1932

Abstract

The advent of electrochemical affinity assays and sensors evolved from pioneering efforts in the 1970s to broaden the field of analytes accessible to the selective and sensitive performance of electrochemical detection. The foundation of electrochemical affinity assays/sensors is the specific capture of an analyte by an affinity element and the subsequent transduction of this event into a measurable signal. This review briefly covers the early development of affinity assays and then focuses on advances in the past decade. During this time, progress on electroactive labels, including the use of nanoparticles, quantum dots, organic and organometallic redox compounds, and enzymes with amplification schemes, has led to significant improvements in sensitivity. The emergence of nanomaterials along with microfabrication and microfluidics technology enabled research pathways that couple the ease of use of electrochemical detection for the development of devices that are more user friendly, disposable, and employable, such as lab-on-a-chip, paper, and wearable sensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125655
2021-07-27
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-061417-125655.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125655&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alizadeh N, Salimi A. 2018. Ultrasensitive bioaffinity electrochemical sensors: advances and new perspectives. Electroanalysis 30:2803–40
    [Google Scholar]
  2. 2. 
    Lawal AT. 2018. Progress in utilisation of graphene for electrochemical biosensors. Biosens. Bioelectron. 106:149–78
    [Google Scholar]
  3. 3. 
    Niu XH, Cheng N, Ruan X, Du D, Lin Y. 2020. Nanozyme-based immunosensors and immunoassays: recent developments and future trends. J. Electrochem. Soc. 167:037508
    [Google Scholar]
  4. 4. 
    Sánchez A, Villalonga A, Martínez-García G, Parrado C, Villalonga R. 2019. Dendrimers as soft nanomaterials for electrochemical immunosensors. Nanomaterials 9:1745
    [Google Scholar]
  5. 5. 
    Globe Newswire 2019. Global immunoassay market is set to reach USD 26.9 billion by 2024, growing at a CAGR of 5.6% during the forecast period: VynZ Research. Globe Newswire July 9. https://www.globenewswire.com/news-release/2019/07/09/1879881/0/en/Global-Immunoassay-Market-is-Set-to-Reach-USD-26-9-Billion-by-2024-Growing-at-a-CAGR-of-5-6-During-the-Forecast-Period-VynZ-Research.html
    [Google Scholar]
  6. 6. 
    Berson SA, Yalow RS. 1959. Quantitative aspects of the reaction between insulin and insulin-binding antibody. J. Clin. Investig. 38:1996–2016
    [Google Scholar]
  7. 7. 
    Zhao H, Boyd LF, Schuck P. 2017. Measuring protein interactions by optical biosensors. Curr. Protoc. Protein Sci. 17:20.21–22
    [Google Scholar]
  8. 8. 
    Kirste R, Rohrbaugh N, Bryan I, Bryan Z, Collazo R, Ivanisevic A. 2015. Electronic biosensors based on III-nitride semiconductors. Annu. Rev. Anal. Chem. 8:149–69
    [Google Scholar]
  9. 9. 
    Skládal P. 2016. Piezoelectric biosensors. TrAC Trends Anal. Chem. 79:127–33
    [Google Scholar]
  10. 10. 
    DeMiguel-Ramos M, Diaz-Duran B, Escolano JM, Olivares J, Clement M et al. 2016. Effects of biologically compatible buffers on the electrical response of gravimetric sensors operating at GHz frequencies. Sens. Actuators B 222:688–92
    [Google Scholar]
  11. 11. 
    Felix FS, Angnes L. 2018. Electrochemical immunosensors—a powerful tool for analytical applications. Biosens. Bioelectron. 102:470–78
    [Google Scholar]
  12. 12. 
    Kokkinos C, Economou A, Prodromidis MI. 2016. Electrochemical immunosensors: critical survey of different architectures and transduction strategies. TrAC Trends Anal. Chem. 79:88–105
    [Google Scholar]
  13. 13. 
    Wen W, Yan X, Zhu C, Du D, Lin Y. 2017. Recent advances in electrochemical immunosensors. Anal. Chem. 89:138–56
    [Google Scholar]
  14. 14. 
    Engvall E, Perlmann P. 1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G Immunochemistry 8:871–74
    [Google Scholar]
  15. 15. 
    Cho IH, Lee J, Kim J, Kang MS, Paik JK et al. 2018. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18:207
    [Google Scholar]
  16. 16. 
    Filik H, Avan AA. 2019. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: a review. Talanta 205:120153
    [Google Scholar]
  17. 17. 
    Zhang Y, Wei Q. 2016. The role of nanomaterials in electroanalytical biosensors: a mini review. J. Electroanal. Chem. 781:401–9
    [Google Scholar]
  18. 18. 
    Breyer B, Radcliff FJ. 1951. Polarographic investigation of the antigen-antibody reaction. Nature 167:79
    [Google Scholar]
  19. 19. 
    Heineman WR, Anderson CW, Halsall HB. 1979. Immunoassay by differential pulse polarography. Science 204:865–66
    [Google Scholar]
  20. 20. 
    Weber SG, Purdy WC. 1979. Homogeneous voltammetric immunoassay: a preliminary study. Anal. Lett. 12:1–9
    [Google Scholar]
  21. 21. 
    Doyle MJ, Halsall HB, Heineman WR. 1982. Heterogeneous immunoassay for serum proteins by differential pulse anodic stripping voltammetry. Anal. Chem. 54:2318–22
    [Google Scholar]
  22. 22. 
    Eggers HM, Halsall HB, Heineman WR. 1982. Enzyme immunoassay with flow-amperometric detection of NADH. Clin. Chem. 28:1848–51
    [Google Scholar]
  23. 23. 
    Heineman WR, Halsall HB. 1985. Strategies for electrochemical immunoassay. Anal. Chem. 57:1321A–31A
    [Google Scholar]
  24. 24. 
    Wehmeyer KR, Doyle MJ, Wright DS, Eggers HM, Halsall HB, Heineman WR. 1983. Liquid-chromatography with electrochemical detection of phenol and NADH for enzyme-immunoassay. J. Liquid Chromatogr. 6:2141–56
    [Google Scholar]
  25. 25. 
    Clark LC Jr., Lyons C. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102:29–45
    [Google Scholar]
  26. 26. 
    Aizawa M, Morioka A, Matsuoka H, Suzuki S, Nagamura Y et al. 1976. An enzyme immunosensor for IgG. J. Solid-Phase Biochem. 1:319–28
    [Google Scholar]
  27. 27. 
    Mattiasson B, Nilsson H. 1977. An enzyme immunoelectrode. FEBS Lett. 78:251–54
    [Google Scholar]
  28. 28. 
    Janata J. 1975. Immunoelectrode. J. Am. Chem. Soc. 97:2914–16
    [Google Scholar]
  29. 29. 
    Yamamoto N, Nagasawa Y, Sawai M, Sudo T, Tsubomura H. 1978. Potentiometric investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal-electrodes. J. Immunol. Methods 22:309–17
    [Google Scholar]
  30. 30. 
    Alexander PW, Rechnitz GA. 1974. Ion-electrode based immunoassay and antibody-antigen precipitin reaction monitoring. Anal. Chem. 46:1253–57
    [Google Scholar]
  31. 31. 
    Ronkainen-Matsuno NJ, Thomas JH, Halsall HB, Heinemann WR. 2002. Electrochemical immunoassay moving into the fast lane. TrAC Trends Anal. Chem. 21:213–25
    [Google Scholar]
  32. 32. 
    Cousino MA, Jarbawi TB, Halsall HB, Heineman WR. 1997. Peer reviewed: pushing down the limits of detection: molecular needles in a haystack. Anal. Chem. 69:544A–49A
    [Google Scholar]
  33. 33. 
    Laocharoensuk R. 2016. Development of electrochemical immunosensors towards point-of-care cancer diagnostics: clinically relevant studies. Electroanalysis 28:1716–29
    [Google Scholar]
  34. 34. 
    Ricci F, Volpe G, Micheli L, Palleschi G. 2007. A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta 605:111–29
    [Google Scholar]
  35. 35. 
    Skládal P. 2019. Advances in electrochemical immunosensors for pathogens. Curr. Opin. Electrochem. 14:66–70
    [Google Scholar]
  36. 36. 
    Cho EJ, Lee JW, Ellington AD. 2009. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2:241–64
    [Google Scholar]
  37. 37. 
    Yarman A, Kurbanoglu S, Jetzschmann KJ, Ozkan SA, Wollenberger U, Scheller FW. 2018. Electrochemical MIP-sensors for drugs. Curr. Med. Chem. 25:4007–19
    [Google Scholar]
  38. 38. 
    Kaushik M, Khurana S, Mehra K, Yadav N, Mishra S, Kukreti S. 2018. Emerging trends in advanced nanomaterials based electrochemical genosensors. Curr. Pharm. Des. 24:3697–709
    [Google Scholar]
  39. 39. 
    Akiba U, Anzai JI. 2016. Recent progress in electrochemical biosensors for glycoproteins. Sensors 16:2045
    [Google Scholar]
  40. 40. 
    Xiao T, Huang J, Wang D, Meng T, Yang X 2020. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta 206:120210
    [Google Scholar]
  41. 41. 
    Tang J, Tang D. 2015. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim. Acta 182:2077–89
    [Google Scholar]
  42. 42. 
    Hou L, Tang Y, Xu M, Gao Z, Tang D. 2014. Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation. Anal. Chem. 86:8352–58
    [Google Scholar]
  43. 43. 
    Alizadeh N, Salimi A, Hallaj R. 2020. Hemin/G-Quadruplex horseradish peroxidase-mimicking DNAzyme: principle and biosensing application. Adv. Biochem. Eng. Biotechnol. 170:85–86
    [Google Scholar]
  44. 44. 
    Bodulev OL, Sakharov IY. 2020. Isothermal nucleic acid amplification techniques and their use in bioanalysis. Biochemistry 85:147–66
    [Google Scholar]
  45. 45. 
    Wan Y, Su Y, Zhu X, Liu G, Fan C. 2013. Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron. 47:1–11
    [Google Scholar]
  46. 46. 
    Fernández Abedul MT, González García MB, Costa García A 2015. Electrochemical immunosensors. Agricultural and Food Electroanalysis A Escarpa, MC Gonzalez, MA Lopez 223–93 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  47. 47. 
    Rama EC, Costa-Garcia A. 2016. Screen-printed electrochemical immunosensors for the detection of cancer and cardiovascular biomarkers. Electroanalysis 28:1700–15
    [Google Scholar]
  48. 48. 
    Niwa O, Xu Y, Halsall HB, Heineman WR. 1993. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. Anal. Chem. 65:1559–63
    [Google Scholar]
  49. 49. 
    Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D 2013. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal. Chim. Acta 758:1–18
    [Google Scholar]
  50. 50. 
    Shrivastava S, Jadon N, Jain R. 2016. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 82:55–67
    [Google Scholar]
  51. 51. 
    Fowler JM, Wong DK, Halsall HB, Heineman WR 2008. Recent developments in electrochemical immunoassays and immunosensors. Electrochemical Sensors, Biosensors and Their Biomedical Applications X Zhang, HX Ju, J Wang 115–43 San Diego, CA: Academic
    [Google Scholar]
  52. 52. 
    Gan SD, Patel KR. 2013. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 133:e12
    [Google Scholar]
  53. 53. 
    Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. 2018. Electrochemical methodologies for the detection of pathogens. ACS Sens 3:1069–86
    [Google Scholar]
  54. 54. 
    Chen C, Luo J, Li C, Ma M, Yu W et al. 2018. Molecularly imprinted polymer as an antibody substitution in pseudo-immunoassays for chemical contaminants in food and environmental samples. J. Agric. Food Chem. 66:2561–71
    [Google Scholar]
  55. 55. 
    Schoukroun-Barnes LR, Macazo FC, Gutierrez B, Lottermoser J, Liu J, White RJ. 2016. Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu. Rev. Anal. Chem. 9:163–81
    [Google Scholar]
  56. 56. 
    Yu XW, Yang YP, Dikici E, Deo SK, Daunert S. 2017. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annu. Rev. Anal. Chem. 10:293–320
    [Google Scholar]
  57. 57. 
    Svalova TS, Malysheva NN, Kozitsina AN. 2017. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ. Chem. Bull. Int. Ed. 66:1797–811
    [Google Scholar]
  58. 58. 
    Herne TM, Tarlov MJ. 1997. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119:8916–20
    [Google Scholar]
  59. 59. 
    Li H, Dauphin-Ducharme P, Arroyo-Currás N, Tran CH, Vieira PA et al. 2017. A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew. Chem. Int. Ed. 56:7492–95
    [Google Scholar]
  60. 60. 
    Shaver A, Curtis SD, Arroyo-Currás N. 2020. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces 12:11214–23
    [Google Scholar]
  61. 61. 
    Kissinger PT, Heineman WR 1996. Laboratory Techniques in Electroanalytical Chemistry New York: Marcel Dekker
    [Google Scholar]
  62. 62. 
    Chang B, Park S 2010. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3:207–29
    [Google Scholar]
  63. 63. 
    Forster RJ, Bertoncello P, Keyes TE. 2009. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2:359–85
    [Google Scholar]
  64. 64. 
    Santos-Cancel M, Lazenby RA, White RJ. 2018. Rapid two-millisecond interrogation of electrochemical, aptamer-based sensor response using intermittent pulse amperometry. ACS Sens 3:1203–9
    [Google Scholar]
  65. 65. 
    Bard AJ, Whitesides GM. 1993. Luminescent metal chelate labels and means for detection. US Patent 5:238,808A
    [Google Scholar]
  66. 66. 
    Kuwana T Strojek 1967. Optically transparent electrodes. Am. Chem. Soc. Div. Fuel Chem. 11:81–84
    [Google Scholar]
  67. 67. 
    Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S 2017. Nanomaterials for electrochemical immunosensing. Sensors 17:1041
    [Google Scholar]
  68. 68. 
    Feng T, Wang Y, Qiao X. 2017. Recent advances of carbon nanotubes-based electrochemical immunosensors for the detection of protein cancer biomarkers. Electroanalysis 29:662–75
    [Google Scholar]
  69. 69. 
    Yang H, Xu W, Liang X, Yang Y, Zhou Y 2020. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Microchim. Acta 187:206
    [Google Scholar]
  70. 70. 
    Soleymani L, Fang Z, Sargent EH, Kelley SO. 2009. Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4:844–48
    [Google Scholar]
  71. 71. 
    Soleymani L, Fang Z, Sun X, Yang H, Taft BJ et al. 2009. Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew. Chem. Int. Ed. 48:8457–60
    [Google Scholar]
  72. 72. 
    De Luna P, Mahshid SS, Das J, Luan B, Sargent EH et al. 2017. High-curvature nanostructuring enhances probe display for biomolecular detection. Nano Lett 17:1289–95
    [Google Scholar]
  73. 73. 
    Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY. 2016. Strategic applications of nanomaterials as sensing platforms and signal amplification markers at electrochemical immunosensors. Electroanalysis 28:1730–49
    [Google Scholar]
  74. 74. 
    Ren K, Wu J, Zhang Y, Yan F, Ju H 2014. Proximity hybridization regulated DNA biogate for sensitive electrochemical immunoassay. Anal. Chem. 86:7494–99
    [Google Scholar]
  75. 75. 
    Jain R, Jadon N, Pawaiya A. 2017. Polypyrrole based next generation electrochemical sensors and biosensors: a review. TrAC Trends Anal. Chem. 97:363–73
    [Google Scholar]
  76. 76. 
    Hasanzadeh M, Shadjou N, de la Guardia M. 2018. Nanosized hydrophobic gels: advanced supramolecules for use in electrochemical bio- and immunosensing. TrAC Trends Anal. Chem. 102:210–24
    [Google Scholar]
  77. 77. 
    Liu B, Zhang B, Chen G, Yang H, Tang D 2014. Proximity ligation assay with three-way junction-induced rolling circle amplification for ultrasensitive electronic monitoring of concanavalin A. Anal. Chem. 86:7773–81
    [Google Scholar]
  78. 78. 
    Zhu Y, Wang H, Wang L, Zhu J, Jiang W. 2016. Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl. Mater. Interfaces 8:2573–81
    [Google Scholar]
  79. 79. 
    Zhou J, Lai W, Zhuang J, Tang J, Tang D. 2013. Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl. Mater. Interfaces 5:2773–81
    [Google Scholar]
  80. 80. 
    Badihi-Mossberg M, Buchner V, Rishpon J. 2007. Electrochemical biosensors for pollutants in the environment. Electroanalysis19–202015–28
    [Google Scholar]
  81. 81. 
    Vogiazi V, de la Cruz A, Mishra S, Shanov V, Heineman WR, Dionysios DD. 2019. A comprehensive review: development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 4:1151–73
    [Google Scholar]
  82. 82. 
    Bahadır EB, Sezgintürk MK. 2015. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–74
    [Google Scholar]
  83. 83. 
    Catanante G, Rhouati A, Hayat A, Marty JL. 2016. An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis 28:1750–63
    [Google Scholar]
  84. 84. 
    Yanez-Sedeno P, Campuzano S, Pingarron JM. 2017. Multiplexed electrochemical immunosensors for clinical biomarkers. Sensors 17:965
    [Google Scholar]
  85. 85. 
    Radecka H, Radecki J. 2015. Label-free electrochemical immunosensors for viruses and antibodies detection—review. J. Mex. Chem. Soc. 59:269–75
    [Google Scholar]
  86. 86. 
    Zhang H, Miller BL. 2019. Immunosensor-based label-free and multiplex detection of influenza viruses: state of the art. Biosens. Bioelectron. 141:111476
    [Google Scholar]
  87. 87. 
    Duffy GF, Moore EJ. 2017. Electrochemical immunosensors for food analysis: a review of recent developments. Anal. Lett. 50:1–32
    [Google Scholar]
  88. 88. 
    Hosu O, Selvolini G, Marrazza G. 2018. Recent advances of immunosensors for detecting food allergens. Curr. Opin. Electrochem. 10:149–56
    [Google Scholar]
  89. 89. 
    Arya SK, Estrela P. 2018. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors 18: 2010.
    [Google Scholar]
  90. 90. 
    Filik H, Avan AA. 2020. Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: a review. Talanta 211:120758
    [Google Scholar]
  91. 91. 
    Freitas M, Nouws HPA, Delerue-Matos C. 2018. Electrochemical biosensing in cancer diagnostics and follow-up. Electroanalysis 30:1584–603
    [Google Scholar]
  92. 92. 
    Feng LN, Bian ZP, Peng J, Jiang F, Yang G et al. 2012. Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal. Chem. 84:7810–15
    [Google Scholar]
  93. 93. 
    Putnin T, Ngamaroonchote A, Wiriyakun N, Ounnunkad K, Laocharoensuk R. 2019. Dually functional polyethylenimine-coated gold nanoparticles: a versatile material for electrode modification and highly sensitive simultaneous determination of four tumor markers. Microchim. Acta 186:305
    [Google Scholar]
  94. 94. 
    Wang D, Li T, Gan N, Zhang H, Long N et al. 2015. Electrochemical coding for multiplexed immunoassays of biomarkers based on bio-based polymer-nanotags. Electrochim. Acta 163:238–45
    [Google Scholar]
  95. 95. 
    Wang J. 2012. Electrochemical biosensing based on noble metal nanoparticles. Microchim. Acta 177:245–70
    [Google Scholar]
  96. 96. 
    Chen M, Gan N, Zhang H, Yan Z, Li T et al. 2016. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim. Acta 183:1099–106
    [Google Scholar]
  97. 97. 
    Freitas M, Nouws HPA, Keating E, Fernandes VC, Delerue-Matos C. 2020. Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Microchim. Acta 187:184
    [Google Scholar]
  98. 98. 
    Kokkinos C, Angelopoulou M, Economou A, Prodromidis M, Florou A et al. 2016. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags. Anal. Chem. 88:6897–904
    [Google Scholar]
  99. 99. 
    Kokkinos C, Economou A. 2017. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels—a review. Anal. Chim. Acta 961:12–32
    [Google Scholar]
  100. 100. 
    Tang D, Ren J, Lu M. 2017. Multiplexed electrochemical immunoassay for two immunoglobulin proteins based on Cd and Cu nanocrystals. Analyst 142:4794–800
    [Google Scholar]
  101. 101. 
    Zhang Y, Li X, Di YP 2020. Fast and efficient measurement of clinical and biological samples using immunoassay-based multiplexing systems. Methods Mol. Biol. 2102:129–47
    [Google Scholar]
  102. 102. 
    Fang Y, Huang X, Zeng Q, Wang L. 2015. Metallic nanocrystallites-incorporated ordered mesoporous carbon as labels for a sensitive simultaneous multianalyte electrochemical immunoassay. Biosens. Bioelectron. 73:71–78
    [Google Scholar]
  103. 103. 
    Zhao C, Wu J, Ju H, Yan F 2014. Multiplexed electrochemical immunoassay using streptavidin/nanogold/carbon nanohorn as a signal tag to induce silver deposition. Anal. Chim. Acta 847:37–43
    [Google Scholar]
  104. 104. 
    Chen X, Ma Z. 2014. Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites. Biosens. Bioelectron. 55:343–49
    [Google Scholar]
  105. 105. 
    Li B, Pu W, Xu H, Ge L, Kwok HF, Hu L. 2019. Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres. Analyst 144:1433–41
    [Google Scholar]
  106. 106. 
    Shan J, Ma Z. 2016. Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Microchim. Acta 183:2889–97
    [Google Scholar]
  107. 107. 
    Wang J, Munir A, Li Z, Zhou HS. 2010. Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta 81:63–67
    [Google Scholar]
  108. 108. 
    Zhang B, Liu B, Liao J, Chen G, Tang D 2013. Novel electrochemical immunoassay for quantitative monitoring of biotoxin using target-responsive cargo release from mesoporous silica nanocontainers. Anal. Chem. 85:9245–52
    [Google Scholar]
  109. 109. 
    Zhao X, Wang J, Chen H, Xu H, Bai L et al. 2019. A multiple signal amplification based on PEI and rGO nanocomposite for simultaneous multiple electrochemical immunoassay. Sens. Actuators B 301:127071
    [Google Scholar]
  110. 110. 
    Fan C, Plaxco KW, Heeger AJ 2003. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100:9134–37
    [Google Scholar]
  111. 111. 
    Xiao Y, Lubin AA, Heeger AJ, Plaxco KW. 2005. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. 44:5456–59
    [Google Scholar]
  112. 112. 
    Schoukroun-Barnes LR, Wagan S, White RJ. 2014. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal. Chem. 86:1131–37
    [Google Scholar]
  113. 113. 
    White RJ, Plaxco KW. 2010. Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal. Chem. 82:73–76
    [Google Scholar]
  114. 114. 
    Arroyo-Currás Ny, Dauphin-Ducharme P, Ortega G, Ploense KL, Kippin TE, Plaxco KW 2018. Subsecond-resolved molecular measurements in the living body using chronoamperometrically interrogated aptamer-based sensors. ACS Sens 3:360–66
    [Google Scholar]
  115. 115. 
    Arya SK, Kongsuphol P, Park MK. 2017. On-chip electrochemical immunoassay platform for specific protein biomarker estimation in undiluted serum using off-surface membrane matrix. Biosens. Bioelectron. 91:721–27
    [Google Scholar]
  116. 116. 
    El-Moghazy AY, Huo J, Amaly N, Vasylieva N, Hammock BD, Sun G. 2020. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl. Mater. Interfaces 12:6159–68
    [Google Scholar]
  117. 117. 
    Eletxigerra U, Martinez-Perdiguero J, Merino S. 2015. Disposable microfluidic immuno-biochip for rapid electrochemical detection of tumor necrosis factor alpha biomarker. Sens. Actuators B 221:1406–11
    [Google Scholar]
  118. 118. 
    Jović M, Zhu Y, Lesch A, Bondarenko A, Cortés-Salazar F et al. 2017. Inkjet-printed microtiter plates for portable electrochemical immunoassays. J. Electroanal. Chem. 786:69–76
    [Google Scholar]
  119. 119. 
    Montiel VRV, Campuzano S, Torrente-Rodríguez RM, Reviejo AJ, Pingarrón JM. 2016. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk. Food Chem 213:595–601
    [Google Scholar]
  120. 120. 
    Nam EJ, Kim EJ, Wark AW, Rho S, Kim H, Lee HJ. 2012. Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions. Analyst 137:2011–16
    [Google Scholar]
  121. 121. 
    Ocana C, Hayat A, Mishra R, Vasilescu A, del Valle M, Marty JL 2015. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection. Analyst 140:4148–53
    [Google Scholar]
  122. 122. 
    Rackus DG, Dryden MDM, Lamanna J, Zaragoza A, Lam B et al. 2015. A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays. Lab Chip 15:3776–84
    [Google Scholar]
  123. 123. 
    Xu T, Zhang H, Li X, Xie Z, Li X. 2015. Enzyme-triggered tyramine-enzyme repeats on prussian blue-gold hybrid nanostructures for highly sensitive electrochemical immunoassay of tissue polypeptide antigen. Biosens. Bioelectron. 73:167–73
    [Google Scholar]
  124. 124. 
    Feng J, Li Y, Li M, Li F, Han J et al. 2017. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosens. Bioelectron. 91:441–48
    [Google Scholar]
  125. 125. 
    Chang BY, Park SM. 2010. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3:207–29
    [Google Scholar]
  126. 126. 
    Guo X, Kulkarni A, Doepke A, Halsall HB, Iyer S, Heineman WR. 2012. Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal. Chem. 84:241–46
    [Google Scholar]
  127. 127. 
    Khetani S, Kollath V, Kundra V, Nguyen M, Debert C et al. 2018. Polyethylenimine modified graphene-oxide electrochemical immunosensor for the detection of glial fibrillary acidic protein in central nervous system injury. ACS Sens 3:844–51
    [Google Scholar]
  128. 128. 
    Ramanathan M, Patil M, Epur R, Yun Y, Shanov V et al. 2016. Gold-coated carbon nanotube electrode arrays: Immunosensors for impedimetric detection of bone biomarkers. Biosens. Bioelectron. 77:580–88
    [Google Scholar]
  129. 129. 
    Shamsipur M, Farzin L, Tabrizi MA, Molaabasi F. 2015. Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on “signal off” and “signal on” strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Biosens. Bioelectron. 74:369–75
    [Google Scholar]
  130. 130. 
    Blonder R, Levi S, Tao G, Ben-Dov I, Willner I 1997. Development of amperometric and microgravimetric immunosensors and reversible immunosensors using antigen and photoisomerizable antigen monolayer electrodes. J. Am. Chem. Soc. 119:10467–78
    [Google Scholar]
  131. 131. 
    Ramsey JM, Jacobson SC, Knapp MR. 1995. Microfabricated chemical measurement systems. Nat. Med. 1:1093–95
    [Google Scholar]
  132. 132. 
    Bange A, Halsall HB, Heineman WR. 2005. Microfluidic immunosensor systems. Biosens. Bioelectron. 20:2488–503
    [Google Scholar]
  133. 133. 
    Choi J-W, Wijayawardhana CA, Okulan N, Oh KW, Han A et al. 2000. Development and characterization of a generic microfluidic subsystem toward portable biochemical detection. Micro Total Analysis Systems A van den Berg, W Olthuis, P Bergveld 327–30 Dordrecht, Neth: Springer
    [Google Scholar]
  134. 134. 
    Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall HB et al. 2002. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2:27–30
    [Google Scholar]
  135. 135. 
    Wang J, Ibanez A, Chatrathi MP, Escarpa A. 2001. Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 73:5323–27
    [Google Scholar]
  136. 136. 
    Heineman WR, Halsall HB, Seliskar CJ, Aguilar ZP, Farrell S et al. 2007. Detection of Bioterrorism Agents in Water Supplies Denver, CO: AWWA Res. Found., Am. Water Works Assoc.
    [Google Scholar]
  137. 137. 
    Tang J, Tang D, Niessner R, Chen G, Knopp D 2011. Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal. Chem. 83:5407–14
    [Google Scholar]
  138. 138. 
    Bai H, Bu S, Wang C, Ma C, Li Z et al. 2020. Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157:H7 using personal glucose meter as readout. Microchim. Acta 187:220
    [Google Scholar]
  139. 139. 
    Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O. 2019. An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Microchim. Acta 186:153
    [Google Scholar]
  140. 140. 
    Hasanzadeh M, Shadjou N. 2016. Electrochemical and photoelectrochemical nano-immunesensing using origami paper based method. Mater. Sci. Eng. C 61:979–1001
    [Google Scholar]
  141. 141. 
    Kwon D, Joo J, Lee S, Jeon S 2013. Facile and sensitive method for detecting cardiac markers using ubiquitous pH meters. Anal. Chem. 85:12134–37
    [Google Scholar]
  142. 142. 
    Ma C, Liu H, Zhang L, Li L, Yan M et al. 2017. Microfluidic paper-based analytical device for sensitive detection of peptides based on specific recognition of aptamer and amplification strategy of hybridization chain reaction. Chem. ElectroChem. 4:1744–49
    [Google Scholar]
  143. 143. 
    Martinez AW, Phillips ST, Whitesides GM. 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3–10
    [Google Scholar]
  144. 144. 
    Teengam P, Siangproh W, Tontisirin S, Jiraseree-amornkun A, Chuaypen N et al. 2021. NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. Sens. Actuators B 326:128825
    [Google Scholar]
  145. 145. 
    Dungchai W, Chailapakul O, Henry CS. 2009. Electrochemical detection for paper-based microfluidics. Anal. Chem. 81:5821–26
    [Google Scholar]
  146. 146. 
    Ozer T, McMahon C, Henry CS. 2020. Advances in paper-based analytical devices. Annu. Rev. Anal. Chem. 13:85–109
    [Google Scholar]
  147. 147. 
    Ye R, Zhu C, Song Y, Lu Q, Ge X et al. 2016. Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12:3094–100
    [Google Scholar]
  148. 148. 
    Tang D, Zhang B, Liu B, Chen G, Lu M 2014. Digital multimeter-based immunosensing strategy for sensitive monitoring of biomarker by coupling an external capacitor with an enzymatic catalysis. Biosens. Bioelectron. 55:255–58
    [Google Scholar]
  149. 149. 
    Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht, et al. 2020. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens 5:2679–700
    [Google Scholar]
  150. 150. 
    Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. 2019. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12:1–22
    [Google Scholar]
  151. 151. 
    Yu Y, Nyein HYY, Gao W, Javey A. 2019. Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater 32:e1902083
    [Google Scholar]
  152. 152. 
    Tu J, Torrente-Rodriguez RM, Wang M, Gao W 2020. The era of digital health: a review of portable and wearable affinity biosensors. Adv. Funct. Mater. 30:1906713
    [Google Scholar]
  153. 153. 
    Parlak O, Keene ST, Marais A, Curto VF, Salleo A. 2018. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4:eaar2904
    [Google Scholar]
  154. 154. 
    Heyrovsky J. 1922. Elektrolysa se rtut'ovou kapkovou kathodou. Chem. Listy 16:256–64
    [Google Scholar]
  155. 155. 
    Medetalibeyoglu H, Beytur M, Akyidirim O, Atar N, Yola ML. 2020. Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sens. Actuators B 319:128195
    [Google Scholar]
  156. 156. 
    Lin P-H, Li B-R 2020. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145:111020
    [Google Scholar]
  157. 157. 
    Russo MJ, Han M, Desroches PE, Manasa CS, Dennaoui Jet al 2021. Antifouling strategies for electrochemical biosensing: mechanisms and performance toward point of care based diagnostic applications. ACS Sens 6:1482507
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125655
Loading
/content/journals/10.1146/annurev-anchem-061417-125655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error