. Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via adaptation of the isotopic labelling principle. Analyst 142:1099–105
    [Google Scholar]
  141. 141. 
    Zhang W-S, Wang Y-N, Wang Y, Xu Z-R. 2019. Highly reproducible and fast detection of 6-thioguanine in human serum using a droplet-based microfluidic SERS system. Sens. Actuators B 283:532–37
    [Google Scholar]
  142. 142. 
    Chen M, Tang J, Luo W, Zhang Z, Zhu Y et al. 2018. Core-shell-satellite microspheres-modified glass capillary for microsampling and ultrasensitive SERS spectroscopic detection of methotrexate in serum. Sens. Actuators B 275:267–76
    [Google Scholar]
  143. 143. 
    Wang R, Chon H, Lee S, Cheng Z, Hong SH et al. 2016. Highly sensitive detection of hormone estradiol E2 using surface-enhanced Raman scattering based immunoassays for the clinical diagnosis of precocious puberty. ACS Appl. Mater. Interfaces 8:10665–72
    [Google Scholar]
  144. 144. 
    Fornasaro S, Bonifacio A, Marangon E, Buzzo M, Toffoli G et al. 2018. Label-free quantification of anticancer drug imatinib in human plasma with surface enhanced Raman spectroscopy. Anal. Chem. 90:12670–77
    [Google Scholar]
  145. 145. 
    Panikar SS, Banu N, Escobar ER, Garcia GR, Cervantes-Martinez J et al. 2020. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum. Talanta 218:121138
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091420-092323
Loading
/content/journals/10.1146/annurev-anchem-091420-092323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error