A new family of vibrational and electronic spectroscopies has emerged, comprising the coherent analogs of traditional analytical methods. These methods are also analogs of coherent multidimensional nuclear magnetic resonance (NMR) spectroscopy. This new family is based on creating the same quantum mechanical superposition states called multiple quantum coherences (MQCs). NMR MQCs are mixtures of nuclear spin states that retain their quantum mechanical phase information for milliseconds. The MQCs in this new family are mixtures of vibrational and electronic states that retain their phases for picoseconds or shorter times. Ultrafast, high-intensity coherent beams rapidly excite multiple states. The excited MQCs then emit bright beams while they retain their phases. Time-domain methods measure the frequencies of the MQCs by resolving their phase oscillations, whereas frequency-domain methods measure the resonance enhancements of the output beam while scanning the excitation frequencies. The resulting spectra provide multidimensional spectral signatures that increase the spectroscopic selectivity required for analyzing complex samples.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wright JC, Chen PC, Hamilton JP, Zilian A, LaBuda MJ. 1.  1997. Theoretical foundations for a new family of infrared four wave mixing spectroscopies. Appl. Spectrosc. 51:949–58First proposal for fully coherent CMDS methods using a mixture of vibrational and electronic states. [Google Scholar]
  2. Hochstrasser RM. 2.  2007. Two-dimensional spectroscopy at infrared and optical frequencies. PNAS 104:14190–96 [Google Scholar]
  3. Pakoulev AV, Rickard MA, Meyers KA, Kornau K, Mathew NA. 3.  et al. 2006. Mixed frequency/time domain optical analogs of heteronuclear multidimensional NMR. J. Phys. Chem. A 110:3352–55 [Google Scholar]
  4. Scheurer C, Mukamel S. 4.  2002. Infrared analogs of heteronuclear nuclear magnetic resonance coherence transfer experiments in peptides. J. Chem. Phys. 116:6803–16Presents a detailed discussion of the relationships between NMR and CMDS methods. [Google Scholar]
  5. Scheurer C, Mukamel S. 5.  2002. Magnetic resonance analogies in multidimensional vibrational spectroscopy. Bull. Chem. Soc. Jpn. 75:989–99 [Google Scholar]
  6. Bloembergen N. 6.  1982. Nonlinear optics and spectroscopy. Science 216:1057–64Review by the pioneer of nonlinear spectroscopy that covers the fundamental foundations of the field. [Google Scholar]
  7. Mukamel S. 7.  2000. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51:691–729 [Google Scholar]
  8. Cho MH. 8.  2008. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108:1331–418A complete and excellent review of the theory and experiments of CMDS. [Google Scholar]
  9. Wright JC. 9.  2011. Multiresonant coherent multidimensional spectroscopy. Annu. Rev. Phys. Chem. 62:209–30 [Google Scholar]
  10. Cho MH, Scherer NF, Fleming GR, Mukamel S. 10.  1992. Photon-echoes and related 4-wave-mixing spectroscopies using phase-locked pulses. J. Chem. Phys. 96:5618–29 [Google Scholar]
  11. de Boeij WP, Pshenichnikov MS, Wiersma DA. 11.  1995. Phase-locked heterdyne-detected stimulated photon echo. a unique tool to study solute-solvent interactions. Chem. Phys. Lett. 238:1–8 [Google Scholar]
  12. Chen PC, Hamilton JP, Zilian A, LaBuda MJ, Wright JC. 12.  1998. Experimental studies of a new family of infrared four wave mixing spectroscopies. Appl. Spectrosc. 52:380–92 [Google Scholar]
  13. Mandal PK, Majumdar A. 13.  2004. A comprehensive discussion of HSQC and HMQC pulse sequences. Concepts Magnet. Reson. A 20A:1–23 [Google Scholar]
  14. Bax A, Grzesiek S. 14.  1993. Methodological advances in protein NMR. Acc. Chem. Res. 26:131–38 [Google Scholar]
  15. Lee D, Albrecht AC. 15.  1985. Advances in Infrared and Raman Spectroscopy Chichester, UK: Wiley-Heyden [Google Scholar]
  16. Eckbreth AC. 16.  1978. BOXCARS: crossed-beam phase-matched CARS generation in gases. Appl. Phys. Lett. 32:421–23 [Google Scholar]
  17. Keusters D, Tan HS, Warren WS. 17.  1999. Role of pulse phase and direction in two-dimensional optical spectroscopy. J. Phys. Chem. A 103:10369–80 [Google Scholar]
  18. Tian PF, Keusters D, Suzaki Y, Warren WS. 18.  2003. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300:1553–55 [Google Scholar]
  19. Tekavec PF, Lott GA, Marcus AH. 19.  2007. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127:214307 [Google Scholar]
  20. Karki KJ, Widom JR, Seibt J, Moody I, Londergan MC. 20.  et al. 2014. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5:5869 [Google Scholar]
  21. Nardin G, Autry TM, Silverman KL, Cundiff ST. 21.  2013. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21:28617–27 [Google Scholar]
  22. Pakoulev AV, Rickard MA, Kornau KM, Mathew NA, Yurs LA. 22.  et al. 2009. Mixed frequency-/time-domain coherent multidimensional spectroscopy: Research tool or potential analytical method?. Acc. Chem. Res. 42:1310–21 [Google Scholar]
  23. Asplund MC, Zanni MT, Hochstrasser RM. 23.  2000. Two dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational echoes. PNAS 97:8219–24 [Google Scholar]
  24. Hybl JD, Albrecht AW, Faeder SMG, Jonas DM. 24.  1998. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297:307–13First experimental demonstration of heterodyne-detected, time-domain CMDS. [Google Scholar]
  25. DeFlores LP, Nicodemus RA, Tokmakoff A. 25.  2007. Two-dimensional Fourier transform spectroscopy in the pump–probe geometry. Opt. Lett. 32:2966–69 [Google Scholar]
  26. Khalil M, Demirdoven N, Tokmakoff A. 26.  2003. Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra. Phys. Rev. Lett. 90:47401–5 [Google Scholar]
  27. Lepetit L, Cheriaux G, Joffre M. 27.  1995. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12:2467–74 [Google Scholar]
  28. Lepetit L, Cheriaux G, Joffre M. 28.  1996. Two-dimensional nonlinear optics spectroscopy: simulations and experimental demonstration. J. Nonlinear Opt. Phys. 5:465–76 [Google Scholar]
  29. Hybl JD, Ferro AA, Jonas DM. 29.  2001. Two dimensional fourier transform electronic spectroscopy. J. Chem. Phys. 115:6606–22 [Google Scholar]
  30. Cowan ML, Ogilvie JP, Miller RJD. 30.  2004. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386:184–89 [Google Scholar]
  31. Goodno GD, Dadusc G, Miller RJD. 31.  1998. Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics. J. Opt. Soc. Am. B 15:1791–95 [Google Scholar]
  32. Kaufman LJ, Heo JY, Ziegler LD, Fleming GR. 32.  2002. Heterodyne-detected fifth-order nonresonant Raman scattering from room temperature CS2. Phys. Rev. Lett. 88:4 [Google Scholar]
  33. Shim SH, Strasfeld DB, Fulmer EC, Zanni MT. 33.  2006. Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation. Opt. Lett. 31:838–40 [Google Scholar]
  34. Shim SH, Strasfeld DB, Ling YL, Zanni MT. 34.  2007. Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. PNAS 104:14197–202 [Google Scholar]
  35. Dugan MA, Tull JX, Warren WS. 35.  1997. High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B 14:2348–59 [Google Scholar]
  36. Rubtsov IV, Wang JP, Hochstrasser RM. 36.  2003. Dual-frequency 2D-IR spectroscopy heterodyned photon echo of the peptide bond. PNAS 100:5601–6 [Google Scholar]
  37. Wright JC, Carlson RJ, Hurst GB, Steehler JK, Riebe MT. 37.  et al. 1991. Molecular, multiresonant coherent four wave mixing spectroscopy. Int. Rev. Phys. Chem. 10:349–90 [Google Scholar]
  38. Gelin MF, Egorova D, Domcke W. 38.  2005. Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy. J. Chem. Phys. 123:164112 [Google Scholar]
  39. Gelin MF, Egorova D, Domcke W. 39.  2009. Efficient calculation of time- and frequency-resolved four-wave-mixing signals. Acc. Chem. Res. 42:1290–98 [Google Scholar]
  40. Mančal T, Pisliakov AV, Fleming GR. 40.  2006. Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra. J. Chem. Phys. 124:234504 [Google Scholar]
  41. Carlson RJ, Wright JC. 41.  1990. Line narrowing in multiresonant third order molecular spectroscopies. J. Mol. Spectrosc. 143:1–17 [Google Scholar]
  42. Riebe MT, Wright JC. 42.  1987. Nonlinear line narrowing spectroscopy in mixed organic crystals. Chem. Phys. Lett. 138:565–70 [Google Scholar]
  43. Riebe MT, Wright JC. 43.  1988. Spectral line narrowing and saturation effects in fully resonant nondegenerate four wave mixing. J. Chem. Phys. 88:2981–94 [Google Scholar]
  44. Zhao W, Wright JC. 44.  1999. Spectral simplification in vibrational spectroscopy using doubly resonant infrared four wave mixing. J. Am. Chem. Soc. 121:10994–98 [Google Scholar]
  45. Kwak K, Cha S, Cho MH, Wright JC. 45.  2002. Vibrational interactions of acetonitrile: doubly vibrationally resonant IR-IR-visible four-wave-mixing spectroscopy. J. Chem. Phys. 117:5675–87 [Google Scholar]
  46. Albrecht AC. 46.  1961. On the theory of Raman intensities. J. Chem. Phys. 34:1476 [Google Scholar]
  47. Orlandi G. 47.  1973. Theory of vibronic intensity borrowing. Comparison of Herzberg-Teller and Born-Oppenheimer coupling. J. Chem. Phys. 58:4513 [Google Scholar]
  48. Small GJ. 48.  1971. Herzberg–Teller vibronic coupling and the Duschinsky effect. J. Chem. Phys. 54:3300 [Google Scholar]
  49. Scheurer C, Mukamel S. 49.  2001. Design strategies for pulse sequences in multidimensional optical spectroscopies. J. Chem. Phys. 115:4989–5004 [Google Scholar]
  50. Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS. 50.  et al. 2014. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6:706–11 [Google Scholar]
  51. Lee SH, Steehler JK, Nguyen DC, Wright JC. 51.  1985. Site-selective nonlinear 4-wave mixing by multiply enhanced nonparametric and parametric spectroscopy. Appl. Spectrosc. 39:243–53 [Google Scholar]
  52. Nguyen DC, Wright JC. 52.  1985. Synchronous scanning methods for organic spectroscopy with fully resonant four-wave mixing. Appl. Spectrosc. 39:230–43 [Google Scholar]
  53. Nguyen DC, Wright JC. 53.  1985. Multiply enhanced non-parametric four-wave mixing spectroscopy. Chem. Phys. Lett. 117:224–28 [Google Scholar]
  54. Steehler JK, Wright JC. 54.  1985. Parametric and non-parametric four wave mixing in pentacene: p-terphenyl. J. Chem. Phys. 83:3200–8 [Google Scholar]
  55. Steehler JK, Wright JC. 55.  1985. Multiply enhanced site selective CARS spectroscopy. J. Chem. Phys. 83:3188–99 [Google Scholar]
  56. Steehler JK, Wright JC. 56.  1985. Site selective nonlinear spectroscopy of pentacene: p-terphenyl. Chem. Phys. Lett. 115:486–91 [Google Scholar]
  57. Steehler JK, Wright JC. 57.  1985. 2-Frequency CARS for mixture analysis using pentacene in p-terphenyl as a model. Appl. Spectrosc. 39:451–63 [Google Scholar]
  58. Riebe MT, Wright JC. 58.  1988. Demonstration of four wave mixing line narrowing spectroscopy—the nonlinear analog of fluorescence line narrowing. J. Lumin. 40– 41:549–50 [Google Scholar]
  59. Hurst GB, Wright JC. 59.  1991. Nonlinear line narrowing of excited-state resonances in perylene doped poly(methylmethacrylate) using multiply enhanced nonparametric spectroscopy. J. Chem. Phys. 95:1479–86 [Google Scholar]
  60. Hurst GB, Wright JC. 60.  1992. Vibronic spectroscopy of amorphous materials using higher-order, multiresonant coherent anti-Stokes-Raman spectroscopy. J. Chem. Phys. 97:3940–49 [Google Scholar]
  61. Carlson RJ, Nguyen DC, Wright JC. 61.  1990. Analysis of vibronic mode coupling in pentacene by fully resonant four wave mixing. J. Chem. Phys. 92:1538–46 [Google Scholar]
  62. Carlson RJ, Wright JC. 62.  1990. Analysis of vibrational correlations and couplings in the lowest two singlet states of pentacene by fully resonant four wave mixing. J. Chem. Phys. 92:5186–95 [Google Scholar]
  63. Carlson RJ, Wright JC. 63.  1990. Analysis of vibronic mode coupling in azulene by fully resonant four wave mixing. J. Chem. Phys. 93:2205–16 [Google Scholar]
  64. Carlson RJ, Wright JC. 64.  1991. Enhanced selectivity by mode selection with four wave mixing. Anal. Chem. 63:1449–51 [Google Scholar]
  65. Leger JD, Nyby CM, Varner C, Tang JA, Rubtsova NI. 65.  et al. 2014. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers. Rev. Sci. Instrum. 85:16 [Google Scholar]
  66. Lin Z, Zhang N, Jayawickramarajah J, Rubtsov IV. 66.  2012. Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Phys. Chem. Chem. Phys. 14:10445–54 [Google Scholar]
  67. Rubtsova NI, Rubtsov IV. 67.  2015. Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Annu. Rev. Phys. Chem. 66:717–38 [Google Scholar]
  68. Ginsberg NS, Cheng YC, Fleming GR. 68.  2009. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42:1352–64 [Google Scholar]
  69. Tekavec PF, Dyke TR, Marcus AH. 69.  2006. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation. J. Chem. Phys. 125:194303 [Google Scholar]
  70. Karki KJ, Kringle L, Marcus AH, Pullerits T. 70.  2016. Phase-synchronous detection of coherent and incoherent nonlinear signals. J. Opt. 18:015504 [Google Scholar]
  71. Harel E, Fidler AF, Engel GS. 71.  2011. Single-shot gradient-assisted photon echo electronic spectroscopy. J. Phys. Chem. A 115:3787–96 [Google Scholar]
  72. Zhao W, Wright JC. 72.  1999. Measurement of χ(3) for doubly vibrationally enhanced four wave mixing spectroscopy. Phys. Rev. Lett. 83:1950–53First experimental demonstration of a fully coherent pathway based on vibrational and electronic resonances. [Google Scholar]
  73. Guo R, Fournier F, Donaldson PM, Gardner EM, Gould IR, Klug DR. 73.  2009. Detection of complex formation and determination of intermolecular geometry through electrical anharmonic coupling of molecular vibrations using electron-vibration-vibration two-dimensional infrared spectroscopy. Phys. Chem. Chem. Phys. 11:8417–21First experimental demonstration of intermolecular cross peaks and their sensitivity to structural determination. [Google Scholar]
  74. Guo R, Miele M, Gardner EM, Fournier F, Kornau KM. 74.  et al. 2011. Potential for the detection of molecular complexes and determination of interaction geometry by 2DIR: application to protein sciences. Faraday Discuss 150:161–74 [Google Scholar]
  75. Guo R, Mukamel S, Klug DR. 75.  2012. Geometry determination of complexes in a molecular liquid mixture using electron-vibration-vibration two-dimensional infrared spectroscopy with a vibrational transition density cube method. Phys. Chem. Chem. Phys. 14:14023–33 [Google Scholar]
  76. Donaldson PM, Guo R, Fournier F, Gardner EM, Gould IR, Klug DR. 76.  2008. Decongestion of methylene spectra in biological and non-biological systems using picosecond 2DIR spectroscopy measuring electron-vibration-vibration coupling. Chem. Phys. 350:201–11 [Google Scholar]
  77. Fournier F, Gardner EM, Guo R, Donaldson PM, Barter LMC. 77.  et al. 2008. Optical fingerprinting of peptides using two-dimensional infrared spectroscopy: proof of principle. Anal. Biochem. 374:358–65 [Google Scholar]
  78. Fournier F, Gardner EM, Kedra DA, Donaldson PM, Guo R. 78.  et al. 2008. Protein identification and quantification by two-dimensional infrared spectroscopy: implications for an all-optical proteomic platform. PNAS 105:15352–57 [Google Scholar]
  79. Fournier F, Guo R, Gardner EM, Donaldson PM, Loeffeld C. 79.  et al. 2009. Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Acc. Chem. Res. 42:1322–31 [Google Scholar]
  80. Boyle ES, Pakoulev AV, Wright JC. 80.  2013. Fully coherent triple sum frequency spectroscopy of a benzene fermi resonance. J. Phys. Chem. A 117:5578–88First experimental demonstration of triple-sum frequency CMDS. [Google Scholar]
  81. Boyle ES, Neff-Mallon NA, Handali JD, Wright JC. 81.  2014. Resonance IR: a coherent multidimensional analogue of resonance Raman. J. Phys. Chem. A 118:3112–19 [Google Scholar]
  82. Boyle ES, Neff-Mallon NA, Wright JC. 82.  2013. Triply resonant sum frequency spectroscopy: combining advantages of resonance Raman and 2D-IR. J. Phys. Chem. A 117:12401–8 [Google Scholar]
  83. Pakoulev AV, Rickard MA, Mathew NA, Kornau KM, Wright JC. 83.  2007. Spectral quantum beating in mixed frequency/time-domain coherent multidimensional spectroscopy. J. Phys. Chem. A 111:6999–7005 [Google Scholar]
  84. Fleming GR, Passino SA, Nagasawa Y. 84.  1998. The interaction of solutes with their environments. Philos. Trans. R. Soc. A 356:389–404 [Google Scholar]
  85. Passino SA, Nagasawa Y, Joo T, Fleming GR. 85.  1997. Three-pulse echo peak shift studies of polar solvation dynamics. J. Phys. Chem. A 101:725–31 [Google Scholar]
  86. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. 86.  2005. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–28 [Google Scholar]
  87. Cho MH, Vaswani HM, Brixner T, Stenger J, Fleming GR. 87.  2005. Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109:10542–56 [Google Scholar]
  88. Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE. 88.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  89. Harel E, Engel GS. 89.  2012. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). PNAS 109:706–11 [Google Scholar]
  90. Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J. 90.  et al. 2014. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6:196–201 [Google Scholar]
  91. Christensson N, Kauffmann HF, Pullerits T, Mančal T. 91.  2012. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116:7449–54 [Google Scholar]
  92. Tiwari V, Peters WK, Jonas DM. 92.  2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. PNAS 110:1203–8 [Google Scholar]
  93. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB. 93.  2013. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9:113–18 [Google Scholar]
  94. Rickard MA, Pakoulev AV, Kornau K, Mathew NA, Wright JC. 94.  2006. Interferometric coherence transfer modulations in triply vibrationally enhanced four-wave mixing. J. Phys. Chem. A 110:11384–87 [Google Scholar]
  95. Rickard MA, Pakoulev AV, Mathew NA, Kornau KM, Wright JC. 95.  2007. Frequency- and time-resolved coherence transfer spectroscopy. J. Phys. Chem. A 111:1163–66 [Google Scholar]
  96. Redfield AG. 96.  1965. The theory of relaxation processes. Adv. Magnet. Reson. 1:1–32 [Google Scholar]
  97. Olšina J, Mancal T. 97.  2010. Role of Markov and secular approximations in ultra-fast excited state dynamics of molecular aggregates. WDS’10 Proc. Contrib. Pap. Part III:13–18 [Google Scholar]
  98. Mančal T, Valkunas L, Read EL, Engel GS, Calhoun TR, Fleming GR. 98.  2008. Electronic coherence transfer in photosynthetic complexes and its signatures in optical spectroscopy. Spectroscopy 22:199–211 [Google Scholar]
  99. Berg MA. 99.  2012. Multidimensional incoherent time-resolved spectroscopy and complex kinetics. Adv. Chem. Phys. 150:1–102 [Google Scholar]
  100. Khurmi C, Berg MA. 100.  2008. Analyzing nonexponential kinetics with multiple population-period transient spectroscopy (MUPPETS). J. Phys. Chem. A 112:3364–75 [Google Scholar]
  101. Khurmi C, Berg MA. 101.  2008. Parallels between multiple population-period transient spectroscopy and multidimensional coherence spectroscopies. J. Chem. Phys. 129:064504 [Google Scholar]
  102. Van Veldhoven E, Khurmi C, Zhang X, Berg MA. 102.  2007. Time-resolved optical spectroscopy with multiple population dimensions: a general method for resolving dynamic heterogeneity. Chem. Phys. Chem. 8:1761–65 [Google Scholar]
  103. Wu H, Berg MA. 103.  2013. Multiple population-period transient spectroscopy (MUPPETS) in excitonic systems. J. Chem. Phys. 138:034201 [Google Scholar]
  104. Verma SD, Corcelli SA, Berg MA. 104.  2016. Rate and amplitude heterogeneity in the solvation response of an ionic liquid. J. Phys. Chem. Lett. 7:504–8 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error