1932

Abstract

The strong interplay between the various parameters at play in a bottle and in a glass of champagne or sparkling wine has been the subject of study for about two decades. After a brief overview of the history of champagne and sparkling wines, this article presents the key steps involved in the traditional method leading to the production of premium modern-day sparkling wines, with a specific focus on quantification of the dissolved CO found in the sealed bottles and in a glass. Moreover, a review of the literature on the various chemical and instrumental approaches used in the analysis of dissolved and gaseous CO, effervescence, foam, and volatile organic compounds is reported.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115018
2021-07-27
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-061318-115018.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115018&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Liger-Belair G. 2013. Uncorked: The Science of Champagne Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  2. 2. 
    Liger-Belair G. 2017. Effervescence in champagne and sparkling wines: from grape harvest to bubble rise. Eur. Phys. J. Spec. Top. 226:3–116
    [Google Scholar]
  3. 3. 
    Lawless HT, Heymann H. 2010. Sensory Evaluation of Food: Principles and Practices New York: Springer
    [Google Scholar]
  4. 4. 
    Cain WS, Murphy CL. 1980. Interaction between chemoreceptive modalities of odour and irritation. Nature 284:255–57
    [Google Scholar]
  5. 5. 
    Cometto-Muniz JE, Garcia-Medina MR, Calvino AM, Noriega G. 1987. Interactions between CO2 oral pungency and taste. Perception 16:629–40
    [Google Scholar]
  6. 6. 
    Dessirier JM, Simons C, Carstens M, O'Mahony M, Carstens E 2000. Psychophysical and neurobiological evidence that the oral sensation elicited by carbonated water is of chemogenic origin. Chem. Senses 25:277–84
    [Google Scholar]
  7. 7. 
    Kleeman A, Albrecht J, Schöpf V, Haegler K, Kopietz R et al. 2009. Trigeminal perception is necessary to localize odors. Physiol. Behav. 97:401–5
    [Google Scholar]
  8. 8. 
    Meusel T, Negoias S, Scheibe M, Hummel T. 2010. Topographical differences in distribution and responsiveness of trigeminal sensitivity within the human nasal mucosa. Pain 151:516–21
    [Google Scholar]
  9. 9. 
    Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W et al. 2009. The taste of carbonation. Science 326:443–45
    [Google Scholar]
  10. 10. 
    Dunkel A, Hofmann T. 2010. Carbonic anhydrase IV mediates the fizz of carbonated beverages. Angew. Chem. Int. Ed. 49:2975–77
    [Google Scholar]
  11. 11. 
    Liger-Belair G, Cilindre C, Gougeon R, Lucio M, Gebefügi I et al. 2009. Unraveling different chemical fingerprints between a champagne wine and its aerosols. PNAS 106:16545–49
    [Google Scholar]
  12. 12. 
    Ghabache E, Liger-Belair G, Antkowiak A, Séon T. 2016. Evaporation of droplets in a Champagne wine aerosol. Sci. Rep. 6:25148
    [Google Scholar]
  13. 13. 
    Séon T, Liger-Belair G. 2017. Effervescence in champagne and sparkling wines: from bubble bursting to droplets evaporation. Eur. Phys. J. Spec. Top. 226:117–56
    [Google Scholar]
  14. 14. 
    Phillips R. 2016. French Wines: A History Oakland: Univ. Calif. Press
    [Google Scholar]
  15. 15. 
    Stevenson T. 2005. Sotheby's Wine Encyclopedia London: DK Publ.
    [Google Scholar]
  16. 16. 
    Phillips R. 2014. Alcohol: A History Chapel Hill: Univ. NC Press
    [Google Scholar]
  17. 17. 
    Gonzalez Viejo C, Torrico DD, Dunshea FR, Fuentes S 2019. Bubbles, foam formation, stability and consumer perception of carbonated drinks: a review of current, new and emerging technologies for rapid assessment and control. Foods 8:596
    [Google Scholar]
  18. 18. 
    Stevenson T. 1998. Christie's World Encyclopedia of Champagne and Sparkling Wines Bath, UK: Absolute Press
    [Google Scholar]
  19. 19. 
    Liger-Belair G. 2006. Nucléation, ascension et éclatement d'une bulle de champagne. Ann. Phys. Fr. 31:1–133
    [Google Scholar]
  20. 20. 
    Liger-Belair G, Rochard J. 2008. Les vins effervescents: du terroir à la bulle Paris: Dunod
    [Google Scholar]
  21. 21. 
    Duteurtre B. 2016. Le Champagne: de la tradition à la science Paris: Lavoisier
    [Google Scholar]
  22. 22. 
    Liger-Belair G. 2020. Un monde de bulles: le champagne ou la science de l'effervescence Paris: Ellipses
    [Google Scholar]
  23. 23. 
    Liger-Belair G, Cordier D, Honvault J, Cilindre C. 2017. Unveiling CO2 heterogeneous freezing plumes during champagne cork popping. Sci. Rep. 7:10938
    [Google Scholar]
  24. 24. 
    Liger-Belair G. 2005. The physics and chemistry behind the bubbling properties of champagne and sparkling wines: a state-of-the-art review. J. Agric. Food Chem. 53:2788–802
    [Google Scholar]
  25. 25. 
    Alexandre H, Guilloux-Benatier M. 2006. Yeast autolysis in sparkling wines: a review. Aust. J. Grape Wine Res. 12:119–27
    [Google Scholar]
  26. 26. 
    Alexandre H 2019. Yeasts and sparkling wine production. Yeasts in the Production of Wine P Romano, M Ciani, GH Fleet 395–432 New York: Springer
    [Google Scholar]
  27. 27. 
    Pozo-Bayón MA, Martinez-Rodriguez A, Pueyo E, Moreno-Arribas MV. 2009. Chemical and biochemical features involved in sparkling wine production: from a traditional to an improved winemaking technology. Trends Food Sci. Tech. 20:289–99
    [Google Scholar]
  28. 28. 
    Torresi S, Frangipane MT, Anelli G. 2011. Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: a review. Food Chem 129:1232–41
    [Google Scholar]
  29. 29. 
    Caputi A, Ueda M, Walter P, Brown T. 1970. Titrimetric determination of carbon dioxide in wine. Am. J. Enol. Vitic. 21:140–44
    [Google Scholar]
  30. 30. 
    Off. Int. Vigne Vin 2021. Recueil des Méthodes Internationales d'Analyse des Vins et des Moûts, Vol. 1. Paris: Off. Int. Vigne Vin. https://www.oiv.int/public/medias/7807/oiv-recueil-vol1-fr-2021.pdf
    [Google Scholar]
  31. 31. 
    Autret G, Liger-Belair G, Nuzillard JM, Parmentier M, Dubois de Montreynaud A et al. 2005. Use of magnetic resonance spectrometry for the investigation of the CO2 dissolved in champagne and sparkling wines: a non-destructive and non-intrusive method. Anal. Chim. Acta 535:73–78
    [Google Scholar]
  32. 32. 
    Liger-Belair G, Villaume S, Cilindre C, Jeandet P, Polidori G. 2009. CO2 volume fluxes outgassing from champagne glasses in tasting conditions: flute versus coupe. J. Agric. Food Chem. 57:4939–47
    [Google Scholar]
  33. 33. 
    Liger-Belair G, Bourget M, Villaume S, Jeandet J, Pron H et al. 2010. On the losses of dissolved CO2 during champagne serving. J. Agric. Food Chem. 58:8768–75
    [Google Scholar]
  34. 34. 
    Liger-Belair G, Parmentier M, Cilindre C. 2012. More on the losses of dissolved CO2 during champagne serving: toward a multiparameter modeling. J. Agric. Food Chem. 60:11777–86
    [Google Scholar]
  35. 35. 
    Liger-Belair G, Conreux A, Villaume S, Cilindre C. 2013. Monitoring the losses of dissolved carbon dioxide from laser-etched champagne glasses. Food Res. Int. 54:516–22
    [Google Scholar]
  36. 36. 
    Liger-Belair G, Parmentier M, Jeandet P. 2006. Modeling the kinetics of bubble nucleation in champagne and carbonated beverages. J. Phys. Chem. B 110:21145–51
    [Google Scholar]
  37. 37. 
    Dussaud A. 1993. Etude des propriétés de surface statiquesetdynamiques de solutions alcooliques de protéines: Application à la stabilité des mousses de boissons alcoolisées. PhD Thesis, École Natl. Supér. Ind. Agric. Alim Massy, Fr:.
  38. 38. 
    Jeandet P, Heinzmann S, Roullier-Gall C, Cilindre C, Aron A et al. 2015. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: revealing tastes from the past. PNAS 112:5893–98
    [Google Scholar]
  39. 39. 
    Silva S, Sabino M, Fernandes V, Correlo V, Boesel L et al. 2005. Cork: properties, capabilities and applications. Int. Mater. Rev. 50:345–65
    [Google Scholar]
  40. 40. 
    Pereira H. 2007. Cork: Biology, Production and Uses Amsterdam: Elsevier
    [Google Scholar]
  41. 41. 
    Liger-Belair G, Villaume S, Cilindre C, Jeandet P. 2010. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne aging. Anal. Chim. Acta 660:29–34
    [Google Scholar]
  42. 42. 
    Lopes P, Saucier C, Teissedre PL, Glories Y. 2007. Main routes of oxygen ingress through different closures into wine bottles. J. Agric. Food Chem. 55:5167–70
    [Google Scholar]
  43. 43. 
    Karbowiak T, Gougeon RD, Alinc JB, Brachais L, Debeaufort F et al. 2010. Wine oxidation and the role of cork. Crit. Rev. Food Sci. Nutr. 50:20–52
    [Google Scholar]
  44. 44. 
    Faria DP, Fonseca AL, Pereira H, Teodoro O 2011. Permeability of cork to gases. J. Agric. Food Chem. 59:3590–97
    [Google Scholar]
  45. 45. 
    Lequin S, Chassagne D, Karbowiak T, Simon JM, Paulin C et al. 2012. Diffusion of oxygen in cork. J. Agric. Food Chem. 60:3348–56
    [Google Scholar]
  46. 46. 
    Lagorce-Tachon A, Karbowiak T, Paulin C, Simon JM, Gougeon RD et al. 2014. Diffusion of oxygen through cork stopper: Is it a Knudsen or a Fickian mechanism?. J. Agric. Food Chem. 62:9180–85
    [Google Scholar]
  47. 47. 
    Teodoro O. 2016. The permeation of cork revisited. J. Agric. Food Chem. 64:4182–84
    [Google Scholar]
  48. 48. 
    Crouvisier-Urion K, Bellat JP, Gougeon RD, Karbowiak T. 2018. Gas transfer through wine closures: a critical review. Trends Food Sci. Tech. 78:255–69
    [Google Scholar]
  49. 49. 
    Karbowiak T, Crouvisier-Urion K, Lagorce-Tachon A, Ballester J, Geoffroy A et al. 2019. Wine aging: a bottleneck story. NPJ Sci. Food 3:14
    [Google Scholar]
  50. 50. 
    Lagorce-Tachon A, Karbowiak T, Loupiac C, Gaudry A, Ott F et al. 2015. The corked viewed from the inside. J. Food. Eng. 149:214–21
    [Google Scholar]
  51. 51. 
    Oliveira V, Lopes P, Cabral M, Pereira H. 2015. Influence of cork defects in the oxygen ingress through wine stoppers: insights with X-ray tomography. J. Food. Eng. 165:66–73
    [Google Scholar]
  52. 52. 
    Crouvisier-Urion K., Chanu J, Lagorce-Tachon A, Winckler P, Wang Z et al. 2019. Four hundred years of cork imaging: new advances in the characterization of the cork structure. Sci. Rep. 9:19682
    [Google Scholar]
  53. 53. 
    Liger-Belair G, Villaume S. 2011. Losses of dissolved CO2 through the cork stopper during champagne aging: toward a multiparameter modeling. J. Agric. Food Chem. 59:4051–56
    [Google Scholar]
  54. 54. 
    Liger-Belair G, Carvajal-Perez D, Cilindre C, Facque J, Brevot M et al. 2018. Evidence for moderate losses of dissolved CO2 during aging on lees of a champagne prestige cuvee. J. Food Eng. 233:40–48
    [Google Scholar]
  55. 55. 
    Crouvisier-Urion K, Bellat JP, Liger-Belair G, Gougeon RD, Karbowiak T. 2021. Unravelling CO2 transfer through cork stoppers for Champagne and sparkling wines. Food Packag. Shelf Life 27:100618
    [Google Scholar]
  56. 56. 
    Liger-Belair G. 2016. Modeling the losses of dissolved CO2 from laser-etched champagne glasses. J. Phys. Chem. B 120:3724–34
    [Google Scholar]
  57. 57. 
    Hewson L, Hollowood T, Chandra S, Hort J 2009. Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosens. Percept. 2:94–107
    [Google Scholar]
  58. 58. 
    Miller G. 2009. Enzyme lets you enjoy the bubbly. Science 326:349
    [Google Scholar]
  59. 59. 
    McMahon KM, Culver C, Ross CF. 2017. The production and consumer perception of sparkling wines of different carbonation levels. J. Wine Res. 28:123–34
    [Google Scholar]
  60. 60. 
    Ziegler M, Gök R, Bechtloff P, Winterhalter P, Schmarr HG, Fischer U. 2019. Impact of matrix variables and expertise of panelists on sensory thresholds of 1,1,6-trimethyl-1,2-dihydronaphthalene known as petrol off-flavor compound in Riesling wines. Food Qual. Pref. 78:103735
    [Google Scholar]
  61. 61. 
    Brajkovich M, Tibbits N, Peron G, Lund CM, Dykes SI, Kilmartin PA, Nicolau L. 2005. Effect of screwcap and cork closures on SO2 levels and aromas in a Sauvignon Blanc wine. J. Agric. Food Chem. 53:10006–11
    [Google Scholar]
  62. 62. 
    Atanassov GT, Lima RC, Mesquita RBR, Rangel AOSS, Tóth IV. 2000. Spectrophotometric determination of carbon dioxide and sulphur dioxide in wines by flow injection. Analusis 28:77–82
    [Google Scholar]
  63. 63. 
    Calvo-López A, Ymbern O, Izquierdo D, Alonso-Chamarro J. 2016. Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer. Anal. Chim. Acta 931:64–69
    [Google Scholar]
  64. 64. 
    Liger-Belair G, Bourget M, Pron H, Polidori G, Cilindre C. 2012. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature. PLOS ONE 7:e30628
    [Google Scholar]
  65. 65. 
    Liger-Belair G, Villaume S, Cilindre C, Jeandet P. 2009. Kinetics of CO2 fluxes outgassing from champagne glasses in tasting conditions: the role of temperature. J. Agric. Food Chem. 57:1997–2003
    [Google Scholar]
  66. 66. 
    McMahon KM, Culver C, Castura JC, Ross CF. 2017. Perception of carbonation in sparkling wines using descriptive analysis (DA) and temporal check-all-that-apply (TCATA). Food Qual. Prefer. 59:14–26
    [Google Scholar]
  67. 67. 
    Ramsey I, Ross C, Ford R, Fisk I, Yang Q et al. 2018. Using a combined temporal approach to evaluate the influence of ethanol concentration on liking and sensory attributes of lager beer. Food Qual. Prefer. 68:292–303
    [Google Scholar]
  68. 68. 
    Jones SF, Evans GM, Galvin KP. 1999. Bubble nucleation from gas cavities: a review. Adv. Colloid Interface Sci. 80:27–50
    [Google Scholar]
  69. 69. 
    Liger-Belair G, Marchal R, Jeandet P. 2002. Close-up on bubble nucleation in a glass of champagne. Am. J. Enol. Vitic. 53:151–53
    [Google Scholar]
  70. 70. 
    Liger-Belair G, Vignes-Adler M, Voisin C, Robillard B, Jeandet P. 2002. Kinetics of gas discharging in a glass of champagne: the role of nucleation sites. Langmuir 18:1294–301
    [Google Scholar]
  71. 71. 
    Liger-Belair G. 2014. How many bubbles in your glass of bubbly?. J. Phys. Chem. B 118:3156–63
    [Google Scholar]
  72. 72. 
    Cilindre C, Conreux A, Liger-Belair G. 2011. Simultaneous monitoring of gaseous CO2 and ethanol above champagne glasses via micro-gas chromatography (μGC). J. Agric. Food Chem. 59:7317–23
    [Google Scholar]
  73. 73. 
    Bourget M, Liger-Belair G, Pron H, Polidori G. 2013. Unraveling the release of gaseous CO2 during champagne serving through high-speed infrared imaging. J. Vis. 16:47–52
    [Google Scholar]
  74. 74. 
    Moriaux AL, Vallon R, Cilindre C, Parvitte B, Liger-Belair G et al. 2018. Development and validation of a diode laser sensor for gas-phase CO2 monitoring above champagne and sparkling wines. Sens. Actuators B Chem. 257:745–52
    [Google Scholar]
  75. 75. 
    Werle PW, Mazzinghi P, D'Amato F, De Rosa M, Maurer K et al. 2004. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60:1685–705
    [Google Scholar]
  76. 76. 
    Vallon R, Soutadé J, Vérant JL, Meyers J, Paris S et al. 2010. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows. Sensors 10:6081–91
    [Google Scholar]
  77. 77. 
    Moriaux AL, Vallon R, Parvitte B, Zeninari V, Liger-Belair G et al. 2018. Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis. Food Chem 264:255–62
    [Google Scholar]
  78. 78. 
    Moriaux AL, Vallon R, Cilindre C, Polak F, Parvitte B, Liger-Belair G et al. 2020. A first step towards the mapping of gas-phase CO2 in the headspace of champagne glasses. Infrared Phys. Technol. 109:103437
    [Google Scholar]
  79. 79. 
    Moriaux AL, Vallon R, Lecasse F, Chauvin N, Parvitte B, Zéninari V, Liger-Belair G, Cilindre C. 2021. How does gas-phase CO2 evolve in the headspace of champagne glasses. J. Agric. Food Chem. 69:2262–70
    [Google Scholar]
  80. 80. 
    Gonzalez Viejo C, Fuentes S, Li G, Collmann R, Condé B, Torrico D 2016. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 89:504–13
    [Google Scholar]
  81. 81. 
    Wise PM, Wysocki CJ, Radil T. 2003. Time-intensity ratings of nasal irritation from carbon dioxide. Chem. Senses 28:751–60
    [Google Scholar]
  82. 82. 
    Kemp B, Alexandre H, Robillard B, Marchal R. 2015. Effect of production phase on bottle-fermented sparkling wine quality. J. Agric. Food Chem. 63:19–38
    [Google Scholar]
  83. 83. 
    Kemp B, Condé B, Jégou S, Howell K, Vasserot Y et al. 2019. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Crit. Rev. Food Sci. Nutr. 59:2072–94
    [Google Scholar]
  84. 84. 
    Martínez-Lapuente L, Ayestarán B, Guadalupe Z 2018. Influence of wine chemical compounds on the foaming properties of sparkling wines. Grapes and Wines: Advances in Production, Processing, Analysis and Valorization AM Jordão, F Cosme 195–224 London: IntechOpen
    [Google Scholar]
  85. 85. 
    Maujean A, Poinsaut P, Dantan H, Brissonnet F, Cossiez E. 1990. Etude de la tenue et de la qualité de mousse des vins effervescents. II. Mise au point d'une technique de mesure de la moussabilité, de la tenue et de la stabilité de la mousse des vins effervescents. Bull. OIV 711–712 405–27
    [Google Scholar]
  86. 86. 
    Bikerman JJ. 1938. The unit of foaminess. Trans. Faraday Soc. 34:634–38
    [Google Scholar]
  87. 87. 
    Rudin AD. 1957. Measurement of foam stability. J. Inst. Brew. 63:506–9
    [Google Scholar]
  88. 88. 
    Machet F, Robillard B, Duteurtre B. 1993. Application of image analysis to foam stability of sparkling wines. Sci. Alim. 13:73–87
    [Google Scholar]
  89. 89. 
    Viaux L, Morard C, Robillard B, Duteurtre B. 1994. The impact of base wine filtration on Champagne foam behavior. Am. J. Enol. Vitic. 45:407–9
    [Google Scholar]
  90. 90. 
    Marchal R, Tabary T, Valade M, Moncomble D, Viaux L et al. 2001. Effects of Botrytis cinerea infection on Champagne wine foaming properties. J. Sci. Food Agric. 81:1371–78
    [Google Scholar]
  91. 91. 
    Cilindre C, Liger-Belair G, Villaume S, Jeandet P, Marchal R. 2010. Foaming properties of various Champagne wines depending on several parameters: grape variety, aging, protein and CO2 content. Anal. Chim. Acta 660:164–70
    [Google Scholar]
  92. 92. 
    Crumpton M, Atkinson A, Marangon M. 2018. Effect of carboxymethyl cellulose added at the dosage stage on the foamability of a bottle-fermented sparkling wine. Beverages 4:227
    [Google Scholar]
  93. 93. 
    Crumpton M, Rice CJ, Atkinson A, Taylor G, Marangon M. 2017. The effect of sucrose addition at dosage stage on the foam attributes of a bottle-fermented English sparkling wine. J. Sci. Food Agric. 98:1171–78
    [Google Scholar]
  94. 94. 
    Lima B, Fuentes S, Caron M, Needs S, Howell K. 2016. The use of a portable robotic sparkling wine pourer and image analysis to assess wine quality in a fast and accurate manner. Acta Hortic 1115:69–74
    [Google Scholar]
  95. 95. 
    Condé BC, Bouchard E, Culbert JA, Wilkinson KL, Fuentes S et al. 2017. Soluble protein and amino acid content affects the foam quality of sparkling wine. J. Agric. Food Chem. 65:9110–19
    [Google Scholar]
  96. 96. 
    Condé BC, Fuentes S, Caron M, Xiao D, Collmann R et al. 2017. Development of a robotic and computer vision method to assess foam quality in sparkling wines. Food Control 71:383–92
    [Google Scholar]
  97. 97. 
    Condé B, Robinson A, Bodet A, Monteau AC, Fuentes S et al. 2019. Using synchronous fluorescence to investigate compounds and interactions influencing foam characteristics in sparkling wines. Beverages 5:54
    [Google Scholar]
  98. 98. 
    Culbert JA, McRae JM, Condé BC, Schmidtke LM, Nicholson EL et al. 2017. Influence of production method on the chemical composition, foaming properties, and quality of Australian carbonated and sparkling white wines. J. Agric. Food Chem. 65:1378–86
    [Google Scholar]
  99. 99. 
    Gallart M, Tomas X, Suberbiola G, Lopez-Tamames E, Buxaderas S. 2004. Relationship between foam parameters obtained by the gas-sparging method and sensory evaluation of sparkling wines. J. Sci. Food Agric. 84:127–33
    [Google Scholar]
  100. 100. 
    Benucci I, Cerreti M, Maresca D, Mauriello G, Esti M. 2019. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chem 300:125174
    [Google Scholar]
  101. 101. 
    Martínez-Lapuente L, Guadalupe Z, Ayestarán B, Ortega-Heras M, Pérez-Magariño S 2013. Sparkling wines produced from alternative varieties: sensory attributes and evolution of phenolics during winemaking and aging. Am. J. Enol. Vitic. 64:39–49
    [Google Scholar]
  102. 102. 
    Pérez-Magariño S, Martínez-Lapuente L, Bueno-Herrera M, Ortega-Heras M, Guadalupe Z et al. 2015. Use of commercial dry yeast products rich in mannoproteins for white and rosé sparkling wine elaboration. J. Agric. Food Chem. 63:5670–81
    [Google Scholar]
  103. 103. 
    Pozo-Bayón MA, Martín-Álvarez PJ, Moreno-Arribas MV, Andújar-Ortiz I, Pueyo E 2010. Impact of using Trepat and Monastrell red grape varieties on the volatile and nitrogen composition during the manufacture of rosé Cava sparkling wines. LWT Food Sci. Technol. 43:1526–32
    [Google Scholar]
  104. 104. 
    Ubeda C, Kania-Zelada I, del Barrio-Galán R, Medel-Marabolí M, Gil M et al. 2019. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res. Int. 119:554–63
    [Google Scholar]
  105. 105. 
    Abou-Saleh K, Aguié-Beghin V, Foulon L, Valade M, Douillard R. 2009. Relations between the air/wine adsorption layer and the bubble collar stability in experimental and commercial champagnes. Colloids Surf. A Physicochem. Eng. Asp. 344:86–96
    [Google Scholar]
  106. 106. 
    Pozo-Bayón , Santos M, Martín-Álvarez PJ, Reineccius G 2009. Influence of carbonation on aroma release from liquid systems using an artificial throat and a proton transfer reaction-mass spectrometric technique (PTR-MS). Flavour Fragr. J. 24:226–33
    [Google Scholar]
  107. 107. 
    Liger-Belair G, Lemaresquier H, Robillard B, Duteurtre B, Jeandet P. 2001. The secrets of fizz in champagne wines: a phenomenological study. Am. J. Enol. Vitic. 52:88–92
    [Google Scholar]
  108. 108. 
    Saint-Eve A, Déléris I, Aubin E, Semon E, Feron G et al. 2009. Influence of composition (CO2 and sugar) on aroma release and perception of mint-flavored carbonated beverages. J. Agric. Food Chem. 57:5891–98
    [Google Scholar]
  109. 109. 
    Clark R, Linforth R, Bealin-Kelly F, Hort J. 2011. Effects of ethanol, carbonation and hop acids on volatile delivery in a model beer system. J. Inst. Brew. 117:74–81
    [Google Scholar]
  110. 110. 
    Villamor RR, Ross CF. 2013. Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 4:1–20
    [Google Scholar]
  111. 111. 
    Petrozziello M, Asproudi A, Guaita M, Borsa D, Motta S et al. 2014. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Food Chem 149:197–202
    [Google Scholar]
  112. 112. 
    Robinson AL, Ebeler SE, Heymann H, Boss PK, Solomon PS et al. 2009. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 57:10313–22
    [Google Scholar]
  113. 113. 
    Villamor RR, Evans MA, Mattinson DS, Ross CF 2013. Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Res. Int. 50:38–45
    [Google Scholar]
  114. 114. 
    Wollan D, Pham DT, Wilkinson KL. 2016. Changes in wine ethanol content due to evaporation from wine glasses and implications for sensory analysis. J. Agric. Food Chem. 64:7569–75
    [Google Scholar]
  115. 115. 
    Ickes C, Cadwallader K. 2017. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 10:119–34
    [Google Scholar]
  116. 116. 
    Ding L, Dong D, Jiao L, Zheng W. 2017. Potential using of infrared thermal imaging to detect volatile compounds released from decayed grapes. PLOS ONE 12:e0180649
    [Google Scholar]
  117. 117. 
    Martínez-García R, García-Martínez T, Puig-Pujol A, Mauricio JC, Moreno J. 2017. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Food Chem 237:1030–40
    [Google Scholar]
  118. 118. 
    Carlin S, Vrhovsek U, Franceschi P, Lotti C, Bontempo L et al. 2016. Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Food Chem 208:68–80
    [Google Scholar]
  119. 119. 
    Welke JE, Zanus M, Lazzarotto M, Pulgati FH, Zini CA. 2014. Main differences between volatiles of sparkling and base wines accessed through comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection and chemometric tools. Food Chem 164:427–37
    [Google Scholar]
  120. 120. 
    Francioli S, Guerra M, López-Tamames E, Guadayol JM, Caixach J. 1999. Aroma of sparkling wines by headspace/solid phase microextraction and gas chromatography/mass spectrometry. Am. J. Enol. Vitic. 50:404–8
    [Google Scholar]
  121. 121. 
    D'Auria M, Emanuele L, Mauriello G, Racioppi R. 2003. On the origin of “Goût de Lumiere” in champagne. J. Photochem. Photobiol. A Chem. 158:21–26
    [Google Scholar]
  122. 122. 
    Hirson GD, Heymann H, Ebeler SE. 2012. Equilibration time and glass shape effects on chemical and sensory properties of wine. Am. J. Enol. Vitic. 63:515–21
    [Google Scholar]
  123. 123. 
    Spence C, Wan X 2015. Beverage perception and consumption: the influence of the container on the perception of the contents. Food Qual. Prefer. 39:131–40
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115018
Loading
/content/journals/10.1146/annurev-anchem-061318-115018
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error