1932

Abstract

Droplet-based microfluidics has emerged as an important subfield within the microfluidic and general analytical communities. Indeed, several unique applications such as digital assay readout and single-cell sequencing now have commercial systems based on droplet microfluidics. Yet there remains room for this research area to grow. To date, most analytical readouts are optical in nature, relatively few studies have integrated sample preparation, and passive means for droplet formation and manipulation have dominated the field. Analytical scientists continue to expand capabilities by developing droplet-compatible method adaptations, for example, by interfacing to mass spectrometers or automating droplet sampling for temporally resolved analysis. In this review, we highlight recently developed fluidic control techniques and unique integrations of analytical methodology with droplet microfluidics—focusing on automation and the connections to analog/digital domains—and we conclude by offering a perspective on current challenges and future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-122120-042627
2021-07-27
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-122120-042627.html?itemId=/content/journals/10.1146/annurev-anchem-122120-042627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bibette J, Morse DC, Witten TA, Weitz DA. 1992. Stability criteria for emulsions. Phys. Rev. Lett. 69:2439–42
    [Google Scholar]
  2. 2. 
    Umbanhowar PB, Prasad V, Weitz DA. 2000. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–51
    [Google Scholar]
  3. 3. 
    Thorsen T, Roberts RW, Arnold FH, Quake SR. 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86:4163–66
    [Google Scholar]
  4. 4. 
    Squires TM, Quake SR. 2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026
    [Google Scholar]
  5. 5. 
    Song H, Tice JD, Ismagilov RF. 2003. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 42:768–72
    [Google Scholar]
  6. 6. 
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. 2006. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–46
    [Google Scholar]
  7. 7. 
    Link DR, Anna SL, Weitz DA, Stone HA. 2004. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92:054503
    [Google Scholar]
  8. 8. 
    Kumaresan P, Yang CJ, Cronier SA, Blazej RG, Mathies RA. 2008. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Anal. Chem. 80:3522–29
    [Google Scholar]
  9. 9. 
    Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA. 2010. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82:3183–90
    [Google Scholar]
  10. 10. 
    Chiu DT. 2010. Interfacing droplet microfluidics with chemical separation for cellular analysis. Anal. Bioanal. Chem. 397:3179–83
    [Google Scholar]
  11. 11. 
    Zhu Y, Fang Q. 2013. Analytical detection techniques for droplet microfluidics—a review. Anal. Chim. Acta 787:24–35
    [Google Scholar]
  12. 12. 
    Belder D. 2005. Microfluidics with droplets. Angew. Chem. Int. Ed. 44:3521–22
    [Google Scholar]
  13. 13. 
    Chiu DT, Lorenz RM. 2009. Chemistry and biology in femtoliter and picoliter volume droplets. Acc. Chem. Res. 42:649–58
    [Google Scholar]
  14. 14. 
    Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. 2016. Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12:2253–82
    [Google Scholar]
  15. 15. 
    Teh S-Y, Lin R, Hung L-H, Lee AP. 2008. Droplet microfluidics.. Lab Chip 8:198–220
    [Google Scholar]
  16. 16. 
    Kim SC, Clark IC, Shahi P, Abate AR. 2018. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem. 90:1273–79
    [Google Scholar]
  17. 17. 
    Sjöström SL, Jönsson HN, Svahn HA. 2013. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab Chip 13:1754–61
    [Google Scholar]
  18. 18. 
    Price AK, MacConnell AB, Paegel BM. 2016. SABR: photochemical dose–response bead screening in droplets. Anal. Chem. 88:2904–11
    [Google Scholar]
  19. 19. 
    Tang MY, Shum HC. 2016. One-step immunoassay of C-reactive protein using droplet microfluidics. Lab Chip 16:4359–65
    [Google Scholar]
  20. 20. 
    Gao R, Cheng Z, deMello AJ, Choo J. 2016. Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16:1022–29
    [Google Scholar]
  21. 21. 
    Wippold JA, Wang H, Tingling J, Leibowitz JL, de Figueiredo P, Han A 2020. PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology. Lab Chip 2:1628–38
    [Google Scholar]
  22. 22. 
    Li X, Hu J, Easley CJ. 2018. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab Chip 18:2926–35
    [Google Scholar]
  23. 23. 
    Hu J, Li X, Judd RL, Easley CJ. 2020. Rapid lipolytic oscillations in ex vivo adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. Lab Chip 20:1503–12
    [Google Scholar]
  24. 24. 
    Ding Y, Howes PD, deMello AJ. 2020. Recent advances in droplet microfluidics. Anal. Chem. 92:132–49
    [Google Scholar]
  25. 25. 
    Liu W-W, Zhu Y. 2020. Development and application of analytical detection techniques for droplet-based microfluidics—a review. Anal. Chim. Acta 1113:66–84
    [Google Scholar]
  26. 26. 
    Dressler OJ, Casadevall i Solvas X, deMello AJ. 2017. Chemical and biological dynamics using droplet-based microfluidics. Annu. Rev. Anal. Chem. 10:1–24
    [Google Scholar]
  27. 27. 
    Feng S, Shirani E, Inglis DW. 2019. Droplets for sampling and transport of chemical signals in biosensing: a review. Biosensors 9:80
    [Google Scholar]
  28. 28. 
    Zhu P, Wang L. 2017. Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75
    [Google Scholar]
  29. 29. 
    Duncombe TA, Dittrich PS. 2019. Droplet barcoding: tracking mobile micro-reactors for high-throughput biology. Curr. Opin. Biotechnol. 60:205–12
    [Google Scholar]
  30. 30. 
    Matula K, Rivello F, Huck WTS. 2020. Single-cell analysis using droplet microfluidics. Adv. Biosyst. 4:28
    [Google Scholar]
  31. 31. 
    Shi N, Moniruzzaman M., Easley CJ. 2020. Tissue engineering and analysis in droplet microfluidics. Droplet Microfluidics C Ren, A Lee 221–58 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  32. 32. 
    Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. 2017. Droplet microfluidics for synthetic biology. Lab Chip 17:3388–400
    [Google Scholar]
  33. 33. 
    Clark IC, Abate AR. 2017. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab Chip 17:2032–45
    [Google Scholar]
  34. 34. 
    Price AK, Paegel BM. 2016. Discovery in droplets. Anal. Chem. 88:339–53
    [Google Scholar]
  35. 35. 
    Pit AM, Duits MHG, Mugele F. 2015. Droplet manipulations in two phase flow microfluidics. Micromachines 6:1768–93
    [Google Scholar]
  36. 36. 
    Shang L, Cheng Y, Zhao Y. 2017. Emerging droplet microfluidics. Chem. Rev. 117:7964–8040
    [Google Scholar]
  37. 37. 
    Chabert M, Viovy J-L. 2008. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. PNAS 105:3191–96
    [Google Scholar]
  38. 38. 
    DeJournette CJ, Kim J, Medlen H, Li X, Vincent LJ, Easley CJ. 2013. Creating biocompatible oil–water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants. Anal. Chem. 85:10556–64
    [Google Scholar]
  39. 39. 
    Seemann R, Brinkmann M, Pfohl T, Herminghaus S. 2011. Droplet based microfluidics. Rep. Progress Phys. 75:016601
    [Google Scholar]
  40. 40. 
    Christopher GF, Anna SL. 2007. Microfluidic methods for generating continuous droplet streams. J. Phys. D Appl. Phys. 40:R319–36
    [Google Scholar]
  41. 41. 
    Chong ZZ, Tan SH, Gañán-Calvo AM, Tor SB, Loh NH, Nguyen N-T. 2016. Active droplet generation in microfluidics. Lab Chip 16:35–58
    [Google Scholar]
  42. 42. 
    Au AK, Lai H, Utela BR, Folch A. 2011. Microvalves and micropumps for BioMEMS. Micromachines 2:179–220
    [Google Scholar]
  43. 43. 
    Choi J-H, Lee S-K, Lim J-M, Yang S-M, Yi G-R 2010. Designed pneumatic valve actuators for controlled droplet breakup and generation. Lab Chip 10:456–61
    [Google Scholar]
  44. 44. 
    Grover WH, Skelley AM, Liu CN, Lagally ET, Mathies RA. 2003. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sens. Actuators B Chem. 89:315–23
    [Google Scholar]
  45. 45. 
    Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR. 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–16
    [Google Scholar]
  46. 46. 
    Zhang W, Lin S, Wang C, Hu J, Li C et al. 2009. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9:3088–94
    [Google Scholar]
  47. 47. 
    Babahosseini H, Misteli T, DeVoe DL. 2019. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing. Lab Chip 19:493–502
    [Google Scholar]
  48. 48. 
    Babahosseini H, Padmanabhan S, Misteli T, DeVoe DL. 2020. A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. Biomicrofluidics 14:014112
    [Google Scholar]
  49. 49. 
    Shi N, Easley CJ. 2020. Programmable μchopper device with on-chip droplet mergers for continuous assay calibration. Micromachines 11:620
    [Google Scholar]
  50. 50. 
    Gong H, Woolley AT, Nordin GP. 2016. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16:2450–58
    [Google Scholar]
  51. 51. 
    Dang BV, Hassanzadeh-Barforoushi A, Syed MS, Yang D, Kim S-J et al. 2019. Microfluidic actuation via 3D-printed molds toward multiplex biosensing of cell apoptosis. ACS Sens 4:2181–89
    [Google Scholar]
  52. 52. 
    Lee Y-S, Bhattacharjee N, Folch A. 2018. 3D-printed Quake-style microvalves and micropumps. Lab Chip 18:1207–14
    [Google Scholar]
  53. 53. 
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z et al. 2006. Electric control of droplets in microfluidic devices. Angew. Chem. Int. Ed. 45:2556–60
    [Google Scholar]
  54. 54. 
    Tan SH, Semin B, Baret J-C. 2014. Microfluidic flow-focusing in AC electric fields. Lab Chip 14:1099–106
    [Google Scholar]
  55. 55. 
    Sciambi A, Abate AR. 2014. Generating electric fields in PDMS microfluidic devices with salt water electrodes. Lab Chip 14:2605–9
    [Google Scholar]
  56. 56. 
    Grimmer A, Wille R 2020. Introduction. Designing Droplet Microfluidic Networks: A Toolbox for Designers3–11 Cham, Switz: Springer Int.
    [Google Scholar]
  57. 57. 
    Pollack MG, Fair RB, Shenderov AD. 2000. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77:1725–26
    [Google Scholar]
  58. 58. 
    Sung Kwon C, Hyejin M, Chang-Jin K. 2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12:70–80
    [Google Scholar]
  59. 59. 
    Choi K, Ng AH, Fobel R, Wheeler AR. 2012. Digital microfluidics. Annu. Rev. Anal. Chem. 5:413–40
    [Google Scholar]
  60. 60. 
    Kahkeshani S, Di Carlo D. 2016. Drop formation using ferrofluids driven magnetically in a step emulsification device. Lab Chip 16:2474–80
    [Google Scholar]
  61. 61. 
    Liu J, Tan S-H, Yap YF, Ng MY, Nguyen N-T. 2011. Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid. Nanofluid. 11:177–87
    [Google Scholar]
  62. 62. 
    Tan S-H, Nguyen N-T, Yobas L, Kang TG. 2010. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microeng. 20:045004
    [Google Scholar]
  63. 63. 
    Ting TH, Yap YF, Nguyen N-T, Wong TN, Chai JCK, Yobas L. 2006. Thermally mediated breakup of drops in microchannels. Appl. Phys. Lett. 89:234101
    [Google Scholar]
  64. 64. 
    Deal KS, Easley CJ. 2012. Self-regulated, droplet-based sample chopper for microfluidic absorbance detection. Anal. Chem. 84:1510–16
    [Google Scholar]
  65. 65. 
    Negou JT, Avila LA, Li X, Hagos TM, Easley CJ. 2017. Automated microfluidic droplet-based sample chopper for detection of small fluorescence differences using lock-in analysis. Anal. Chem. 89:6153–59
    [Google Scholar]
  66. 66. 
    Negou JT, Hu J, Li X, Easley CJ. 2018. Advancement of analytical modes in a multichannel, microfluidic droplet-based sample chopper employing phase-locked detection. Anal. Methods 10:3436–43
    [Google Scholar]
  67. 67. 
    Ismagilov RF, Rosmarin D, Kenis PJA, Chiu DT, Zhang W et al. 2001. Pressure-driven laminar flow in tangential microchannels:an elastomeric microfluidic switch. Anal. Chem. 73:4682–87
    [Google Scholar]
  68. 68. 
    Thorsen T, Maerkl SJ, Quake SR. 2002. Microfluidic large-scale integration. Science 298:580–84
    [Google Scholar]
  69. 69. 
    Melin J, Quake SR. 2007. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36:213–31
    [Google Scholar]
  70. 70. 
    Jensen EC, Grover WH, Mathies RA. 2007. Micropneumatic digital logic structures for integrated microdevice computation and control. J. Microelectromech. Syst. 16:1378–85
    [Google Scholar]
  71. 71. 
    Zeng S, Li B, Xo Su, Qin J, Lin B. 2009. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9:1340–43
    [Google Scholar]
  72. 72. 
    Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW et al. 2012. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. PNAS 109:7665–70
    [Google Scholar]
  73. 73. 
    Lin R, Fisher JS, Simon MG, Lee AP. 2012. Novel on-demand droplet generation for selective fluid sample extraction. Biomicrofluidics 6:024103
    [Google Scholar]
  74. 74. 
    Zeng Y, Shin M, Wang T. 2013. Programmable active droplet generation enabled by integrated pneumatic micropumps. Lab Chip 13:267–73
    [Google Scholar]
  75. 75. 
    Doonan SR, Bailey RC. 2017. K-channel: a multifunctional architecture for dynamically reconfigurable sample processing in droplet microfluidics. Anal. Chem. 89:4091–99
    [Google Scholar]
  76. 76. 
    Doonan SR, Lin M, Bailey RC. 2019. Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing. Lab Chip 19:1589–98
    [Google Scholar]
  77. 77. 
    Shojaeian M, Hardt S. 2018. Fast electric control of the droplet size in a microfluidic T-junction droplet generator. Appl. Phys. Lett. 112:194102
    [Google Scholar]
  78. 78. 
    Teo AJT, Yan M, Dong J, Xi HD, Fu Y et al. 2020. Controllable droplet generation at a microfluidic T-junction using AC electric field. Microfluid. Nanofluid. 24:21
    [Google Scholar]
  79. 79. 
    Raveshi MR, Agnihotri SN, Sesen M, Bhardwaj R, Neild A. 2019. Selective droplet splitting using single layer microfluidic valves. Sens. Actuators B Chem. 292:233–40
    [Google Scholar]
  80. 80. 
    Choi C-H, Jung J-H, Hwang T-S, Lee C-S 2009. In situ microfluidic synthesis of monodisperse PEG microspheres. Macromol. Res. 17:163–67
    [Google Scholar]
  81. 81. 
    Krutkramelis K, Xia B, Oakey J. 2016. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. Lab Chip 16:1457–65
    [Google Scholar]
  82. 82. 
    de Rutte JM, Koh J, Di Carlo D. 2019. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29:1900071
    [Google Scholar]
  83. 83. 
    Destgeer G, Ouyang M, Wu CY, Di Carlo D. 2020. Fabrication of 3D concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified affinity assays. Lab Chip 20:3503–14
    [Google Scholar]
  84. 84. 
    Lim J, Gruner P, Konrad M, Baret J-C. 2013. Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13:1472–75
    [Google Scholar]
  85. 85. 
    Holzner G, Du Y, Cao X, Choo J, deMello AJ, Stavrakis S. 2018. An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry. Lab Chip 18:3631–37
    [Google Scholar]
  86. 86. 
    Cao X, Du Y, Küffner A, Van Wyk J, Arosio P et al. 2020. A counter propagating lens-mirror system for ultrahigh throughput single droplet detection. Small 16:1907534
    [Google Scholar]
  87. 87. 
    Chen X, Ren CL. 2017. A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv 7:16738–50
    [Google Scholar]
  88. 88. 
    Lee M, Collins JW, Aubrecht DM, Sperling RA, Solomon L et al. 2014. Synchronized reinjection and coalescence of droplets in microfluidics. Lab Chip 14:509–13
    [Google Scholar]
  89. 89. 
    Doonan SR, Lin M, Lee D, Lee J, Bailey RC 2020. C3PE: counter-current continuous phase extraction for improved precision of in-droplet chemical reactions. Microfluid. Nanofluid. 24:50
    [Google Scholar]
  90. 90. 
    Fidalgo LM, Whyte G, Ruotolo BT, Benesch JLP, Stengel F et al. 2009. Coupling microdroplet microreactors with mass spectrometry: reading the contents of single droplets online. Angew. Chem. Int. Ed. 48:3665–68
    [Google Scholar]
  91. 91. 
    Guetschow ED, Steyer DJ, Kennedy RT. 2014. Subsecond electrophoretic separations from droplet samples for screening of enzyme modulators. Anal. Chem. 86:10373–79
    [Google Scholar]
  92. 92. 
    Pei J, Nie J, Kennedy RT. 2010. Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities. Anal. Chem. 82:9261–67
    [Google Scholar]
  93. 93. 
    Niu XZ, Zhang B, Marszalek RT, Ces O, Edel JB et al. 2009. Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chem. Commun. 41:6159–61
    [Google Scholar]
  94. 94. 
    Angelescu DE, Mercier B, Siess D, Schroeder R. 2010. Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures. Anal. Chem. 82:2412–20
    [Google Scholar]
  95. 95. 
    Ostromohov N, Bercovici M, Kaigala GV. 2016. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry. Lab Chip 16:3015–23
    [Google Scholar]
  96. 96. 
    Niu X, Pereira F, Edel JB, de Mello AJ. 2013. Droplet-interfaced microchip and capillary electrophoretic separations. Anal. Chem. 85:8654–60
    [Google Scholar]
  97. 97. 
    užička J, Hansen EH. 1975. Flow injection analyses: part I. A new concept of fast continuous flow analysis. Anal. Chim. Acta 78:145–57
    [Google Scholar]
  98. 98. 
    Stewart KK, Beecher GR, Hare PE. 1976. Rapid analysis of discrete samples: the use of nonsegmented, continuous flow. Anal. Biochem. 70:167–73
    [Google Scholar]
  99. 99. 
    Tice JD, Song H, Lyon AD, Ismagilov RF. 2003. Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 19:9127–33
    [Google Scholar]
  100. 100. 
    Gruner P, Riechers B, Semin B, Lim J, Johnston A et al. 2016. Controlling molecular transport in minimal emulsions. Nat. Commun. 7:10392
    [Google Scholar]
  101. 101. 
    Chen D, Du W, Liu Y, Liu W, Kuznetsov A et al. 2008. The chemistrode: a droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. PNAS 105:16843–48
    [Google Scholar]
  102. 102. 
    Easley CJ, Rocheleau JV, Head WS, Piston DW. 2009. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics. Anal. Chem. 81:9086–95
    [Google Scholar]
  103. 103. 
    Wang M, Roman GT, Perry ML, Kennedy RT. 2009. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal. Chem. 81:9072–78
    [Google Scholar]
  104. 104. 
    Petit-Pierre G, Bertsch A, Renaud P. 2016. Neural probe combining microelectrodes and a droplet-based microdialysis collection system for high temporal resolution sampling. Lab Chip 16:917–24
    [Google Scholar]
  105. 105. 
    Petit-Pierre G, Colin P, Laurer E, Déglon J, Bertsch A et al. 2017. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nat. Commun. 8:1239
    [Google Scholar]
  106. 106. 
    Ngernsutivorakul T, Steyer DJ, Valenta AC, Kennedy RT. 2018. In vivo chemical monitoring at high spatiotemporal resolution using microfabricated sampling probes and droplet-based microfluidics coupled to mass spectrometry. Anal. Chem. 90:10943–50
    [Google Scholar]
  107. 107. 
    Nightingale AM, Leong CL, Burnish RA, Hassan S-U, Zhang Y et al. 2019. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor. Nat. Commun. 10:2741
    [Google Scholar]
  108. 108. 
    Hu J, Easley CJ. 2017. Homogeneous assays of second messenger signaling and hormone secretion using thermofluorimetric methods that minimize calibration burden. Anal. Chem. 89:8517–23
    [Google Scholar]
  109. 109. 
    Ouimet CM, D'Amico CI, Kennedy RT 2019. Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions. Anal. Bioanal. Chem. 411:6155–63
    [Google Scholar]
  110. 110. 
    Holland-Moritz DA, Wismer MK, Mann BF, Farasat I, Devine P et al. 2020. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale. Angew. Chem. Int. Ed. 59:4470–77
    [Google Scholar]
  111. 111. 
    Feng S, Liu G, Jiang L, Zhu Y, Goldys EM, Inglis DW. 2017. A microfluidic needle for sampling and delivery of chemical signals by segmented flows. Appl. Phys. Lett. 111:183702
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-122120-042627
Loading
/content/journals/10.1146/annurev-anchem-122120-042627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error