1932

Abstract

Here, the research field of nanoplasmonic sensors is placed under scrutiny, with focus on affinity-based detection using refractive index changes. This review describes how nanostructured plasmonic sensors can deliver unique advantages compared to the established surface plasmon resonance technique, where a planar metal surface is used. At the same time, it shows that these features are actually only useful in quite specific situations. Recent trends in the field are also discussed and some devices that claim extraordinary performance are questioned. It is argued that the most important challenges are related to limited receptor affinity and nonspecific binding rather than instrumental performance. Although some nanoplasmonic sensors may be useful in certain situations, it seems likely that conventional surface plasmon resonance will continue to dominate biomolecular interaction analysis. For detection of analytes in complex samples, plasmonics may be an important tool, but probably not in the form of direct refractometric detection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091420-090751
2021-07-27
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091420-090751.html?itemId=/content/journals/10.1146/annurev-anchem-091420-090751&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Faraday M. 1857. The Bakerian Lecture. Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. 147:145–81
    [Google Scholar]
  2. 2. 
    Mie G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330:377–445
    [Google Scholar]
  3. 3. 
    Englebienne P. 1998. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123:1599–603
    [Google Scholar]
  4. 4. 
    Masson J-F. 2020. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 145:3776–800
    [Google Scholar]
  5. 5. 
    Ferhan AR, Yoon BK, Jeon W-Y, Cho N-J. 2020. Biologically interfaced nanoplasmonic sensors. Nanoscale Adv 2:3103–14
    [Google Scholar]
  6. 6. 
    Wang P, Nasir ME, Krasavin AV, Dickson W, Jiang Y, Zayats AV. 2019. Plasmonic metamaterials for nanochemistry and sensing. Acc. Chem. Res. 52:3018–28
    [Google Scholar]
  7. 7. 
    Prasad A, Choi J, Jia Z, Park S, Gartia MR. 2019. Nanohole array plasmonic biosensors: emerging point-of-care applications. Biosens. Bioelectron. 130:185–203
    [Google Scholar]
  8. 8. 
    Mauriz E, Dey P, Lechuga LM. 2019. Advances in nanoplasmonic biosensors for clinical applications. Analyst 144:7105–29
    [Google Scholar]
  9. 9. 
    Liedberg B, Nylander C, Lundström I. 1983. Surface-plasmon resonance for gas-detection and biosensing. Sens. Actuators 4:299–304
    [Google Scholar]
  10. 10. 
    Homola J. 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108:462–93
    [Google Scholar]
  11. 11. 
    Rich RL, Myszka DG. 2011. Survey of the 2009 commercial optical biosensor literature. J. Mol. Recognit. 24:892–914
    [Google Scholar]
  12. 12. 
    Špačková B, Lynn NS Jr., Slabý J, Šípová H, Homola J. 2018. A route to superior performance of a nanoplasmonic biosensor: consideration of both photonic and mass transport aspects. ACS Photonics 5:1019–25
    [Google Scholar]
  13. 13. 
    Dahlin AB. 2012. Plasmonic Biosensors: An Integrated View of Refractometric Detection Washington, DC: IOS Press
  14. 14. 
    Maier SA. 2007. Plasmonics: Fundamentals and Applications New York: Springer Sci. Bus. Media
  15. 15. 
    Wu Y, Bennett D, Tilley RD, Gooding JJ. 2020. How nanoparticles transform single molecule measurements into quantitative sensors. Adv. Mater. 32:1904339
    [Google Scholar]
  16. 16. 
    Taylor AB, Zijlstra P. 2017. Single-molecule plasmon sensing: current status and future prospects. ACS Sens 2:1103–22
    [Google Scholar]
  17. 17. 
    Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. 2019. Advances in optical single-molecule detection: on the road to super-sensitive bioaffinity assays. Angew. Chem. Int. Ed. 59:10746–73
    [Google Scholar]
  18. 18. 
    Akkilic N, Geschwindner S, Höök F. 2020. Single-molecule biosensors: recent advances and applications. Biosens. Bioelectron. 151:111944
    [Google Scholar]
  19. 19. 
    Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A et al. 2019. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13:390–96
    [Google Scholar]
  20. 20. 
    Huang Q, Li N, Zhang H, Che C, Sun F et al. 2020. Critical review: digital resolution biomolecular sensing for diagnostics and life science research. Lab Chip 20:2816–40
    [Google Scholar]
  21. 21. 
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP. 2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:442–53
    [Google Scholar]
  22. 22. 
    Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F et al. 2008. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 80:984–89
    [Google Scholar]
  23. 23. 
    Aćimović SS, Šipová-Jungová H, Emilsson G, Shao L, Dahlin AB et al. 2018. Antibody-antigen interaction dynamics revealed by analysis of single-molecule equilibrium fluctuations on individual plasmonic nanoparticle biosensors. ACS Nano 12:9958–65
    [Google Scholar]
  24. 24. 
    Zijlstra P, Paulo PMR, Orrit M. 2012. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7:379–82
    [Google Scholar]
  25. 25. 
    Ament I, Prasad J, Henkel A, Schmachtel S, Sonnichsen C. 2012. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 12:1092–95
    [Google Scholar]
  26. 26. 
    Beuwer MA, Prins MWJ, Zijlstra P. 2015. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano Lett 15:3507–11
    [Google Scholar]
  27. 27. 
    Dahlin AB. 2012. Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 12:3018–36
    [Google Scholar]
  28. 28. 
    Nair PR, Alam MA. 2006. Performance limits of nanobiosensors. Appl. Phys. Lett. 88:233120
    [Google Scholar]
  29. 29. 
    Sheehan PE, Whitman LJ. 2005. Detection limits for nanoscale biosensors. Nano Lett 5:803–7
    [Google Scholar]
  30. 30. 
    Dahlin AB. 2015. Sensing applications based on plasmonic nanopores: the hole story. Analyst 140:4748–59
    [Google Scholar]
  31. 31. 
    Garcia-Guirado J, Rica RA, Ortega J, Medina J, Sanz V et al. 2018. Overcoming diffusion-limited biosensing by electrothermoplasmonics. ACS Photon 5:3673–79
    [Google Scholar]
  32. 32. 
    Zhang J, Wang Y, Wong TI, Liu X, Zhou X, Liedberg B. 2015. Electrofocusing-enhanced localized surface plasmon resonance biosensors. Nanoscale 7:17244–48
    [Google Scholar]
  33. 33. 
    Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H. 2014. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14:2006–12
    [Google Scholar]
  34. 34. 
    Song Y, Chen P, Chung MT, Nidetz R, Park Y et al. 2017. AC electroosmosis-enhanced nanoplasmofluidic detection of ultralow-concentration cytokine. Nano Lett 17:2374–80
    [Google Scholar]
  35. 35. 
    Claudio V, Dahlin AB, Antosiewicz TJ. 2014. Single-particle plasmon sensing of discrete molecular events: binding position versus signal variations for different sensor geometries. J. Phys. Chem. C 118:6980–88
    [Google Scholar]
  36. 36. 
    Sreekanth KV, Alapan Y, El Kabbash M, Ilker E, Hinczewski M et al. 2016. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15:621–27
    [Google Scholar]
  37. 37. 
    Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV et al. 2013. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12:304–9
    [Google Scholar]
  38. 38. 
    Feuz L, Jonsson MP, Höök F. 2012. Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 12:873–79
    [Google Scholar]
  39. 39. 
    Feuz L, Jonsson P, Jonsson MP, Höök F. 2010. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 4:2167–77
    [Google Scholar]
  40. 40. 
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA et al. 2009. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8:867–71
    [Google Scholar]
  41. 41. 
    Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R et al. 2009. Attomolar protein detection using in-hole surface plasmon resonance. J. Am. Chem. Soc. 131:436–37
    [Google Scholar]
  42. 42. 
    Marinakos SM, Chen S, Chilkoti A 2007. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem. 79:5278–83
    [Google Scholar]
  43. 43. 
    Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F. 2010. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal. Chem. 82:2087–94
    [Google Scholar]
  44. 44. 
    Dahlin AB, Chen S, Jonsson MP, Gunnarsson L, Kall M, Höök F. 2009. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal. Chem. 81:6572–80
    [Google Scholar]
  45. 45. 
    Green NM. 1963. Avidin. 1. Use of 14C biotin for kinetic studies and for assay. Biochem. J. 89:585–91
    [Google Scholar]
  46. 46. 
    Ahijado-Guzman R, Prasad J, Rosman C, Henkel A, Tome L et al. 2014. Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities. Nano Lett 14:5528–32
    [Google Scholar]
  47. 47. 
    Špačková B, Šípová-Jungová H, Käll M, Fritzsche J, Langhammer C. 2021. Nanoplasmonic–nanofluidic single-molecule biosensors for ultrasmall sample volumes. ACS Sensors 6:73–82
    [Google Scholar]
  48. 48. 
    Anderson NL, Anderson NG. 2002. The human plasma proteome—history, character, and diagnostic prospects. Mol. Cell. Proteom. 1:845–67
    [Google Scholar]
  49. 49. 
    Aćimović SS, Kreuzer MP, Gonzalez MU, Quidant R. 2009. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3:1231–37
    [Google Scholar]
  50. 50. 
    Liedberg B, Lundström I, Stenberg E. 1993. Principles of biosensing with an extended coupling matrix and surface-plasmon resonance. Sens. Actuators B 11:63–72
    [Google Scholar]
  51. 51. 
    Lin JY, Stuparu AD, Huntington MD, Mrksich M, Odom TW. 2013. Nanopatterned substrates increase surface sensitivity for real-time biosensing. J. Phys. Chem. C 117:5286–92
    [Google Scholar]
  52. 52. 
    Squires TM, Messinger RJ, Manalis SR. 2008. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 26:417–26
    [Google Scholar]
  53. 53. 
    Escobedo C, Brolo AG, Gordon R, Sinton D 2010. Flow-through versus flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal. Chem. 82:10015–20
    [Google Scholar]
  54. 54. 
    Young ME, Carroad PA, Bell RL. 1980. Estimation of diffusion-coefficients of proteins. Biotechnol. Bioeng. 22:947–55
    [Google Scholar]
  55. 55. 
    Schreiber G, Haran G, Zhou HX. 2009. Fundamental aspects of protein–protein association kinetics. Chem. Rev. 109:839–60
    [Google Scholar]
  56. 56. 
    Jo N, Shin YB 2020. Enhancing biosensing sensitivity of metal nanostructures through site-selective binding. Sci. Rep. 10:1024
    [Google Scholar]
  57. 57. 
    Junesch J, Emilsson G, Xiong K, Kumar S, Sannomiya T et al. 2015. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale 7:15080–85
    [Google Scholar]
  58. 58. 
    Emilsson G, Röder E, Malekian B, Xiong K, Manzi J et al. 2019. Nanoplasmonic sensor detects preferential binding of IRSp53 to negative membrane curvature. Front. Chem. 7:
    [Google Scholar]
  59. 59. 
    Ferhan AR, Jackman JA, Malekian B, Xiong K, Emilsson G et al. 2018. Nanoplasmonic sensing architectures for decoding membrane curvature-dependent biomacromolecular interactions. Anal. Chem. 90:7458–66
    [Google Scholar]
  60. 60. 
    Miclaus T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS. 2014. Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett 14:2086–93
    [Google Scholar]
  61. 61. 
    Malekian B, Schoch RL, Robson T, Ferrand-Drake del Castillo G, Xiong K et al. 2018. Detecting selective protein binding inside plasmonic nanopores: toward a mimic of the nuclear pore complex. Front. Chem. 6:637
    [Google Scholar]
  62. 62. 
    Liu B, Chen S, Zhang J, Yao X, Zhong J et al. 2018. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv. Mater. 30:1706031
    [Google Scholar]
  63. 63. 
    Zhan C, Liu B-W, Tian Z-Q, Ren B. 2020. Determining the interfacial refractive index via ultrasensitive plasmonic sensors. J. Am. Chem. Soc. 142:10905–09
    [Google Scholar]
  64. 64. 
    Nan J, Zhu S, Ye S, Sun W, Yue Y et al. 2019. Ultrahigh-sensitivity sandwiched plasmon ruler for label-free clinical diagnosis. Adv. Mater. 32:1905927
    [Google Scholar]
  65. 65. 
    Junesch J, Sannomiya T, Dahlin AB. 2012. Optical properties of nanohole arrays in metal–dielectric double films prepared by mask-on-metal colloidal lithography. ACS Nano 6:10405–15
    [Google Scholar]
  66. 66. 
    Xu Y, Bai P, Zhou X, Akimov Y, Png CE et al. 2019. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7:1801433
    [Google Scholar]
  67. 67. 
    Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C. 2010. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–67
    [Google Scholar]
  68. 68. 
    Swann MJ, Peel LL, Carrington S, Freeman NJ. 2004. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal. Biochem. 329:190–98
    [Google Scholar]
  69. 69. 
    Inci F, Tokel O, Wang SQ, Gurkan UA, Tasoglu S et al. 2013. Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7:4733–45
    [Google Scholar]
  70. 70. 
    Aćimović SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL et al. 2014. LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 14:2636–41
    [Google Scholar]
  71. 71. 
    Oliverio M, Perotto S, Messina GC, Lovato L, De Angelis F. 2017. Chemical functionalization of plasmonic surface biosensors: a tutorial review on issues, strategies and costs. ACS Appl. Mater. Interfaces 9:29394–411
    [Google Scholar]
  72. 72. 
    Belushkin A, Yesilkoy F, Altug H. 2018. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 12:4453–61
    [Google Scholar]
  73. 73. 
    Zhao C, Xu X, Ferhan AR, Chiang N, Jackman JA et al. 2020. Scalable fabrication of quasi-one-dimensional gold nanoribbons for plasmonic sensing. Nano Lett 20:1747–54
    [Google Scholar]
  74. 74. 
    Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi SA. 2021. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 177:112971
    [Google Scholar]
  75. 75. 
    Haes AJ, Zou S, Schatz GC, van Duyne RP. 2004. A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108:109–16
    [Google Scholar]
  76. 76. 
    Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS. 1998. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–48
    [Google Scholar]
  77. 77. 
    Ferrand-Drake del Castillo G, Koenig M, Muller M, Eichhorn K-J, Stamm M, Uhlmann P et al. 2019. Enzyme immobilization in polyelectrolyte brushes: high loading and enhanced activity compared to monolayers. Langmuir 35:3479–89
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091420-090751
Loading
/content/journals/10.1146/annurev-anchem-091420-090751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error