The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen–antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Pier GB, Lyczak JB, Wetzler LM. 1.  2004. Immunology, Infection, and Immunity Washington, DC: ASM
  2. Woof JM, Burton DR. 2.  2004. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4:89–99 [Google Scholar]
  3. Litman GW, Rast JP, Shamblott MJ, Haire RN, Hulst M. 3.  et al. 1993. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol. Biol. Evol. 10:60–72 [Google Scholar]
  4. Kuhn P, Fühner V, Unkauf T, Moreira GM, Frenzel A. 4.  et al. 2016. Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteom. Clin. Appl. 10:922–48 [Google Scholar]
  5. Waldmann H. 5.  2000. Prospects for the application of antibodies in medicine. Methods Mol. Med. 40:63–72 [Google Scholar]
  6. Rhodes KJ, Trimmer JS. 6.  2006. Antibodies as valuable neuroscience research tools versus reagents of mass distraction. J. Neurosci. 26:8017–20 [Google Scholar]
  7. Gebauer M, Skerra A. 7.  2009. Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13:245–55 [Google Scholar]
  8. Steinmeyer DE, McCormick EL. 8.  2008. The art of antibody process development. Drug Discov. Today 13:613–18 [Google Scholar]
  9. Holliger P, Hudson PJ. 9.  2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126–36 [Google Scholar]
  10. Deckert PM. 10.  2009. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr. Drug Targets 10:158–75 [Google Scholar]
  11. Weisser NE, Hall JC. 11.  2009. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol. Adv. 27:502–20 [Google Scholar]
  12. Murali R, Greene MI. 12.  2012. Structure based antibody-like peptidomimetics. Pharmaceuticals 5:209–35 [Google Scholar]
  13. Nelson AL. 13.  2010. Antibody fragments: hope and hype. mAbs 2:77–83 [Google Scholar]
  14. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C. 14.  et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:446–48 [Google Scholar]
  15. Harmsen MM, De Haard HJ. 15.  2007. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77:13–22 [Google Scholar]
  16. Sundberg EJ, Mariuzza RA. 16.  2002. Molecular recognition in antibody-antigen complexes. Adv. Protein Chem. 61:119–60 [Google Scholar]
  17. Cortez-Retamozo V, Lauwereys M, Hassanzadeh GG, Gobert M, Conrath K. 17.  et al. 2002. Efficient tumor targeting by single-domain antibody fragments of camels. Int. J. Cancer 98:456–62 [Google Scholar]
  18. Lipovsek D. 18.  2011. Adnectins: engineered target-binding protein therapeutics. Protein Eng. Des. Sel. 24:3–9 [Google Scholar]
  19. Harris MD, Tombelli S, Marazza G, Turner APF. 19.  2012. Affibodies as an alternative to antibodies in biosensors for cancer markers. Woodhead Publ. Ser. Biomater. 45:217–32 [Google Scholar]
  20. Justino CIL, Duarte AC, Rocha-Santos TAP. 20.  2015. Analytical applications of affibodies. Trends Anal. Chem. 65:73–82 [Google Scholar]
  21. Fernandez LA. 21.  2004. Prokaryotic expression of antibodies and affibodies. Curr. Opin. Biotechnol. 15:364–73 [Google Scholar]
  22. Mirecka EA, Hey T, Fiedler U, Rudolph R, Hatzfeld M. 22.  2009. Affilin molecules selected against the human papillomavirus E7 protein inhibit the proliferation of target cells. J. Mol. Biol. 390:710–21 [Google Scholar]
  23. Fiedler E, Fiedler M, Proetzel G, Scheuermann T, Fiedler U, Rudolph R. 23.  2006. Affilin molecules: novel ligands for bioseparation. Food Bioprod. Process. 84:3–8 [Google Scholar]
  24. Ebersbach H, Fiedler E, Scheuermann T, Fiedler M, Stubbs MT. 24.  et al. 2007. Affilin-novel binding molecules based on human γ-B-crystallin, an all β-sheet protein. J. Mol. Biol. 372:172–85 [Google Scholar]
  25. Weidle UH, Auer J, Brinkmann U, Georges G, Tiefenthaler G. 25.  2013. The emerging role of new protein scaffold-based agents for treatment of cancer. Cancer Genom. Proteom. 10:155–68 [Google Scholar]
  26. Löfblom J, Frejd FY, Ståhl S. 26.  2011. Non-immunoglobulin based protein scaffolds. Curr. Opin. Biotechnol. 22:843–48 [Google Scholar]
  27. Škrlec K, Štrukelj B, Berlec A. 27.  2015. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 33:408–18 [Google Scholar]
  28. Skvortsov VT. 28.  1995. Effects of variable peptides (affimers) of human immunoglobulin light chains on DNA synthesis by lymphoid cells in vitro. Immunologiya 6:18–21 [Google Scholar]
  29. Krehenbrink M, Chami M, Guilvout I, Alzari PM, Pécorari F, Pugsley AP. 29.  2008. Artificial binding proteins (affitins) as probes for conformational changes in secretin PulD. J. Mol. Biol. 383:1058–68 [Google Scholar]
  30. Miranda FF, Brient-Litzler E, Zidane N, Pécorari F, Bedouelle H. 30.  2011. Reagentless fluorescent biosensors from artificial families of antigen binding proteins. Biosens. Bioelectron. 26:4184–90 [Google Scholar]
  31. Béhar G, Pacheco S, Maillasson M, Mouratou B, Pécorari F. 31.  2014. Switching an anti-IgG binding site between archaeal extremophilic proteins results in Affitins with enhanced pH stability. J. Biotechnol. 192:123–29 [Google Scholar]
  32. Béhar G, Bellinzoni M, Maillasson M, Paillard-Laurance L, Alzari PM. 32.  et al. 2013. Tolerance of the archaeal Sac7d scaffold protein to alternative library designs: characterization of anti-immunoglobulin G Affitins. Protein Eng. Des. Sel. 26:267–75 [Google Scholar]
  33. Desmet J, Verstraete K, Bloch Y, Lorent E, Wen Y. 33.  et al. 2014. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nat. Commun. 5:5237 [Google Scholar]
  34. Richter A, Eggenstein E, Skerra A. 34.  2014. Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 588:213–18 [Google Scholar]
  35. Skerra A. 35.  2007. Anticalins as alternative binding proteins for therapeutic use. Curr. Opin. Mol. Ther. 9:336–44 [Google Scholar]
  36. Weiss GA, Lowman HB. 36.  2000. Anticalins versus antibodies: made-to-order binding proteins for small molecules. Chem. Biol. 7:R177–84 [Google Scholar]
  37. Wu X, Chen J, Wu M, Zhao JX. 37.  2015. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–44 [Google Scholar]
  38. Nezlin R. 38.  2014. Aptamers in immunological research. Immunol. Lett. 162:252–55 [Google Scholar]
  39. Li J, Tan S, Chen X, Zhang CY, Zhang Y. 39.  2011. Peptide aptamers with biological and therapeutic applications. Curr. Med. Chem 184215–22 [Google Scholar]
  40. Coates JC. 40.  2003. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13:463–71 [Google Scholar]
  41. Parmeggiani F, Pellarin R, Larsen AP, Varadamsetty G, Stumpp MT. 41.  et al. 2008. Designed armadillo repeat proteins as general peptide-binding scaffolds: consensus design and computational optimization of the hydrophobic core. J. Mol. Biol. 376:1282–304 [Google Scholar]
  42. Varadamsetty G, Tremmel D, Hansen S, Parmeggiani F, Pluckthun A. 42.  2012. Designed Armadillo repeat proteins: library generation, characterization and selection of peptide binders with high specificity. J. Mol. Biol. 424:68–87 [Google Scholar]
  43. Allen JE, Ferrini R, Dicker DT, Batzer G, Chen E. 43.  et al. 2012. Targeting TRAIL death receptor 4 with trivalent DR4 atrimer complexes. Mol. Cancer Ther. 11:2087–95 [Google Scholar]
  44. Jeong KJ, Mabry R, Georgiou G. 44.  2005. Avimers hold their own. Nat. Biotechnol. 23:1493–94 [Google Scholar]
  45. Boersma YL, Plückthun A. 45.  2011. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22:849–57 [Google Scholar]
  46. Stumpp MT, Amstutz P. 46.  2007. DARPins: a true alternative to antibodies. Curr. Opin. Drug Discov. Dev. 10:153–59 [Google Scholar]
  47. Tamaskovic R, Simon M, Stefan N, Schwill M, Plückthun A. 47.  2012. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzymol 503:101–34 [Google Scholar]
  48. Banner DW, Gsell B, Benz J, Bertschinger J, Burger D. 48.  et al. 2013. Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones. Acta Crystallogr. D 69:1124–37 [Google Scholar]
  49. Schlatter D, Brack S, Banner DW, Batey S, Benz J. 49.  et al. 2012. Generation, characterization and structural data of chymase binding proteins based on the human Fyn kinase SH3 domain. MAbs 4:497–508 [Google Scholar]
  50. Moore SJ, Leung CL, Cochran JR. 50.  2012. Knottins: disulfide-bonded therapeutic and diagnostic peptides. Drug Discov. Today Technol. 9:e3–11 [Google Scholar]
  51. Gracy J, Chiche L. 51.  2011. Structure and modeling of knottins, a promising molecular scaffold for drug discovery. Curr. Pharm. Des. 17:4337–50 [Google Scholar]
  52. Sankaran S, de Ruiter M, Cornelissen JJLM, Jonkheijm P. 52.  2015. Supramolecular surface immobilization of knottin derivatives for dynamic display of high affinity binders. Bioconjug. Chem. 26:1972–80 [Google Scholar]
  53. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T. 53.  et al. 2008. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J. Neurochem. 106:1534–44 [Google Scholar]
  54. Regina A, Demeule M, Che C, Lavallee I, Poirier J. 54.  et al. 2008. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 155:85–97 [Google Scholar]
  55. Silacci M, Lembke W, Woods R, Attinger-Toller I, Baenziger-Tobler N. 55.  et al. 2016. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. mAbs 8:141–49 [Google Scholar]
  56. Duan J, Wu J, Valencia CA, Liu R. 56.  2007. Fibronectin type III domain based monobody with high avidity. Biochemistry 46:12656–64 [Google Scholar]
  57. Mann JK, Wood JF, Stephan AF, Tzanakakis ES, Ferkey DM, Park S. 57.  2013. Epitope-guided engineering of monobody binders for in vivo inhibition of Erk-2 signaling. ACS Chem. Biol. 8:608–16 [Google Scholar]
  58. Koide A, Koide S. 58.  2007. Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods Mol. Biol. 352:95–109 [Google Scholar]
  59. Sullivan MA, Brooks LR, Weidenborner P, Domm W, Mattiacio J. 59.  et al. 2013. Anti-idiotypic monobodies derived from a fibronectin scaffold. Biochemistry 52:1802–13 [Google Scholar]
  60. Huet S, Gorre H, Perrocheau A, Picot J, Cinier M. 60.  2015. Use of the Nanofitin alternative scaffold as a GFP-ready fusion tag. PLOS ONE 10:e0142304 [Google Scholar]
  61. Mouratou B, Béhar G, Paillard-Laurance L, Colinet S, Pecorari F. 61.  2012. Ribosome display for the selection of Sac7d scaffolds. Methods Mol. Biol. 805:315–31 [Google Scholar]
  62. Skerra A. 62.  2000. Engineered protein scaffolds for molecular recognition. J. Mol. Recognit. 13:167–87 [Google Scholar]
  63. Skerra A. 63.  2003. Imitating the humoral immune response. Curr. Opin. Chem. Biol. 7:683–93 [Google Scholar]
  64. Sheridan C. 64.  2007. Pharma consolidates its grip on post-antibody landscape. Nat. Biotechnol. 25:365–66 [Google Scholar]
  65. Binz HK, Amstutz P, Plückthun A. 65.  2005. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23:1257–68 [Google Scholar]
  66. Dreier B, Plückthun A. 66.  2011. Ribosome display: a technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 687:283–306 [Google Scholar]
  67. Gai SA, Wittrup KD. 67.  2007. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17:467–73 [Google Scholar]
  68. Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. 68.  2012. Phagemid vectors for phage display: properties, characteristics and construction. J. Mol. Biol. 417:129–43 [Google Scholar]
  69. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M. 69.  2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13:51–76 [Google Scholar]
  70. Boder ET, Midelfort KS, Wittrup KD. 70.  2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. PNAS 97:10701–705 [Google Scholar]
  71. Cirino PC, Mayer KM, Umeno D. 71.  2003. Generating mutant libraries using error-prone PCR. Methods Mol. Biol. 231:3–9 [Google Scholar]
  72. Stemmer WP. 72.  1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–91 [Google Scholar]
  73. Esvelt KM, Carlson JC, Liu DR. 73.  2011. A system for the continuous directed evolution of biomolecules. Nature 472:499–503 [Google Scholar]
  74. Majors BS, Chiang GG, Betenbaugh MJ. 74.  2009. Protein and genome evolution in mammalian cells for biotechnology applications. Mol. Biotechnol. 42:216–23 [Google Scholar]
  75. Pirakitikulr N, Ostrov N, Peralta-Yahya P, Cornish VW. 75.  2010. PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci 19:2336–46 [Google Scholar]
  76. Uhlén M, Guss B, Nilsson B, Gatenbeck S, Philipson L, Lindberg M. 76.  1984. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259:1695–702 [Google Scholar]
  77. Nygren P-Å. 77.  2008. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 275:2668–76 [Google Scholar]
  78. Myers JK, Oas TG. 78.  2001. Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Biol. 8:552–58 [Google Scholar]
  79. Nilsson B, Moks T, Jansson B, Abrahmsén L, Elmblad A. 79.  et al. 1987. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–13 [Google Scholar]
  80. Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjöberg A. 80.  et al. 2010. Design of an optimized scaffold for affibody molecules. J. Mol. Biol. 398:232–47 [Google Scholar]
  81. Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. 81.  2015. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today 20:1271–83 [Google Scholar]
  82. Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY. 82.  2010. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–80 [Google Scholar]
  83. Phelan ML, Nock S. 83.  2003. Generation of bioreagents for protein chips. Proteomics 3:2123–34 [Google Scholar]
  84. Renberg B, Nordin J, Merca A, Uhlén M, Feldwisch J. 84.  et al. 2007. Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J. Proteome Res. 6:171–79 [Google Scholar]
  85. Andersson M, Rönnmark J, Areström I, Nygren P-Å, Ahlborg N. 85.  2003. Inclusion of a non-immunoglobulin binding protein in two-site ELISA for quantification of human serum proteins without interference by heterophilic serum antibodies. J. Immunol. Methods 283:225–34 [Google Scholar]
  86. Nord K, Gunneriusson E, Uhlén M, Nygren P-Å. 86.  2000. Ligands selected from combinatorial libraries of protein A for use in affinity capture of apolipoprotein A-1M and Taq DNA polymerase. J. Biotechnol. 80:45–54 [Google Scholar]
  87. Lyakhov I, Zielinski R, Kuban M, Kramer-Marek G, Fisher R. 87.  et al. 2010. HER2- and EGFR-specific affiprobes: novel recombinant optical probes for cell imaging. ChemBioChem 11:345–50 [Google Scholar]
  88. Lundberg E, Brismar H, Graslund T. 88.  2009. Selection and characterization of Affibody® ligands to the transcription factor c-Jun. Biotechnol. Appl. Biochem. 52:17–27 [Google Scholar]
  89. Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A. 89.  et al. 2010. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med. 51:892–97 [Google Scholar]
  90. Miao Z, Levi J, Cheng Z. 90.  2011. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 41:1037–47 [Google Scholar]
  91. Lee SB, Hassan M, Fisher R, Chertov O, Chernomordik V. 91.  et al. 2008. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin. Cancer Res. 14:3840–49 [Google Scholar]
  92. Gong H, Kovar J, Little G, Chen H, Olive DM. 92.  2010. In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12:139–49 [Google Scholar]
  93. Kinoshita M, Yoshioka Y, Okita Y, Hashimoto N, Yoshimine T. 93.  2010. MR molecular imaging of HER-2 in a murine tumor xenograft by SPIO labeling of anti-HER-2 affibody. Contrast Media Mol. Imaging 5:18–22 [Google Scholar]
  94. Dickinson CD, Veerapandian B, Dai XP, Hamlin RC, Xuong NH. 94.  et al. 1994. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J. Mol. Biol. 236:1079–92 [Google Scholar]
  95. Bloom L, Calabro V. 95.  2009. FN3: a new protein scaffold reaches the clinic. Drug Discov. Today 14:949–55 [Google Scholar]
  96. Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H. 96.  et al. 2014. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther. 350:412–24 [Google Scholar]
  97. Dineen SP, Sullivan LA, Beck AW, Miller AF, Carbon JG. 97.  et al. 2008. The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer. BMC Cancer 8:352 [Google Scholar]
  98. Emanuel SL, Engle LJ, Chao G, Zhu RR, Cao C. 98.  et al. 2011. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. mAbs 3:38–48 [Google Scholar]
  99. Casini N, Forte IM, Mastrogiovanni G, Pentimalli F, Angelucci A. 99.  et al. 2015. SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation. Oncotarget 6:12421–35 [Google Scholar]
  100. Thomas SM, Brugge JS. 100.  1997. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13:513–609 [Google Scholar]
  101. Gulyani A, Vitriol E, Allen R, Wu J, Gremyachinskiy D. 101.  et al. 2011. A biosensor generated via high-throughput screening quantifies cell edge Src dynamics. Nat. Chem. Biol. 7:437–44 [Google Scholar]
  102. Park SH, Park S, Kim DY, Pyo A, Kimura RH. 102.  et al. 2015. Isolation and characterization of a monobody with a fibronectin domain III scaffold that specifically binds EphA2. PLOS ONE 10:e0132976 [Google Scholar]
  103. Colas P, Cohen B, Jessen T, Grishina I, McCoy J, Brent R. 103.  1996. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380:548–50 [Google Scholar]
  104. Schilling J, Schöppe J, Plückthun A. 104.  2014. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J. Mol. Biol. 426:691–721 [Google Scholar]
  105. Stadler LKJ, Hoffmann T, Tomlinson DC, Song Q, Lee T. 105.  et al. 2011. Structure-function studies of an engineered scaffold protein derived from Stefin A. II: development and applications of the SQT variant. Protein Eng. Des. Sel. 24:751–63 [Google Scholar]
  106. Johnson A, Song Q, Ko Ferrigno P, Bueno PR, Davis JJ. 106.  2012. Sensitive affimer and antibody based impedimetric label-free assays for C-reactive protein. Anal. Chem. 84:6553–60 [Google Scholar]
  107. Straw S, Ko Ferrigno P, Song Q, Tomlinson D, Galdo FD. 107.  2013. Proof of concept study to identify candidate biomarkers of fibrosis using high throughput peptide aptamer microarray and validate by enzyme linked immunosorbant assay. J. Biomed. Sci. Eng 6:32–42 [Google Scholar]
  108. Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ko Ferrigno P. 108.  2009. Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Anal. Chem. 81:3314–20 [Google Scholar]
  109. Murray E, McKenna EO, Burch LR, Dillon J, Langridge-Smith P. 109.  et al. 2007. Microarray-formatted clinical biomarker assay development using peptide aptamers to anterior gradient-2. Biochemistry 46:13742–51 [Google Scholar]
  110. Peters WB, Edmondson SP, Shriver JW. 110.  2004. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. J. Mol. Biol. 343:339–60 [Google Scholar]
  111. Edmondson SP, Shriver JW. 111.  2001. DNA-binding proteins Sac7d and Sso7d from Sulfolobus. . Methods Enzymol. 334:129–45 [Google Scholar]
  112. Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L. 112.  et al. 1998. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat. Struct. Biol. 5:782–86 [Google Scholar]
  113. Su S, Gao YG, Robinson H, Liaw YC, Edmondson SP. 113.  et al. 2000. Crystal structures of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base-pairs. J. Mol. Biol. 303:395–403 [Google Scholar]
  114. Béhar G, Renodon-Cornière A, Mouratou B, Pécorari F. 114.  2016. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins. J. Chromatogr. A 1441:44–51 [Google Scholar]
  115. Du ZP, Wu BL, Wu X, Lin XH, Qiu XY. 115.  et al. 2015. A systematic analysis of human lipocalin family and its expression in esophageal carcinoma. Sci. Rep. 5:12010 [Google Scholar]
  116. Schiefner A, Skerra A. 116.  2015. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc. Chem. Res. 48:976–85 [Google Scholar]
  117. Terwisscha van Scheltinga AGT, Lub-de Hooge MN, Hinner MJ, Verheijen RB, Allersdorfer A. 117.  et al. 2014. In vivo visualization of MET tumor expression and anticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer. J. Nucl. Med. 55:665–71 [Google Scholar]
  118. Steiner M, Gutbrodt K, Krall N, Neri D. 118.  2013. Tumor-targeting antibody-anticalin fusion proteins for in vivo pretargeting applications. Bioconjug. Chem. 24:234–41 [Google Scholar]
  119. Nielsen BB, Kastrup JS, Rasmussen H, Holtet TL, Graversen JH. 119.  et al. 1997. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an α-helical coiled coil. FEBS Lett 412:388–96 [Google Scholar]
  120. Zelensky AN, Gready JE. 120.  2005. The C-type lectin-like domain superfamily. FEBS J 272:6179–217 [Google Scholar]
  121. Byla P, Andersen MH, Holtet TL, Jacobsen H, Munch M. 121.  et al. 2010. Selection of a novel and highly specific tumor necrosis factor α (TNFα) antagonist: insight from the crystal structure of the antagonist-TNFα complex. J. Biol. Chem. 285:12096–100 [Google Scholar]
  122. Rohn J. 122.  2010. Newsmaker: anaphore. Nat. Biotechnol. 28:1143 [Google Scholar]
  123. Huang W, Dolmer K, Gettins PG. 123.  1999. NMR solution structure of complement-like repeat CR8 from the low density lipoprotein receptor-related protein. J. Biol. Chem. 274:14130–36 [Google Scholar]
  124. North CL, Blacklow SC. 124.  1999. Structural independence of ligand-binding modules five and six of the LDL receptor. Biochemistry 38:3926–35 [Google Scholar]
  125. Silverman J, Liu Q, Bakker A, To W, Duguay A. 125.  et al. 2005. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23:1556–61 [Google Scholar]
  126. Smith R, Duguay A, Bakker A, Li P, Weiszmann J. 126.  et al. 2013. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-Klotho bispecific protein. PLOS ONE 8:e61432 [Google Scholar]
  127. Grabulovski D, Kaspar M, Neri D. 127.  2007. A novel, non-immunogenic Fyn SH3-derived binding protein with tumor vascular targeting properties. J. Biol. Chem. 282:3196–204 [Google Scholar]
  128. Brack S, Attinger-Toller I, Schade B, Mourlane F, Klupsch K. 128.  et al. 2014. A bispecific HER2-targeting FynomAb with superior antitumor activity and novel mode of action. Mol. Cancer Ther. 13:2030–39 [Google Scholar]
  129. Tewari R, Bailes E, Bunting KA, Coates JC. 129.  2010. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–81 [Google Scholar]
  130. Reichen C, Madhurantakam C, Plückthun A, Mittl PR. 130.  2014. Crystal structures of designed armadillo repeat proteins: implications of construct design and crystallization conditions on overall structure. Protein Sci 23:1572–83 [Google Scholar]
  131. Reichen C, Hansen S, Plückthun A. 131.  2014. Modular peptide binding: from a comparison of natural binders to designed armadillo repeat proteins. J. Struct. Biol. 185:147–62 [Google Scholar]
  132. Hosse RJ, Rothe A, Power BE. 132.  2006. A new generation of protein display scaffolds for molecular recognition. Protein Sci 15:14–27 [Google Scholar]
  133. Schmidt AE, Chand HS, Cascio D, Kisiel W, Bajaj SP. 133.  2005. Crystal structure of Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in complex with trypsin. Implications for KD1 specificity of inhibition. J. Biol. Chem. 280:27832–38 [Google Scholar]
  134. Zoller F, Haberkorn U, Mier W. 134.  2011. Miniproteins as phage display-scaffolds for clinical applications. Molecules 16:2467–85 [Google Scholar]
  135. Kolmar H. 135.  2009. Biological diversity and therapeutic potential of natural and engineered cystine knot miniproteins. Curr. Opin. Pharmacol. 9:608–14 [Google Scholar]
  136. Heitz A, Avrutina O, Le-Nguyen D, Diederichsen U, Hernandez JF. 136.  et al. 2008. Knottin cyclization: impact on structure and dynamics. BMC Struct. Biol. 8:54 [Google Scholar]
  137. Schmidtko A, Lötsch J, Freynhagen R, Geisslinger G. 137.  2010. Ziconotide for treatment of severe chronic pain. Lancet 375:1569–77 [Google Scholar]
  138. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M. 138.  et al. 2007. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882–88 [Google Scholar]
  139. Lyons SA, O'Neal J, Sontheimer H. 139.  2002. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39:162–73 [Google Scholar]
  140. Moore SJ, Hayden Gephart MG, Bergen JM, Su YS, Rayburn H. 140.  et al. 2013. Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma. PNAS 110:14598–603 [Google Scholar]
  141. Moore SJ, Leung CL, Norton HK, Cochran JR. 141.  2013. Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLOS ONE 8:e60498 [Google Scholar]
  142. Kimura RH, Jones DS, Jiang L, Miao Z, Cheng Z, Cochran JR. 142.  2011. Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLOS ONE 6:e16112 [Google Scholar]
  143. Liu S, Liu H, Ren G, Kimura RH, Cochran JR, Cheng Z. 143.  2011. PET imaging of integrin positive tumors using 18F labeled knottin peptides. Theranostics 1:403–12 [Google Scholar]
  144. Jiang L, Kimura RH, Ma X, Tu Y, Miao Z. 144.  et al. 2014. A radiofluorinated divalent cystine knot peptide for tumor PET imaging. Mol. Pharm. 11:3885–92 [Google Scholar]
  145. Li H, Bowling JJ, Su M, Hong J, Lee BJ. 145.  et al. 2014. Asteropsins B-D, sponge-derived knottins with potential utility as a novel scaffold for oral peptide drugs. Biochim. Biophys. Acta 1840:977–84 [Google Scholar]
  146. Cox N, Kintzing JR, Smith M, Grant GA, Cochran JR. 146.  2016. Integrin-targeting knottin peptide-drug conjugates are potent inhibitors of tumor cell proliferation. Angew. Chem. Int. Ed. 55:9894–97 [Google Scholar]
  147. Merz T, Wetzel SK, Firbank S, Plückthun A, Grütter MG, Mittl PR. 147.  2008. Stabilizing ionic interactions in a full-consensus ankyrin repeat protein. J. Mol. Biol. 376:232–40 [Google Scholar]
  148. Moody P, Chudasama V, Nathani RI, Maruani A, Martin S. 148.  et al. 2014. A rapid, site-selective and efficient route to the dual modification of DARPins. Chem. Commun. 50:4898–900 [Google Scholar]
  149. Goldstein R, Sosabowski J, Livanos M, Leyton J, Vigor K. 149.  et al. 2015. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 42:288–301 [Google Scholar]
  150. Eggel A, Baumann MJ, Amstutz P, Stadler BM, Vogel M. 150.  2009. DARPins as bispecific receptor antagonists analyzed for immunoglobulin E receptor blockage. J. Mol. Biol. 393:598–607 [Google Scholar]
  151. Stefan N, Martin-Killias P, Wyss-Stoeckle S, Honegger A, Zangemeister-Wittke U, Plückthun A. 151.  2011. DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J. Mol. Biol. 413:826–43 [Google Scholar]
  152. Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A. 152.  2013. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21:1979–91 [Google Scholar]
  153. Münch RC, Janicki H, Völker I, Rasbach A, Hallek M. 153.  et al. 2013. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol. Ther. 21:109–18 [Google Scholar]
  154. Münch RC, Muth A, Muik A, Friedel T, Schmatz J. 154.  et al. 2015. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat. Commun. 6:6246 [Google Scholar]
  155. Dreier B, Honegger A, Hess C, Nagy-Davidescu G, Mittl PR. 155.  et al. 2013. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. PNAS 110:E869–77 [Google Scholar]
  156. Simon M, Frey R, Zangemeister-Wittke U, Plückthun A. 156.  2013. Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug. Chem. 24:1955–66 [Google Scholar]
  157. Simon M, Zangemeister-Wittke U, Plückthun A. 157.  2012. Facile double-functionalization of designed ankyrin repeat proteins using click and thiol chemistries. Bioconjug. Chem. 23:279–86 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error