Investigating the structure, modification, interaction, and function of biomolecules in their native cellular environment leads to physiologically relevant knowledge about their mechanisms, which will benefit drug discovery and design. In recent years, nuclear and electron magnetic resonance (NMR) spectroscopy has emerged as a useful tool for elucidating the structure and function of biomacromolecules, including proteins, nucleic acids, and carbohydrates in living cells at atomic resolution. In this review, we summarize the progress and future of in-cell NMR as it is applied to proteins, nucleic acids, and carbohydrates.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Zimmerman SB, Trach SO. 1.  1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:599–620 [Google Scholar]
  2. Ellis RJ. 2.  2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–604 [Google Scholar]
  3. Eakin RT, Morgan LO, Gregg CT, Matwiyoff NA. 3.  1972. Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett 28:259–64 [Google Scholar]
  4. London RE, Gregg CT, Matwiyoff NA. 4.  1975. Nuclear magnetic resonance of rotational mobility of mouse hemoglobin labeled with (2-13C) histidine. Science 188:266–68 [Google Scholar]
  5. Llinas M, Wüthrich K, Schwotzer W, von Philipsborn W. 5.  1975. 15N nuclear magnetic resonance of living cells. Nature 257:817–18 [Google Scholar]
  6. Daniels A, Williams RJ, Wright PE. 6.  1976. Nuclear magnetic resonance studies of the adrenal gland and some other organs. Nature 261:321–23 [Google Scholar]
  7. Li C, Charlton LM, Lakkavaram A, Seagle C, Wang G. 7.  et al. 2008. Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J. Am. Chem. Soc. 130:6310–11 [Google Scholar]
  8. Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M. 8.  et al. 2014. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev. 114:6661–714 [Google Scholar]
  9. Brindle KM, Williams S-P, Boulton M. 9.  1989. 19F NMR detection of a fluorine-labelled enzymein vivo. FEBS Lett 255:121–24 [Google Scholar]
  10. Serber Z, Dötsch V. 10.  2001. In-cell NMR spectroscopy. Biochemistry 40:14317–23 [Google Scholar]
  11. Dedmon MM, Petel CN, Young GB, Pielak GJ. 11.  2002. FlgM gains structure in living cells. PNAS 99:12681–84 [Google Scholar]
  12. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T. 12.  et al. 2009. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–5 [Google Scholar]
  13. Ikeya T, Sasaki A, Sakakibara D, Shigemitsu Y, Hamatsu J. 13.  et al. 2010. NMR protein structure determination in living E. coli cells using nonlinear sampling. Nat. Protoc. 5:1051–60 [Google Scholar]
  14. Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS. 14.  et al. 2004. Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J. Magn. Reson. 170:15–21 [Google Scholar]
  15. Schmeider P, Stern AS, Wagner G, Hoch JC. 15.  1994. Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J. Biomol. NMR 4:483–90 [Google Scholar]
  16. Anfinsen CB. 16.  1973. Principles that govern the folding of protein chains. Science 181:223–30 [Google Scholar]
  17. Richards FM.17.  1977. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6:151–76 [Google Scholar]
  18. Theillet F-X, Binolfi A, Bekei B, Martorana A, Rose HM. 18.  et al. 2016. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50 [Google Scholar]
  19. Song L, Larion M, Chamoun J, Bonora M, Fajer PG. 19.  2010. Distance and dynamics determination by W-band DEER and W-band ST-EPR. Eur. Biophys. J. 39:711–19 [Google Scholar]
  20. Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S. 20.  et al. 2014. Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling. J. Am. Chem. Soc. 136:13458–65 [Google Scholar]
  21. Ye YS, Liu XL, Xu GH, Liu ML, Li CG. 21.  2015. Direct observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes by F-19 NMR spectroscopy. Angew. Chem. Int. Ed. 54:5328–30 [Google Scholar]
  22. Pan BB, Yang F, Ye YS, Wu Q, Li CG. 22.  et al. 2016. 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem. Commun. 52:10237–40 [Google Scholar]
  23. Müntener T, Haussinger D, Selenko P, Theillet F-X. 23.  2016. In-cell protein structures from 2D NMR experiments. J. Phys. Chem. Lett. 7:2821–25 [Google Scholar]
  24. Hikone Y, Hirai G, Mishima M, Inomata K, Ikeya T. 24.  et al. 2016. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells. J. Biomol. NMR 66:99 [Google Scholar]
  25. Xu G, Ye Y, Liu X, Cao S, Wu Q. 25.  et al. 2014. Strategies for protein NMR in Escherichia coli. . Biochemistry 53:1971–81 [Google Scholar]
  26. Ye Y, Liu X, Chen Y, Xu G, Wu Q. 26.  et al. 2015. Labeling strategy and signal broadening mechanism of protein NMR spectroscopy in Xenopus laevis oocytes. Chem. Eur. J. 21:8686–90 [Google Scholar]
  27. Kern T, Giffard M, Hediger S, Amoroso A, Giustini C. 27.  et al. 2010. Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions. J. Am. Chem. Soc. 132:10911–19 [Google Scholar]
  28. Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J. 28.  et al. 2012. Cellular solid-state nuclear magnetic resonance spectroscopy. PNAS 109:4863–68 [Google Scholar]
  29. Takahashi H, Ayala I, Bardet M, De Paepe G, Simorre JP. 29.  et al. 2013. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J. Am. Chem. Soc. 135:5105–10 [Google Scholar]
  30. Zandomeneghi G, Ilg K, Aebi M, Meier BH. 30.  2012. On-cell MAS NMR: physiological clues from living cells. J. Am. Chem. Soc. 134:17513–19 [Google Scholar]
  31. Barnes AB, Corzilius B, Mak-Jurkauskas ML, Andreas LB, Bajaj VS. 31.  et al. 2010. Resolution and polarization distribution in cryogenic DNP/MAS experiments. Phys. Chem. Chem. Phys. 12:5861–67 [Google Scholar]
  32. Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A. 32.  2015. Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. Biochim. Biophys. Acta Biomembr. 1848:342–49 [Google Scholar]
  33. Fu R, Wang X, Li C, Santiago-Miranda AN, Pielak GJ. 33.  et al. 2011. In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J. Am. Chem. Soc. 133:12370–73 [Google Scholar]
  34. Vogel EP, Curtis-Fisk J, Young KM, Weliky DP. 34.  2011. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41. Biochemistry 50:10013–26 [Google Scholar]
  35. Shi P, Li D, ChenH Xiong Y, Wang Y. 35.  et al. 2012. In situ 19F NMR studies of an E.coli membrane protein. Protein Sci 21:596–600 [Google Scholar]
  36. Harper DB, O'Hagan D. 36.  1994. The fluorinated natural products. Nat. Prod. Rep. 11:123–33 [Google Scholar]
  37. O'Hagan D, Harper DB. 37.  1999. Fluorine-containing natural products. J. Fluorine Chem. 100:127–33 [Google Scholar]
  38. Crowley PB, Kyne C, Monteith WB. 38.  2012. Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem. Commun. 48:10681–83 [Google Scholar]
  39. Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC. 39.  et al. 2015. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163:620–28 [Google Scholar]
  40. Pielak GJ. 40.  2007. Retraction. Biochemistry 46:8206 [Google Scholar]
  41. Barnes CO, Pielak GJ. 41.  2011. In-cell protein NMR and protein leakage. Proteins 79:347–51 [Google Scholar]
  42. Wang Q, Zhuravleva A, Gierasch LM. 42.  2011. Exploring weak, transient protein–protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy. Biochemistry 50:9225–36 [Google Scholar]
  43. Burz DS, Dutta K, Cowburn D, Shekhtman A. 43.  2006. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat. Methods 3:91–93 [Google Scholar]
  44. Burz DS, Shekhtman A. 44.  2010. The STINT-NMR method for studying in-cell protein-protein interactions. Curr. Protoc. Protein Sci.6117.11 [Google Scholar]
  45. Majumder S, DeMott CM, Burz DS, Shekhtman A. 45.  2014. Using singular value decomposition to characterize protein–protein interactions by in‐cell NMR spectroscopy. ChemBioChem 15:929–33 [Google Scholar]
  46. Striebel F, Imkamp F, Özcelik D, Weber-Ban E. 46.  2014. Pupylation as a signal for proteasomal degradation in bacteria. Biochim. Biophys. Acta Mol. Cell. Res. 1843:103–13 [Google Scholar]
  47. Maldonado AY, Burz DS, Reverdatto S, Shekhtman A. 47.  2013. Fate of Pup inside the Mycobacterium proteasome studied by in-cell NMR. PLOS ONE 8:e74576 [Google Scholar]
  48. Serber Z, Keatinge-Clay AT, Ledwidge R, Kelly AE, Miller SM. 48.  et al. 2001. High-resolution macromolecular NMR spectroscopy inside living cells. J. Am. Chem. Soc. 123:2446–47 [Google Scholar]
  49. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T. 49.  et al. 2009. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–9 [Google Scholar]
  50. Kubo S, Nishida N, Udagawa Y, Takarada O, Ogino S. 50.  et al. 2013. A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew. Chem. Int. Ed. 52:1208–11 [Google Scholar]
  51. Shimada I, Ueda T, Matsumoto M, Sakakura M, Osawa M. 51.  et al. 2009. Cross-saturation and transferred cross-saturation experiments. Prog. Nucl. Magn. Reson. Spectrosc. 54:123–40 [Google Scholar]
  52. Fesik SW.52.  1993. NMR structure-based drug design. J. Biomol. NMR 3:261–69 [Google Scholar]
  53. Mayer M, Meyer B. 53.  2001. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123:6108–17 [Google Scholar]
  54. Mayer M, Meyer B. 54.  2000. Mapping the active site of angiotensin-converting enzyme by transferred NOE spectroscopy. J. Med. Chem 432093–99 [Google Scholar]
  55. Pellecchia M, Meininger D, Dong Q, Chang E, Jack R. 55.  et al. 2002. NMR-based structural characterization of large protein-ligand interactions. J. Biomol. NMR 22:165–73 [Google Scholar]
  56. Claasen B, Axmann M, Meinecke R, Meyer B. 56.  2005. Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin αIIbβ3 in native platelets than in liposomes. J. Am. Chem. Soc. 127:916–19 [Google Scholar]
  57. Hubbard JA, MacLachlan LK, King GW, Jones JJ, Fosberry AP. 57.  2003. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in. Escherichia coli. Mol. Microbiol. 49:1191–200 [Google Scholar]
  58. Arnesano F, Banci L, Bertini I, Felli IC, Losacco M. 58.  et al. 2011. Probing the interaction of cisplatin with the human copper chaperone Atox1 by solution and in-cell NMR spectroscopy. J. Am. Chem. Soc. 133:18361–69 [Google Scholar]
  59. Hubbard JA, MacLachlan LK, King GW, Jones JJ, Fosberry AP. 59.  2003. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in. Escherichia coli. Mol. Microbiol 49:1191–200 [Google Scholar]
  60. Xie J, Thapa R, Reverdatto S, Burz DS, Shekhtman A. 60.  2009. Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). J. Med. Chem 523516–22 [Google Scholar]
  61. Banaszynski LA, Liu CW, Wandless TJ. 61.  2005. Characterization of the FKBP rapamycin FRB ternary complex. J. Am. Chem. Soc. 127:4715–21 [Google Scholar]
  62. Ma J, McLeod S, MacCormack K, Sriram S, Gao N, Breeze AL, Hu J. 62.  2014. Real-time monitoring of New Delhi metallo-β-lactamase activity in living bacterial cells by 1H NMR spectroscopy. Angew. Chem. Int. Ed. 53:82130–33 [Google Scholar]
  63. Guo Y, Wang J, Niu G, Shui W, Sun Y. 63.  et al. 2011. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2:384–94 [Google Scholar]
  64. Patel G, Bonomo RA. 64.  2013. “Stormy waters ahead”: global emergence of carbapenemases. Front. Microbiol. 4:65–76 [Google Scholar]
  65. Augustus AM, Reardon PN, Spicer LD. 65.  2009. MetJ repressor interactions with DNA probed by in-cell NMR. PNAS 106:5065–69 [Google Scholar]
  66. Theillet F-X, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J. 66.  et al. 2012. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54:217–36 [Google Scholar]
  67. Young NL, Plazas-Mayorca MD, Garcia BA. 67.  2010. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev. Proteom. 7:79–92 [Google Scholar]
  68. Liokatis S, Dose A, Schwarzer D, Selenko P. 68.  2010. Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J. Am. Chem. Soc. 132:14704–5 [Google Scholar]
  69. Burz DS, Shekhtman A. 69.  2008. In-cell biochemistry using NMR spectroscopy. PLOS ONE 3:e2571 [Google Scholar]
  70. Bodart JF, Wieruszeski JM, Amniai L, Leroy A, Landrieu I. 70.  et al. 2008. NMR observation of Tau in Xenopus oocytes. J. Magn. Reson. 192:252–57 [Google Scholar]
  71. Selenko P, Frueh DP, Elsaesser SJ, Haas W, Gygi SP. 71.  et al. 2008. In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat. Struct. Mol. Biol. 15:321–29 [Google Scholar]
  72. Naganuma M, Sekine S, Chong YE, Guo M, Yang XL. 72.  et al. 2014. The selective tRNA aminoacylation mechanism based on a single GU pair. Nature 510:507–11 [Google Scholar]
  73. Luh LM, Hänsel R, Löhr F, Kirchner DK, Krauskopf K. 73.  et al. 2013. Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition. J. Am. Chem. Soc. 135:13796–803 [Google Scholar]
  74. Binolfi A, Limatola A, Verzini S, Kosten J. 74.  Theillet F-X. et al. 2016. Intracellular repair of oxidation-damaged α-synuclein fails to target C-terminal modification sites. Nat. Commun. 7:10251 [Google Scholar]
  75. Banci L, Barbieri L, Bertini I, Luchinat E, Secci E. 75.  et al. 2013. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol. 9:297–99 [Google Scholar]
  76. Monteith WB, Pielak GJ. 76.  2014. Residue level quantification of protein stability in living cells. PNAS 111:11335–40 [Google Scholar]
  77. Monteith WB, Pielak GJ. 77.  2015. Correction for Monteith and Pielak: residue level quantification of protein stability in living cells. PNAS 112:E7031 [Google Scholar]
  78. Ghaemmaghami S, Oas TG. 78.  2001. Quantitative protein stability measurements in vivo. Nat. Struct. Biol. 8:879–82 [Google Scholar]
  79. Wei L, Yu Y, Shen YH, Wang MC, Min W. 79.  2013. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. PNAS 110:11226–31 [Google Scholar]
  80. Ebbinghaus S, Dhar A, McDonald JD, Gruebele M. 80.  2010. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 7:319–23 [Google Scholar]
  81. Smith AE, Sarkar M, Young GB, Pielak GJ. 81.  2013. Amide proton exchange of a dynamic loop in cell extracts. Protein Sci 2:1313–19 [Google Scholar]
  82. Smith AE, Zhou Z, Pielak GJ. 82.  2015. Hydrogen exchange of disordered proteins in Escherichia coli. . Protein Sci. 24:706–13 [Google Scholar]
  83. Cohen RD, Guseman AJ, Pielak GJ. 83.  2015. Intracellular pH modulates quinary structure. Protein Sci 24:1748–55 [Google Scholar]
  84. Monteith WB, Cohen RD, Smith AE, Guzman-Cisneros E, Pielak GJ. 84.  2015. Quinary structure modulates protein stability in cells. PNAS 112:1739–42 [Google Scholar]
  85. Smith AE, Zhou LZ, Gorensek AH, Senske M, Pielak GJ. 85.  2016. In-cell thermodynamics and a new role for protein surfaces. PNAS 113:1725–30 [Google Scholar]
  86. Danielsson J, Mu X, Lang L, Wang H, Binolfi A. 86.  et al. 2015. Thermodynamics of protein destabilization in live cells. PNAS 112:12402–7 [Google Scholar]
  87. Freedberg DI, Selenko P. 87.  2014. Live Cell NMR. Annu. Rev. Biophys. 43:171–92 [Google Scholar]
  88. Dwek RA.88.  1996. Glycobiology: toward understanding the function of sugars. Chem. Rev. 96:683–720 [Google Scholar]
  89. Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J. 89.  et al. 2007. Extracellular structure of polysialic acid explored by on cell solution NMR. PNAS 104:11557–61 [Google Scholar]
  90. Barb AW, Freedberg DI, Battistel MD, Prestegard JH. 90.  2011. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J. Biomol. NMR 51:163–71 [Google Scholar]
  91. Reckel S, Lopez JJ, Löhr F, Glaubitz C, Dötsch V. 91.  2012. In-cell solid-state NMR as a tool to study proteins in large complexes. ChemBioChem 13:534–37 [Google Scholar]
  92. Warnet XL, Arnold AA, Marcotte I, Warschawski DE. 92.  2015. In-cell solid-state NMR: an emerging technique for the study of biological membranes. Biophys. J. 109:2461–66 [Google Scholar]
  93. Jachymek W, Niedziela T, Petersson C, Lugowski C, Czaja J. 93.  et al. 1999. Structures of the O-specific polysaccharides from Yokenella regensburgei (Koserella trabulsii) strains PCM 2476, 2477, 2478, and 2494: high-resolution magic-angle spinning NMR investigation of the O-specific polysaccharides in native lipopolysaccharides and directly on the surface of living bacteria. Biochemistry 38:11788–95 [Google Scholar]
  94. Szymanski CM, Michael FS, Jarrell HC, Li J, Gilber M. 94.  et al. 2003. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278:24509–20 [Google Scholar]
  95. Rice DM, Romaniuk AH, Cegelski L. 95.  2015. Frequency-selective REDOR and spin-diffusion relays in uniformly labeled whole cells. Solid State Nucl. Magn. Reson. 72:132–39 [Google Scholar]
  96. Romaniuk JAH, Cegelski L. 96.  2015. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos. Trans. R. Soc. B 370:20150024 [Google Scholar]
  97. Nygaard R, Romaniuk JAH, Rice DM, Cegelski L. 97.  2015. Spectral snapshots of bacterial cell-wall composition and the influence of antibiotics by whole-cell NMR. Biophys. J. 108:1380–89 [Google Scholar]
  98. Cegelski L, O'Connor RD, Stueber D, Singh M, Poliks B. 98.  et al. 2010. Plant cell-wall cross-links by REDOR NMR spectroscopy. J. Am. Chem. Soc. 132:16052–57 [Google Scholar]
  99. Cegelski L, Steuber D, Mehta AK, Kulp DW, Axelsen PH. 99.  et al. 2006. Conformational and quantitative characterization of oritavancin-peptodoglycan complexes in whole cells of Staphylococcus aureus by in vivo13C and 15N labelling. J. Mol. Biol 357:1253–62 [Google Scholar]
  100. Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE. 100.  et al. 2015. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta Biomembr. 1848:369–77 [Google Scholar]
  101. Kim SJ, Cegelski L, Preobrazhenskaya M, Schaefer J. 101.  2006. Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. Biochemistry 45:5235–50 [Google Scholar]
  102. Toke O, Cegelski L, Schaefer J. 102.  2006. Peptide antibiotics in action: investigation of polypeptide chains in insoluble environments by rotational-echo double resonance. Biochim. Biophys. Acta Biomembr. 1758:1314–29 [Google Scholar]
  103. Cegelski L.103.  2013. REDOR NMR for drug discovery. Bioorg. Med. Chem. Lett 235767–75 [Google Scholar]
  104. Battistel MD, Azurmendi HF, Yu B, Freedberg DI. 104.  2014. NMR of glycans: shedding new light on old problems. Prog. Nucl. Magn. Reson. Spectrosc. 79:48–68 [Google Scholar]
  105. Hänsel R, Löhr F, Trantirek L, Dötsch V. 105.  2013. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 135:2816–24 [Google Scholar]
  106. Sarkar M, Li C, Pielak GJ. 106.  2013. Soft interactions and crowding. Biophy. Rev. 5:187–94 [Google Scholar]
  107. Hänsel R, Foldynova-Trantirkova S, Löhr F, Buck J, Bongartz E. 107.  et al. 2009. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 31:15761–68 [Google Scholar]
  108. Salgado GF, Cazenave C, Kerkour A, Mergny JL. 108.  2015. G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem. Sci. 6:3314–20 [Google Scholar]
  109. Sket P, Plavec J. 109.  2010. Tetramolecular DNA quadruplexes in solution: insights into structural diversity and cation movement. J. Am. Chem. Soc. 32:12724–32 [Google Scholar]
  110. Gai W, Yang QF, Xiang JF, Jiang W, Li Q. 110.  et al. 2013. A dual-site simultaneous binding mode in the interaction between parallel-stranded G-quadruplex [d(TGGGGT)]4 and cyanine dye 2,2′-diethyl-9-methyl-selenacarbocyanine bromide. Nucleic Acids Res 41:2709–22 [Google Scholar]
  111. Hänsel R, Foldynova-Trantirkova S, Dötsch V, Trantirek L. 111.  2013. Investigation of quadruplex structure under physiological conditions using in-cell NMR. Quadruplex Nucleic Acids JB Chaires, D Graves 47–65 Berlin: Springer [Google Scholar]
  112. Arnold JRP, Fisher J. 112.  2000. Structural equilibria in RNA as revealed by 19NMR. J. Biomol. Struct. Dyn. 17:843–56 [Google Scholar]
  113. Hammann C, Norman DG, Lilley DMJ. 113.  2001. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR. PNAS 98:5503–8 [Google Scholar]
  114. Olejniczak M, Gdaniec Z, Fischer A, Grabarkiewicz T, Bielecki L. 114.  et al. 2002. The bulge region of HIV-1 TAR RNA binds metal ions in solution. Nucleic Acids Res 30:4241–49 [Google Scholar]
  115. Ogino S, Kubo S, Umemoto R, Huang SX, Nishida N. 115.  et al. 2009. Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J. Am. Chem. Soc. 131:10834–35 [Google Scholar]
  116. Mittermaier AK, Kay LE. 116.  2009. Observing biological dynamics at atomic resolution using NMR. Trends Biochem. Sci. 34:601–11 [Google Scholar]
  117. Milov AD, Ponomarev AB, Tsvetkov YD. 117.  1984. Electron–electron double resonance in electron spin echo: model biradical systems and the sensitized photolysis of decalin. Chem. Phys. Lett. 110:67–72 [Google Scholar]
  118. Schiemann O, Prisner TF. 118.  2007. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q. Rev. Biophys. 40:1–53 [Google Scholar]
  119. Jeschke G, Polyhach Y. 119.  2007. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. PCCP 9:1895–910 [Google Scholar]
  120. Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V. 120.  et al. 2011. Long‐range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 50:5070–74 [Google Scholar]
  121. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T. 121.  et al. 2010. Distance determination in proteins inside Xenopus laevis oocytes by double electron–electron resonance experiments. J. Am. Chem. Soc. 132:8228–29 [Google Scholar]
  122. Witte C, Schröder L. 122.  2013. NMR of hyperpolarised probes. NMR Biomed 26:788–802 [Google Scholar]
  123. Lampel G.123.  1968. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20:491–93 [Google Scholar]
  124. Spence MM, Rubin SM, Dimitrov IE, Ruiz EJ, Wemmer DE. 124.  et al. 2001. Functionalized xenon as a biosensor. PNAS 98:10654–57 [Google Scholar]
  125. Goodson BM.125.  2002. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J. Magn. Reson. 155:157–216 [Google Scholar]
  126. Schröder L.126.  2013. Xenon for NMR biosensing—inert but alert. Phys. Med. 29:3–16 [Google Scholar]
  127. Wolber J, Cherubini A, Leach MO, Bifone A. 127.  2000. Hyperpolarized 129Xe NMR as a probe for blood oxygenation. Magn. Reson. Med. 43:491–96 [Google Scholar]
  128. Boutin C, Stopin A, Lenda F, Brotin T, Dutasta JP. 128.  et al. 2011. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg. Med. Chem 194135–43 [Google Scholar]
  129. Brotin T, Dutasta JP. 129.  2009. Cryptophanes and their complexes—present and future. Chem. Rev. 109:88–130 [Google Scholar]
  130. Wei Q, Seward GK, Hill PA, Patton B, Dimitrov IE. 130.  et al. 2006. Designing 129Xe NMR biosensors for matrix metalloproteinase detection. J. Am. Chem. Soc. 128:13274–83 [Google Scholar]
  131. Chambers JM, Hill PA, Aaron JA, Han Z, Christianson DW. 131.  et al. 2009. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J. Am. Chem. Soc. 131:563–69 [Google Scholar]
  132. Seward GK, Bai Y, Khan NS, Dmochowski IJ. 132.  2011. Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors. Chem. Sci. 2:1103–10 [Google Scholar]
  133. Schlundt A, Kilian W, Beyermann M, Sticht J, Günther S. 133.  et al. 2009. A xenon-129 biosensor for monitoring MHC-peptide interactions. Angew. Chem. Int. Ed. 48:4142–45 [Google Scholar]
  134. Rose HM, Witte C, Rossella F, Klippel S, Freund C. 134.  et al. 2014. Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations. PNAS 111:11697–702 [Google Scholar]
  135. Palaniappan KK, Ramirez RM, Bajaj VS, Wemmer DE, Pines A. 135.  et al. 2013. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew. Chem. Int. Ed. 52:4849–53 [Google Scholar]
  136. Bowers CR, Weitekamp DP. 136.  1986. Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 57:2645–48 [Google Scholar]
  137. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PI. 137.  et al. 2009. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–11 [Google Scholar]
  138. Abraham M, McCausland MAH, Robinson FNH. 138.  1959. Dynamic nuclear polarization. Phys. Rev. Lett. 2:449–51 [Google Scholar]
  139. Abragam A, Goldman M. 139.  1978. Principles of dynamic nuclear polarisation. Rep. Prog. Phys. 41:395–467 [Google Scholar]
  140. Li C, Liu M. 140.  2013. Protein dynamics in living cells studied by in-cell NMR spectroscopy. FEBS Lett 587:1008–11 [Google Scholar]
  141. Li C, Tang C, Liu M. 141.  2013. Protein dynamics elucidated by NMR technique. Protein Cell 4:726–30 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error