- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 10, 2017
Annual Review of Analytical Chemistry - Volume 10, 2017
Volume 10, 2017
-
-
Chemical and Biological Dynamics Using Droplet-Based Microfluidics
Vol. 10 (2017), pp. 1–24More LessRecent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
-
-
-
Sizing Up Protein–Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences
Vol. 10 (2017), pp. 25–44More LessCapturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry–based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein–small-molecule complexes, and discuss the bright future awaiting this group of technologies.
-
-
-
Applications of the New Family of Coherent Multidimensional Spectroscopies for Analytical Chemistry
Vol. 10 (2017), pp. 45–70More LessA new family of vibrational and electronic spectroscopies has emerged, comprising the coherent analogs of traditional analytical methods. These methods are also analogs of coherent multidimensional nuclear magnetic resonance (NMR) spectroscopy. This new family is based on creating the same quantum mechanical superposition states called multiple quantum coherences (MQCs). NMR MQCs are mixtures of nuclear spin states that retain their quantum mechanical phase information for milliseconds. The MQCs in this new family are mixtures of vibrational and electronic states that retain their phases for picoseconds or shorter times. Ultrafast, high-intensity coherent beams rapidly excite multiple states. The excited MQCs then emit bright beams while they retain their phases. Time-domain methods measure the frequencies of the MQCs by resolving their phase oscillations, whereas frequency-domain methods measure the resonance enhancements of the output beam while scanning the excitation frequencies. The resulting spectra provide multidimensional spectral signatures that increase the spectroscopic selectivity required for analyzing complex samples.
-
-
-
Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses
Vol. 10 (2017), pp. 71–92More LessIon mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-endtechniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.
-
-
-
Multianalyte Physiological Microanalytical Devices
Vol. 10 (2017), pp. 93–111More LessAdvances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology. Patients and clinicians have also benefited from the highly translational nature of MAP, and the continued expansion of the repertoire of analytes that can be measured with multianalyte microphysiometers will undoubtedly play a role in the automation and personalization of medicine. This is perhaps most evident with the recent advent of fully integrated noninvasive sensor arrays that can continuously monitor changes in analytes linked to specific disease states and deliver a therapeutic agent as required without the need for patient action.
-
-
-
Nanosensor Technology Applied to Living Plant Systems
Vol. 10 (2017), pp. 113–140More LessAn understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
-
-
-
Coded Apertures in Mass Spectrometry
Vol. 10 (2017), pp. 141–156More LessThe use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.
-
-
-
Magnetic Resonance Spectroscopy as a Tool for Assessing Macromolecular Structure and Function in Living Cells
Vol. 10 (2017), pp. 157–182More LessInvestigating the structure, modification, interaction, and function of biomolecules in their native cellular environment leads to physiologically relevant knowledge about their mechanisms, which will benefit drug discovery and design. In recent years, nuclear and electron magnetic resonance (NMR) spectroscopy has emerged as a useful tool for elucidating the structure and function of biomacromolecules, including proteins, nucleic acids, and carbohydrates in living cells at atomic resolution. In this review, we summarize the progress and future of in-cell NMR as it is applied to proteins, nucleic acids, and carbohydrates.
-
-
-
Plasmonic Imaging of Electrochemical Impedance
Liang Yuan, Nongjian Tao, and Wei WangVol. 10 (2017), pp. 183–200More LessElectrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
-
-
-
Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics
Vol. 10 (2017), pp. 201–224More LessMolecular plasmonics uses and explores molecule–plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.
-
-
-
Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species
Vol. 10 (2017), pp. 225–246More LessA light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.
-
-
-
Analyzing the Heterogeneous Hierarchy of Cultural Heritage Materials: Analytical Imaging
Vol. 10 (2017), pp. 247–270More LessObjects of cultural heritage significance are created using a wide variety of materials, or mixtures of materials, and often exhibit heterogeneity on multiple length scales. The effective study of these complex constructions thus requires the use of a suite of complementary analytical technologies. Moreover, because of the importance and irreplaceability of most cultural heritage objects, researchers favor analytical techniques that can be employed noninvasively, i.e., without having to remove any material for analysis. As such, analytical imaging has emerged as an important approach for the study of cultural heritage. Imaging technologies commonly employed, from the macroscale through the micro- to nanoscale, are discussed with respect to how the information obtained helps us understand artists’ materials and methods, the cultures in which the objects were created, how the objects may have changed over time, and importantly, how we may develop strategies for their preservation.
-
-
-
Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers
Aleem Syed, and Emily A. SmithVol. 10 (2017), pp. 271–291More LessRaman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies.
-
-
-
Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis
Vol. 10 (2017), pp. 293–320More LessThe emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen–antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
-
-
-
Identification and Quantitation of Circulating Tumor Cells
Vol. 10 (2017), pp. 321–343More LessCirculating tumor cells (CTCs) are shed from the primary tumor into the circulatory system and act as seeds that initiate cancer metastasis to distant sites. CTC enumeration has been shown to have a significant prognostic value as a surrogate marker in various cancers. The widespread clinical utility of CTC tests, however, is still limited due to the inherent rarity and heterogeneity of CTCs, which necessitate robust techniques for their efficient enrichment and detection. Significant recent advances have resulted in technologies with the ability to improve yield and purity of CTC enrichment as well as detection sensitivity. Current efforts are largely focused on the translation and standardization of assays to fully realize the clinical utility of CTCs. In this review, we aim to provide a comprehensive overview of CTC enrichment and detection techniques with an emphasis on novel approaches for rapid quantification of CTCs.
-
-
-
Single-Molecule Arrays for Protein and Nucleic Acid Analysis
Limor Cohen, and David R. WaltVol. 10 (2017), pp. 345–363More LessThe last few years have seen breakthroughs that will transform our ability to measure important analytes. Miniaturization of reaction volumes and confinement of analytes of interest into ultrasmall containers have greatly enhanced the sensitivity and throughput of many detection methods. Fabrication of microwell arrays and implementation of bead-based assays have been instrumental in the development of methods for measuring relevant biomolecules, with applications to both diagnostics and fundamental biological studies. In this review, we describe how microwell arrays are fabricated and utilized for measuring analytes of interest. We then discuss the fundamental concepts of digital enzyme-linked immunosorbent assay (ELISA) using single-molecule arrays and applications of microwell arrays to ultrasensitive protein measurements. We also explore the utility of microwell arrays for nucleic acid detection and applications for single-cell studies.
-
-
-
The Solution Assembly of Biological Molecules Using Ion Mobility Methods: From Amino Acids to Amyloid β-Protein
Vol. 10 (2017), pp. 365–386More LessIon mobility spectrometry-mass spectrometry (IMS-MS) methods are increasingly used to study noncovalent assemblies of peptides and proteins. This review focuses on the noncovalent self-assembly of amino acids and peptides, systems at the heart of the amyloid process that play a central role in a number of devastating diseases. Three different systems are discussed in detail: the 42-residue peptide amyloid-β42 implicated in the etiology of Alzheimer's disease, several amyloid-forming peptides with 6–11 residues, and the assembly of individual amino acids. We also discuss from a more fundamental perspective the processes that determine how quickly proteins and their assemblies denature when the analyte ion has been stripped of its solvent in an IMS-MS measurement and how to soften the measurement so that biologically meaningful data can be recorded.
-
-
-
Applications of Surface Second Harmonic Generation in Biological Sensing
Vol. 10 (2017), pp. 387–414More LessSurface second harmonic generation (SHG) is a coherent, nonlinear optical technique that is well suited for investigations of biomolecular interactions at interfaces. SHG is surface specific due to the intrinsic symmetry constraints on the nonlinear process, providing a distinct analytical advantage over linear spectroscopic methods, such as fluorescence and UV-Visible absorbance spectroscopies. SHG has the ability to detect low concentrations of analytes, such as proteins, peptides, and small molecules, due to its high sensitivity, and the second harmonic response can be enhanced through the use of target molecules that are resonant with the incident (ω) and/or second harmonic (2ω) frequencies. This review describes the theoretical background of SHG, and then it discusses its sensitivity, limit of detection, and the implementation of the method. It also encompasses the applications of surface SHG directed at the study of protein-surface, small-molecule–surface, and nanoparticle-membrane interactions, as well as molecular chirality, imaging, and immunoassays. The versatility, high sensitivity, and surface specificity of SHG show great potential for developments in biosensors and bioassays.
-
-
-
Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes
Vol. 10 (2017), pp. 415–437More LessSince its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.
-
-
-
Single-Cell Transcriptional Analysis
Vol. 10 (2017), pp. 439–462More LessDespite being a relatively recent technological development, single-cell transcriptional analysis through high-throughput sequencing has already been used in hundreds of fruitful studies to make exciting new biological discoveries that would otherwise be challenging or even impossible. Consequently, this has fueled a virtuous cycle of even greater interest in the field and compelled development of further improved technical methodologies and approaches. Thanks to the combined efforts of the research community, including the fields of biochemistry and molecular biology, technology and instrumentation, data science, computational biology, and bioinformatics, the single-cell RNA-sequencing field is advancing at a pace that is both astounding and unprecedented. In this review, we provide a broad introduction to this revolutionary technology by presenting the state-of-the-art in sample preparation methodologies, technology platforms, and computational analysis methods, while highlighting the key considerations for designing, executing, and interpreting a study using single-cell RNA sequencing.
-