The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Moore GE. 1.  1975. Progress in digital integrated electronics. Presented at Annu. Meet. Int. Electron Devices, 21st, Washington, DC
  2. Moore GE. 2.  1965. Cramming more components onto integrated circuits. Electronics 38:114–17 [Google Scholar]
  3. Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM. 3.  2006. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441:489–93 [Google Scholar]
  4. Douglas JP. 4.  2004. Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond. Sci. Technol. 19:R75 [Google Scholar]
  5. Brady DJ. 5.  2009. Optical Imaging and Spectroscopy. Hoboken, NJ: John Wiley & Sons
  6. Candes EJ, Romberg J, Tao T. 6.  2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52:489–509 [Google Scholar]
  7. Candes EJ, Tao T. 7.  2006. Near-optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52:5406–25 [Google Scholar]
  8. Candes EJ, Wakin MB. 8.  2008. An introduction to compressive sampling. IEEE Signal Process. Mag. 25:21–30 [Google Scholar]
  9. Donoho DL. 9.  2006. Compressed sensing. IEEE Trans. Inf. Theory 52:1289–306 [Google Scholar]
  10. Gamez G. 10.  2016. Compressed sensing in spectroscopy for chemical analysis. J. Anal. Atom. Spectrom. 31:2165–74 [Google Scholar]
  11. Krause A, Leskovec J, Guestrin C, VanBriesen J, Faloutsos C. 11.  2008. Efficient sensor placement optimization for securing large water distribution networks. J. Water Resour. Plan. Manag. 134:516–26 [Google Scholar]
  12. Ji S, Xue Y, Carin L. 12.  2008. Bayesian compressive sensing. IEEE Trans. Signal Process. 56:2346–56 [Google Scholar]
  13. Jansen PA, Dunlop MJ, Golish DR, Gehm ME. 13.  2012. Adaptive feature-specific spectral imaging. Proc. SPIE 8365, Compress. Sens., 83650B. https://doi.org/10.1117/12.918856 [Crossref] [Google Scholar]
  14. Duarte-Carvajalino JM, Yu G, Carin L, Sapiro G. 14.  2013. Task-driven adaptive statistical compressive sensing of gaussian mixture models. IEEE Trans. Signal Process. 61:585–600 [Google Scholar]
  15. Dinakarababu DV, Golish DR, Gehm ME. 15.  2011. Adaptive feature specific spectroscopy for rapid chemical identification. Opt. Express 19:4595–610 [Google Scholar]
  16. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T. 16.  et al. 2008. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25:83 [Google Scholar]
  17. Gehm M, John R, Brady D, Willett R, Schulz T. 17.  2007. Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15:14013–27 [Google Scholar]
  18. Wagadarikar A, John R, Willett R, Brady D. 18.  2008. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47:B44–51 [Google Scholar]
  19. Llull P, Liao X, Yuan X, Yang J, Kittle D. 19.  et al. 2013. Coded aperture compressive temporal imaging. Opt. Express 21:10526–45 [Google Scholar]
  20. Lustig M, Donoho DL, Santos JM, Pauly JM. 20.  2008. Compressed sensing MRI. IEEE Signal Process. Mag. 25:72–82 [Google Scholar]
  21. Brady DJ, Choi K, Marks DL, Horisaki R, Lim S. 21.  2009. Compressive holography. Opt. Express 17:13040–49 [Google Scholar]
  22. Choi K, Horisaki R, Hahn J, Lim S, Marks DL. 22.  et al. 2010. Compressive holography of diffuse objects. Appl. Opt. 49:H1–10 [Google Scholar]
  23. Choi K, Brady DJ. 23.  2009. Coded aperture computed tomography. Proc. SPIE 7468, Adapt. Coded Apert. Imaging, Non-Imaging, Unconv. Imaging Sens. Syst., 74680B. https://doi.org/10.1117/12.825277 [Crossref] [Google Scholar]
  24. MacCabe K, Krishnamurthy K, Chawla A, Marks D, Samei E, Brady D. 24.  2012. Pencil beam coded aperture x-ray scatter imaging. Opt. Express 20:16310–20 [Google Scholar]
  25. Chen EX, Gehm M, Danell R, Wells M, Glass J, Brady D. 25.  2014. Compressive mass analysis on quadrupole ion trap systems. J. Am. Soc. Mass Spectr. 25:1295–304 [Google Scholar]
  26. Scheidemann A, Hess H. 26.  2008. Analytical instruments using a pseudorandom array of sources, such as a micro-machined mass spectrometer or monochromator. US Patent No. US7339521 B2
  27. Russell ZE, DiDona ST, Amsden JJ, Parker CB, Kibelka G. 27.  et al. 2016. Compatibility of spatially coded apertures with a miniature Mattauch-Herzog mass spectrograph. J. Am. Soc. Mass Spectr. 27:578–84 [Google Scholar]
  28. Chen EX, Russell ZE, Amsden JJ, Wolter SD, Danell RM. 28.  et al. 2015. Order of magnitude signal gain in magnetic sector mass spectrometry via aperture coding. J. Am. Soc. Mass Spectr. 26:1633–40 [Google Scholar]
  29. Russell ZE, Chen EX, Amsden JJ, Wolter SD, Danell RM. 29.  et al. 2015. Two-dimensional aperture coding for magnetic sector mass spectrometry. J. Am. Soc. Mass Spectr. 26:248–56 [Google Scholar]
  30. Parker CB, Brady DJ, Glass JT, Gehm ME. 30.  2008. Coded mass spectroscopy methods, devices, systems and computer program products. US Patent No. US7399957 B2
  31. Zare RN, Fernandez FM, Kimmel JR. 31.  2003. Hadamard transform time-of-flight mass spectrometry: more signal, more of the time. Angew. Chem. Int. Edit. 42:30–35 [Google Scholar]
  32. Bushey JM, Danell RM, Glish GL. 32.  2009. Iterative accumulation multiplexing Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 81:5623–28 [Google Scholar]
  33. Williams ER, Loh SY, McLafferty FW, Cody RB. 33.  1990. Hadamard transform measurement of tandem Fourier-transform mass spectra. Anal. Chem. 62:698–703 [Google Scholar]
  34. Jacquinot P. 34.  1960. New developments in interference spectroscopy. Rep. Prog. Phys. 23:267 [Google Scholar]
  35. Fellgett P. 35.  1951. The multiplex advantage. PhD thesis, Univ Cambridge, Cambridge, UK:
  36. Golay MJ. 36.  1951. Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41:468–72 [Google Scholar]
  37. Golay MJ. 37.  1949. Multi-slit spectrometry. J. Opt. Soc. Am. 39:437–44 [Google Scholar]
  38. Girard A. 38.  1963. Spectrometre a grilles. Appl. Opt. 2:79–87 [Google Scholar]
  39. Hedayat AS, Sloane NJA, Stufken J. 39.  2012. Orthogonal Arrays: Theory and Applications. New York: Springer Sci. & Bus. Media
  40. Swift RD, Wattson RB, Decker JA, Paganetti R, Harwit M. 40.  1976. Hadamard transform imager and imaging spectrometer. Appl. Opt. 15:1595–609 [Google Scholar]
  41. Phillips PG, Briotta DA. 41.  1974. Hadamard-transform spectrometry of the atmospheres of Earth and Jupiter. Appl. Opt. 13:2233–35 [Google Scholar]
  42. Hansen P, Strong J. 42.  1972. High resolution Hadamard transform spectrometer. Appl. Opt. 11:502–6 [Google Scholar]
  43. Decker JA. 43.  1971. Experimental realization of the multiplex advantage with a Hadamard-transform spectrometer. Appl. Opt. 10:510–14 [Google Scholar]
  44. Harwit M, Sloane NJA. 44.  1979. Hadamard Transform Optics. New York: Academic
  45. Riesenberg R, Nitzsche G, Voigt W. 45.  2002. Hadamard encoding and other optical multiplexing. VDI Ber 1694:345–50 [Google Scholar]
  46. DeVerse R, Hammaker R, Fateley W. 46.  2000. Realization of the Hadamard multiplex advantage using a programmable optical mask in a dispersive flat-field near-infrared spectrometer. Appl. Spectrosc. 54:1751–58 [Google Scholar]
  47. Riesenberg R, Dillner U. 47.  1999. HADAMARD imaging spectrometer with microslit matrix. Proc. SPIE 3753, Imaging Spectr. V, 203. https://doi.org/10.1117/12.366283 [Crossref] [Google Scholar]
  48. Mende S, Claflin E, Rairden R, Swenson G. 48.  1993. Hadamard spectroscopy with a two-dimensional detecting array. Appl. Opt. 32:7095–105 [Google Scholar]
  49. Gehm ME, McCain ST, Pitsianis NP, Brady DJ, Potuluri P, Sullivan ME. 49.  2006. Static two-dimensional aperture coding for multimodal, multiplex spectroscopy. Appl. Opt. 45:2965–74 [Google Scholar]
  50. Eckhardt CJ, Gross ML. 50.  1970. A proposed technique for signal multiplexing in mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 5:223–27 [Google Scholar]
  51. Brock A, Rodriguez N, Zare RN. 51.  2000. Characterization of a Hadamard transform time-of-flight mass spectrometer. Rev. Sci. Inst. 71:1306–18 [Google Scholar]
  52. Brock A, Rodriguez N, Zare RN. 52.  1998. Hadamard transform time of flight mass spectrometry. Anal. Chem. 70:3735–41 [Google Scholar]
  53. Lawson CL, Hanson RJ. 53.  1995. Solving Least Squares Problems. Philadelphia, PA: SIAM
  54. Chen J, Richard C, Bermudez JCM, Honeine P. 54.  2011. Nonnegative least-mean-square algorithm. IEEE Trans. Signal Process. 59:5225–35 [Google Scholar]
  55. Fish D, Walker J, Brinicombe A, Pike E. 55.  1995. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 12:58–65 [Google Scholar]
  56. Beck A, Teboulle M. 56.  2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2:183–202 [Google Scholar]
  57. Mattauch J, Herzog R. 57.  1934. Über einen neuen Massenspektrographen. Z. Phys. 89:786–95 [Google Scholar]
  58. Bainbridge KT, Jordan EB. 58.  1936. Mass spectrum analysis 1. The mass spectrograph. 2. The existence of isobars of adjacent elements. Phys. Rev. 50:282–96 [Google Scholar]
  59. Hinterberger H, Konig LA. 59.  1959. Mass spectrometers and mass spectrographs corrected for image defects. Advances in Mass Spectrometry JD Waldron 16–35 London: Pergamon [Google Scholar]
  60. Bleakney W, Hipple JA Jr. 60.  1938. A new mass spectrometer with improved focusing properties. Phys. Rev. 53:521–29 [Google Scholar]
  61. Burgoyne TW, Hieftje GM. 61.  1996. An introduction to ion optics for the mass spectrograph. Mass Spectrom. Rev. 15:241–59 [Google Scholar]
  62. Knight AK, Sperline RP, Hieftje GM, Young E, Barinaga CJ. 62.  et al. 2002. The development of a micro-Faraday array for ion detection. Int. J. Mass Spectrom. 215:131–39 [Google Scholar]
  63. Felton JA, Schilling GD, Ray SJ, Sperline RP, Denton MB. 63.  et al. 2011. Evaluation of a fourth-generation focal plane camera for use in plasma-source mass spectrometry. J. Anal. Atom. Spectrom. 26:300–4 [Google Scholar]
  64. Hadjar O, Johnson G, Laskin J, Kibelka G, Shill S. 64.  et al. 2011. IonCCD™ for direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions. J. Am. Soc. Mass Spectr. 22:612–23 [Google Scholar]
  65. Sinha M, Tomassian A. 65.  1991. Development of a miniaturized, light‐weight magnetic sector for a field‐portable mass spectrograph. Rev. Sci. Inst. 62:2618–20 [Google Scholar]
  66. Nishiguchi M, Ishihara M, Katakuse I, Toyoda M. 66.  2008. Ion optical evaluation of a miniature double-focusing mass spectrograph. Eur. Mass Spectrom. 14:7–15 [Google Scholar]
  67. Burgoyne TW, Hieftje GM, Hites RA. 67.  1997. Design and performance of a plasma-source mass spectrograph. J. Am. Soc. Mass Spectr. 8:307–18 [Google Scholar]
  68. Engelhard C. 68.  2011. Inductively coupled plasma mass spectrometry: recent trends and developments. Anal. Bioanal. Chem. 399:213–19 [Google Scholar]
  69. de Chambost E. 69.  2011. A history of Cameca (1954–2009). Adv. Imaging Electron Phys. 167:1–113 [Google Scholar]
  70. Hemond H, Mueller A, Hemond M. 70.  2008. Field testing of lake water chemistry with a portable and an AUV-based mass spectrometer. J. Am. Soc. Mass Spectr. 19:1403–10 [Google Scholar]
  71. Hemond H, Camilli R. 71.  2002. NEREUS: engineering concept for an underwater mass spectrometer. TRAC Trends Anal. Chem. 21:526–33 [Google Scholar]
  72. Camilli R, Hemond HF. 72.  2004. NEREUS/kemonaut, a mobile autonomous underwater mass spectrometer. TRAC Trends Anal. Chem. 23:307–13 [Google Scholar]
  73. Hemond HF. 73.  1991. A backpack-portable mass spectrometer for measurement of volatile compounds in the environment. Rev. Sci. Inst. 62:1420–25 [Google Scholar]
  74. Halbach K. 74.  1980. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 169:1–10 [Google Scholar]
  75. Stelter RE. 75.  1997. Dipole permanent magnet structure. US Patent No. 5635889
  76. Stevie FA. 76.  2015. Secondary Ion Mass Spectrometry: Applications for Depth Profiling and Surface Characterization. New York: Momentum
  77. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C. 77.  et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:436–42 [Google Scholar]
  78. Platzner IT. 78.  1997. Modern Isotope Ratio Mass Spectrometry. Chichester, UK: Wiley

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error