1932

Abstract

Molecular plasmonics uses and explores molecule–plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045325
2017-06-12
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045325.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045325&mimeType=html&fmt=ahah

Literature Cited

  1. Ritchie RH. 1.  1957. Plasma losses by fast electrons in thin films. Phys. Rev. 106:5874–81 [Google Scholar]
  2. Barnes WL, Dereux A, Ebbesen TW. 2.  2003. Surface plasmon subwavelength optics. Nature 424:6950824–30 [Google Scholar]
  3. Xu H, Bjerneld EJ, Käll M, Börjesson L. 3.  1999. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83:214357–60 [Google Scholar]
  4. Mayer KM, Hafner JH. 4.  2011. Localized surface plasmon resonance sensors. Chem. Rev. 111:63828–57 [Google Scholar]
  5. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 5.  2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:6442–53 [Google Scholar]
  6. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. 6.  2008. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1:1601–26 [Google Scholar]
  7. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. 7.  1998. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:6668667–69 [Google Scholar]
  8. MacDonald KF, Zheludev NI. 8.  2010. Active plasmonics: current status. Laser Photonics Rev 4:4562–67 [Google Scholar]
  9. Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML. 9.  2010. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9:3193–204 [Google Scholar]
  10. Nishida M, Hatakenaka N, Kadoya Y. 10.  2015. Multipole surface plasmons in metallic nanohole arrays. Phys. Rev. B 91:23235406 [Google Scholar]
  11. Barnes WL, Preist TW, Kitson SC, Sambles JR. 11.  1996. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B. 54:96227–44 [Google Scholar]
  12. Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici NAP, Maystre D. 12.  2007. Enhanced SPR sensitivity using periodic metallic structures. Opt. Express 15:138163–69 [Google Scholar]
  13. Volkov VS, Bozhevolnyi SI, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ. 13.  et al. 2009. Nanofocusing with channel plasmon polaritons. Nano Lett 9:31278–82 [Google Scholar]
  14. Chumanov G, Sokolov K, Cotton TM. 14.  1996. Unusual extinction spectra of nanometer-sized silver particles arranged in two-dimensional arrays. J. Phys. Chem. 100:5166–68 [Google Scholar]
  15. Quinten M, Leitner A, Krenn JR, Aussenegg FR. 15.  1998. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23:171331–33 [Google Scholar]
  16. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E. 16.  et al. 2003. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2:4229–32 [Google Scholar]
  17. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS. 17.  et al. 2007. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:7168402–6 [Google Scholar]
  18. Paul A, Zhen Y-R, Wang Y, Chang W-S, Xia Y. 18.  et al. 2014. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. Nano Lett 14:63628–33 [Google Scholar]
  19. Lal S, Hafner JH, Halas NJ, Link S, Nordlander P. 19.  2012. Noble metal nanowires: from plasmon waveguides to passive and active devices. Acc. Chem. Res. 45:111887–95 [Google Scholar]
  20. Guo X, Ying Y, Tong L. 20.  2014. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res. 47:2656–66 [Google Scholar]
  21. Dionne JA, Sweatlock LA, Atwater HA, Polman A. 21.  2005. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72:775405 [Google Scholar]
  22. Naik GV, Shalaev VM, Boltasseva A. 22.  2013. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25:243264–94 [Google Scholar]
  23. Ozbay E. 23.  2006. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:5758189–93 [Google Scholar]
  24. Gramotnev DK, Bozhevolnyi SI. 24.  2010. Plasmonics beyond the diffraction limit. Nat. Photonics 4:283–91 [Google Scholar]
  25. Gwo S, Chen H, Lin M, Li X. 25.  2016. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem. Soc. Rev. 45:5672–716 [Google Scholar]
  26. Manfrinato VR, Zhang L, Su D, Duan H, Hobbs RG. 26.  et al. 2013. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 13:41555–58 [Google Scholar]
  27. Wanzenboeck HD, Waid S. 27.  2011. Focused ion beam lithography, recent advances. Recent Advances in Nanofabrication Techniques and Applications B Cui 27–50 Rijeka, Croat.: InTech [Google Scholar]
  28. Le Ru EC, Etchegoin PG, Grand J, Félidj N, Aubard J. 28.  et al. 2008. Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr. Appl. Phys. 8:3–4467–70 [Google Scholar]
  29. Kim SE, Han Y-H, Lee B, Lee J-C. 29.  2010. One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation. Nanotechnology 21:775302 [Google Scholar]
  30. Gole A, Orendorff CJ, Murphy CJ. 30.  2004. Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions. Langmuir 20:177117–22 [Google Scholar]
  31. Leroux Y, Eang E, Fave C, Trippe G, Lacroix JC. 31.  2007. Conducting polymer/gold nanoparticle hybrid materials: a step toward electroactive plasmonic devices. Electrochem. Commun. 9:61258–62 [Google Scholar]
  32. Mathias B, Donald B, Christopher JK, David JS. 32.  1998. Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:195425–29 [Google Scholar]
  33. Okamoto T, Yamaguchi I, Kobayashi T. 33.  2000. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt. Lett. 25:6372–74 [Google Scholar]
  34. Lombardi A, Grzelczak MP, Crut A, Maioli P, Pastoriza-Santos I. 34.  et al. 2013. Optical response of individual Au-Ag@SiO2 heterodimers. ACS Nano 7:32522–31 [Google Scholar]
  35. Toyama S, Takei O, Tsuge M, Usami R, Horikoshi K, Kato S. 35.  2002. Surface plasmon resonance of electrochemically deposited Au-black. Electrochem. Commun. 4:7540–44 [Google Scholar]
  36. Tian Y, Liu H, Zhao G, Tetsu T. 36.  2006. Shape-controlled electrodeposition of gold nanostructures. J. Phys. Chem. B. 110:4623478–81 [Google Scholar]
  37. El-Deab MS, Sotomura T, Ohsaka T. 37.  2005. Morphological selection of gold nanoparticles electro-deposited on various substrates. J. Electrochem. Soc. 152:11730–37 [Google Scholar]
  38. Nguyen V-Q, Schaming D, Martin P, Lacroix J-C. 38.  2015. Large-area plasmonic electrodes and active plasmonic devices generated by electrochemical processes. Electrochim. Acta 179:282–87 [Google Scholar]
  39. Nguyen V-Q, Schaming D, Martin P, Lacroix J-C. 39.  2016. Comparing plasmonic electrodes prepared by electron-beam lithography and electrochemical reduction of an Au (III) salt: application in active plasmonic devices. Adv. Nat. Sci. Nanosci. Nanotechnol. 7:115005 [Google Scholar]
  40. Ariga K, Yamauchi Y, Mori T, Hill JP. 40.  2013. 25th anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 25:456477–512 [Google Scholar]
  41. Chen X, Lenhert S, Hirtz M, Lu N, Fuchs H, Chi L. 41.  2007. Langmuir-Blodgett patterning: a bottom-up way to build mesostructures over large areas. Acc. Chem. Res. 40:6393–401 [Google Scholar]
  42. Chen C-F, Tzeng S-D, Chen H-Y, Lin K-J, Gwo S. 42.  2008. Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling. J. Am. Chem. Soc. 130:3824–26 [Google Scholar]
  43. Lin M-H, Chen H-Y, Gwo S. 43.  2010. Layer-by-layer assembly of three-dimensional colloidal supercrystals with tunable plasmonic properties. J. Am. Chem. Soc. 132:3211259–63 [Google Scholar]
  44. Glass R, Arnold M, Blümmel J, Küller A, Moller M, Spatz JP. 44.  2003. Micro-nanostructured interfaces fabricated by the use of inorganic block copolymer micellar monolayers as negative resist for electron-beam lithography. Adv. Funct. Mater. 13:7569–75 [Google Scholar]
  45. Geldmeyer J, Mahmoud M, Jeon J-W, El-Sayed MA, Tsukruk VV. 45.  2016. The effect of plasmon resonance coupling in P3HT-coated silver nanodisk monolayers on their optical sensitivity. J. Mater. Chem. C. 4:9813–22 [Google Scholar]
  46. Reuter T, Vidoni O, Torma V, Schmid G, Nan L. 46.  et al. 2002. Two-dimensional networks via quasi one-dimensional arrangements of gold clusters. Nano Lett. 2:7709–11 [Google Scholar]
  47. Mahmoud MA. 47.  2015. Effective optoelectrical switching by using pseudo-single crystal of monolayer array of 2D polymer-plasmonic nanoparticles system. J. Phys. Chem. C 119:5229095–104 [Google Scholar]
  48. Frascaroli J, Seguini G, Spiga S, Perego M, Boarino L. 48.  2015. Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO2 substrates. Nanotechnology 26:21215301 [Google Scholar]
  49. Jiang L, Chen X, Lu N, Chi L. 49.  2014. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 47:3009–17 [Google Scholar]
  50. Nakao H, Shiigi H, Yamamoto Y, Tokonami S, Nagaoka T. 50.  et al. 2003. Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett 3:101391–94 [Google Scholar]
  51. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. 51.  2011. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111:63736–827 [Google Scholar]
  52. Young KL, Ross MB, Blaber MG, Rycenga M, Jones MR. 52.  et al. 2014. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater. 26:4653–59 [Google Scholar]
  53. Holzner F, Kuemin C, Paul P, Hedrick JL, Wolf H. 53.  et al. 2011. Directed placement of gold nanorods using a removable template for guided assembly. Nano Lett 11:93957–62 [Google Scholar]
  54. Chen CF, Tzeng S Der, Lin MH, Gwo S. 54.  2006. Electrostatic assembly of gold colloidal nanoparticles on organosilane monolayers patterned by microcontact electrochemical conversion. Langmuir 22:187819–24 [Google Scholar]
  55. Jiang L, Wang W, Fuchs H, Chi L. 55.  2009. One-dimensional arrangement of gold nanoparticles with tunable interparticle distance. Small 5:242819–22 [Google Scholar]
  56. Jiang L, Sun Y, Nowak C, Kibrom A, Zou C. 56.  et al. 2011. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 5:108288–94 [Google Scholar]
  57. Jiang L, Zou C, Zhang Z, Sun Y, Jiang Y. 57.  et al. 2014. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 10:3609–16 [Google Scholar]
  58. Vogel N, Retsch M, Fustin C-A, del Campo A, Jonas U. 58.  2015. Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. Chem. Rev. 115:136265–311 [Google Scholar]
  59. Zheng H, Ravaine S. 59.  2016. Bottom-up assembly and applications of photonic materials. Crystals 6:51–54 [Google Scholar]
  60. Ye X, Qi L. 60.  2011. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: controllable fabrication, assembly, and applications. Nano Today 6:6608–31 [Google Scholar]
  61. Haes AJ, Haynes CL, McFarland AD, Schatz GC. 61.  2005. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–75 [Google Scholar]
  62. Tabatabaei M, Sangar A, Kazemi-Zanjani N, Torchio P, Merlen A, Lagugné-Labarthet F. 62.  2013. Optical properties of silver and gold tetrahedral nanopyramid arrays prepared by nanosphere lithography. J. Phys. Chem. C 117:2814778–86 [Google Scholar]
  63. Wang B, Han M-Y, Chua S-J. 63.  2014. A facile one-step approach to epitaxially grow periodic arrays of InGaAs/GaAs nanobars by metal-organic chemical vapor deposition: from site control to size control. Cryst. Growth Des. 14:126550–56 [Google Scholar]
  64. Yang S, Slotcavage D, Mai JD, Liang W, Xie Y. 64.  et al. 2014. Combining the masking and scaffolding modalities of colloidal crystal templates: plasmonic nanoparticle arrays with multiple periodicities. Chem. Mater. 26:226432–38 [Google Scholar]
  65. Bartlett PN, Ghanem MA, El Hallag IS, de Groot P, Zhukov A. 65.  2003. Electrochemical deposition of macroporous magnetic networks using colloidal templates. J. Mater. Chem. 13:102596–602 [Google Scholar]
  66. Nguyen V-Q, Schaming D, Martin P, Lacroix J-C. 66.  2015. Highly resolved nanostructured PEDOT on large areas by nanosphere lithography and electrodeposition. ACS Appl. Mater. Interfaces 7:3921673–81 [Google Scholar]
  67. Lodewijks K, Verellen N, Van Roy W, Moshchalkov V, Borghs G, Van Dorpe P. 67.  2011. Self-assembled hexagonal double fishnets as negative index materials. Appl. Phys. Lett. 98:991101 [Google Scholar]
  68. Vogel N, Goerres S, Landfester K, Weiss CK. 68.  2011. A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air-water interface and subsequent plasma-induced size reduction. Macromol. Chem. Phys. 212:161719–34 [Google Scholar]
  69. Hanarp P, Käll M, Sutherland DS. 69.  2003. Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B. 107:245768–72 [Google Scholar]
  70. Walter R, Tittl A, Berrier A, Sterl F, Weiss T, Giessen H. 70.  2015. Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography. Adv. Opt. Mater. 3:3398–403 [Google Scholar]
  71. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG. 71.  et al. 2005. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J. Phys. Chem. B 109:4722351–58 [Google Scholar]
  72. Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS. 72.  et al. 2007. Hole-mask colloidal lithography. Adv. Mater. 19:234297–302 [Google Scholar]
  73. Chang YC, Chung HC, Lu SC, Guo TF. 73.  2013. A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology 24:995302 [Google Scholar]
  74. Chang Y-C, Lu S-C, Chung H-C, Wang S-M, Tsai T-D, Guo T-F. 74.  2013. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci. Rep. 3:3339 [Google Scholar]
  75. Chang Y-C, Wang S-M, Chung H-C, Tseng C-B, Chang S-H. 75.  2012. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano 6:43390–96 [Google Scholar]
  76. Willets KA, Van Duyne RP. 76.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97 [Google Scholar]
  77. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J. 77.  2005. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:112246–52 [Google Scholar]
  78. Ung T, Giersig M, Dunstan D, Mulvaney P. 78.  1997. Spectroelectrochemistry of colloidal silver. Langmuir 13:61773–82 [Google Scholar]
  79. Chapman R, Mulvaney P. 79.  2001. Electro-optical shifts in silver nanoparticle films. Chem. Phys. Lett. 349:5–6358–62 [Google Scholar]
  80. Wang ZC, Chumanov G. 80.  2003. WO3 sol-gel modified Ag nanoparticle arrays for electrochemical modulation of surface plasmon resonance. Adv. Mater. 15:151285–89 [Google Scholar]
  81. Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Félidj N. 81.  et al. 2005. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 127:4616022–23 [Google Scholar]
  82. Leroux Y, Lacroix JC, Fave C, Trippe G, Félidj N. 82.  et al. 2008. Tunable electrochemical switch of the optical properties of metallic nanoparticles. ACS Nano 2:4728–32 [Google Scholar]
  83. Leroux Y, Lacroix JC, Fave C, Stockhausen V, Félidj N. 83.  et al. 2009. Active plasmonic devices with anisotropic optical response: a step toward active polarizer. Nano Lett 9:52144–48 [Google Scholar]
  84. Namboothiry MAG, Zimmerman T, Coldren FM, Liu J, Kim K, Carroll DL. 84.  2007. Electrochromic properties of conducting polymer metal nanoparticles composites. Synth. Met. 157:13–15580–84 [Google Scholar]
  85. Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H. 85.  et al. 2010. Giant plasmon resonance shift using poly(3,4-ethylenedioxythiophene) electrochemical switching. J. Am. Chem. Soc. 132:3010224–26 [Google Scholar]
  86. Ledin PA, Jeon J-W, Geldmeier JA, Ponder JF, Mahmoud MA. 86.  et al. 2016. Design of hybrid electrochromic materials with large electrical modulation of plasmonic resonances. ACS Appl. Mater. Interfaces 8:2013064–75 [Google Scholar]
  87. Jeon J-W, Ledin PA, Geldmeier JA, Ponder JF, Mahmoud MA. 87.  et al. 2016. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: transparent plasmonic aggregates. Chem. Mater. 28:82868–81 [Google Scholar]
  88. Jiang N, Shao L, Wang J. 88.  2014. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 26:203282–89 [Google Scholar]
  89. Schaming D, Nguyen V-Q, Martin P, Lacroix J-C. 89.  2014. Tunable plasmon resonance of gold nanoparticles functionalized by electroactive bisthienylbenzene oligomers or polythiophene. J. Phys. Chem. C 118:4325158–66 [Google Scholar]
  90. Zheng YB, Yang YW, Jensen L, Fang L, Juluri BK. 90.  et al. 2009. Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9:819–25 [Google Scholar]
  91. Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K. 91.  et al. 2012. Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. Adv. Funct. Mater. 22:4383–88 [Google Scholar]
  92. Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J. 92.  et al. 2016. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7:10479 [Google Scholar]
  93. Jiang N, Ruan Q, Qin F, Wang J, Lin H-Q. 93.  2015. Switching plasmon coupling through the formation of dimers from polyaniline-coated gold nanospheres. Nanoscale 7:2912516–26 [Google Scholar]
  94. Miomandre F, Audibert JF, Zhou Q, Audebert P, Martin P, Lacroix JC. 94.  2013. Electrochemically monitored fluorescence on plasmonic gratings: a first step toward smart displays with multiple inputs. Electrochim. Acta 110:756–62 [Google Scholar]
  95. Müller J, Sönnichsen C, von Poschinger H, von Plessen G, Klar TA. 95.  et al. 2002. Electrically controlled light scattering with single metal nanoparticles. Appl. Phys. Lett. 81:1171–73 [Google Scholar]
  96. Kossyrev PA, Yin AJ, Cloutier SG, Cardimona DA, Huang DH. 96.  et al. 2005. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett 5:101978–81 [Google Scholar]
  97. Olson J, Swanglap P, Chang W-S, Khatua S, Solis D, Link S. 97.  2013. Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. Phys. Chem. Chem. Phys. 15:124195–204 [Google Scholar]
  98. Chu KC, Chao CY, Chen YF, Wu YC, Chen CC. 98.  2006. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 89:10318–23 [Google Scholar]
  99. Dickson W, Wurtz GA, Evans PR, Pollard RJ, Zayats AV. 99.  2008. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 8:1281–86 [Google Scholar]
  100. Khatua S, Chang WS, Swanglap P, Olson J, Link S. 100.  2011. Active modulation of nanorod plasmons. Nano Lett 11:93797–802 [Google Scholar]
  101. Berthelot J, Bouhelier A, Huango C, Margueritat J, Colas-des-Francs G. 101.  et al. 2009. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett 9:3914–21 [Google Scholar]
  102. Chang WS, Lassiter JB, Swanglap P, Sobhani H, Khatua S. 102.  et al. 2012. A plasmonic fano switch. Nano Lett 12:4977–82 [Google Scholar]
  103. Yin A, He Q, Lin Z, Luo L, Liu Y. 103.  et al. 2016. Plasmonic/nonlinear optical material core/shell nanorods as nanoscale plasmon modulators and optical voltage sensors. Angew. Chem. 128:2593–97 [Google Scholar]
  104. Hsieh KC, Chen HL, Wan DH, Shieh J. 104.  2008. Active modulation of surface plasmon resonance wavelengths by applying an electric field to gold nanoparticle-embedded ferroelectric films. J. Phys. Chem. C 112:3111673–78 [Google Scholar]
  105. Švanda J, Kalachyova Y, Slepička P, Švorčík V, Lyutakov O. 105.  2016. Smart component for switching of plasmon resonance by external electric field. ACS Appl. Mater. Interfaces 8:1225–31 [Google Scholar]
  106. Tokarev I, Minko S. 106.  2012. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 8:225980–87 [Google Scholar]
  107. Ahonen P, Schiffrin DJ, Paprotny J, Kontturi K. 107.  2007. Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand. Phys. Chem. Chem. Phys. 9:5651–58 [Google Scholar]
  108. Housni A, Zhao Y. 108.  2010. Using polymers to photoswitch the aggregation state of gold nanoparticles in aqueous solution. Langmuir 26:1412366–70 [Google Scholar]
  109. Kimoto A, Iwasaki K, Abe J. 109.  2010. Formation of photoresponsive gold nanoparticle networks via click chemistry. Photochem. Photobiol. Sci. 9:2152–56 [Google Scholar]
  110. Zheng YB, Hsiao VKS, Huang TJ. 110.  2008. All-optical active plasmonics based on ordered Au nanodisk array embedded in photoresponsive liquid crystals. MRS Proc 1077:2121–26 [Google Scholar]
  111. Kawai T, Nakamura S, Sumi A, Kondo T. 111.  2008. Control of dispersion-coagulation behavior of Au nanoparticles capped with azobenzene-derivatized alkanethiol in a mixed chloroform-ethanol solvent. Thin Solid Films 516:248926–31 [Google Scholar]
  112. Sidhaye DS, Kashyap S, Sastry M, Hotha S, Prasad BLV. 112.  2005. Gold nanoparticle networks with photoresponsive interparticle spacings. Langmuir 21:57979–84 [Google Scholar]
  113. Hira T, Homma T, Uchiyama T, Kuwamura K, Saiki T. 113.  2013. Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology. Appl. Phys. Lett. 103:24241101 [Google Scholar]
  114. Hira T, Homma T, Uchiyama T, Kuwamura K, Kihara Y, Saiki T. 114.  2015. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium. Appl. Phys. Lett. 106:331105 [Google Scholar]
  115. Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM. 115.  et al. 2007. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small 3:71222–29 [Google Scholar]
  116. Karg M, Hellweg T. 116.  2009. New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr. Opin. Colloid Interface Sci. 14:6438–50 [Google Scholar]
  117. Contreras-Cáceres R, Sánchez-Iglesias A, Karg M, Pastoriza-Santos I, Pérez-Juste J. 117.  et al. 2008. Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv. Mater. 20:91666–70 [Google Scholar]
  118. Sánchez-Iglesias A, Grzelczak M, Rodríguez-González B, Guardia-Girós P, Pastoriza-Santos I. 118.  et al. 2009. Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. ACS Nano 3:103184–90 [Google Scholar]
  119. Gehan H, Mangeney C, Aubard J, Lévi G, Hohenau A. 119.  et al. 2011. Design and optical properties of active polymer-coated plasmonic nanostructures. J. Phys. Chem. Lett. 2:8926–31 [Google Scholar]
  120. Park SY, Stroud D. 120.  2005. Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle. Phys. Rev. Lett. 94:2111–16 [Google Scholar]
  121. Khatua S, Manna P, Chang WS, Tcherniak A, Friedlander E. 121.  et al. 2010. Plasmonic nanoparticles-liquid crystal composites. J. Phys. Chem. C 114:167251–57 [Google Scholar]
  122. Abdul-Kader K, Lopes M, Bartual-Murgui C, Kraieva O, Hernández EM. 122.  et al. 2013. Synergistic switching of plasmonic resonances and molecular spin states. Nanoscale 5:125288–93 [Google Scholar]
  123. Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y. 123.  2001. Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 17:3578–80 [Google Scholar]
  124. Ni W, Chen H, Su J, Sun Z, Wang J, Wu H. 124.  2010. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling. J. Am. Chem. Soc. 132:134806–14 [Google Scholar]
  125. Haes AJ, Zou S, Zhao J, Schatz GC, Van Duyne RP. 125.  et al. 2006. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128:610905–14 [Google Scholar]
  126. Negre CFA, Sánchez CG. 126.  2010. Effect of molecular adsorbates on the plasmon resonance of metallic nanoparticles. Chem. Phys. Lett. 494:4–6255–59 [Google Scholar]
  127. Chen H, Shao L, Woo KC, Wang J, Lin H-Q. 127.  2012. Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer. J. Phys. Chem. C 116:2614088–95 [Google Scholar]
  128. Antosiewicz TJ, Apell SP, Shegai T. 128.  2014. Plasmon-exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photonics 1:5454–63 [Google Scholar]
  129. Zheng YB, Juluri BK, Lin Jensen L, Ahmed D, Lu M. 129.  et al. 2010. Dynamic tuning of plasmon-exciton coupling in arrays of nanodisk-J-aggregate complexes. Adv. Mater. 22:323603–7 [Google Scholar]
  130. Wurtz GA, Evans PR, Hendren W, Atkinson R, Dickson W. 130.  et al. 2007. Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett 7:51297–303 [Google Scholar]
  131. Zheng YB, Kiraly B, Cheunkar S, Huang TJ, Weiss PS. 131.  2011. Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. Nano Lett 11:52061–65 [Google Scholar]
  132. Zhao J, Das A, Schatz GC, Sligar SG, Van Duyne RP. 132.  2008. Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J. Phys. Chem. C 112:3413084–88 [Google Scholar]
  133. Witlicki EH, Andersen SS, Hansen SW, Jeppesen JO, Wong EW. 133.  et al. 2010. Turning on resonant SERRS using the chromophore-plasmon coupling created by host-guest complexation at a plasmonic nanoarray. J. Am. Chem. Soc. 132:176099–107 [Google Scholar]
  134. Chen K, Leong ESP, Rukavina M, Nagao T, Liu YJ, Zheng Y. 134.  2015. Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions. Nanophotonics 4:1186–97 [Google Scholar]
  135. Sun Y, Jiang L, Zhong L, Jiang Y, Chen X. 135.  2015. Towards active plasmonic response devices. Nano Res 8:2406–17 [Google Scholar]
  136. Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T. 136.  2015. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 114:15157401 [Google Scholar]
  137. Kale MJ, Avanesian T, Christopher P. 137.  2014. Direct photocatalysis by plasmonic nanostructures. ACS Catal 4:1116–28 [Google Scholar]
  138. Zhang P, Wang T, Gong J. 138.  2015. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27:365328–42 [Google Scholar]
  139. Atwater HA, Polman A. 139.  2010. Plasmonics for improved photovoltaic devices. Nat. Mater. 9:3205–13 [Google Scholar]
  140. Liu D, Yang D, Gao Y, Ma J, Long R. 140.  et al. 2016. Flexible near-infrared photovoltaic devices based on plasmonic hot-electron injection into silicon nanowire arrays. Angew. Chem. Int. Ed. 55:144577–81 [Google Scholar]
  141. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. 141.  2004. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3:9601–5 [Google Scholar]
  142. Lozano G, Louwers DJ, Rodríguez SR, Murai S, Jansen OT. 142.  et al. 2013. Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2:5e66 [Google Scholar]
  143. Wang T, Nijhuis CA. 143.  2016. Molecular electronic plasmonics. Appl. Mater. Today 3:73–86 [Google Scholar]
  144. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. 144.  2004. Plasmon hybridization in nanoparticle dimers. Nano Lett 4:5899–903 [Google Scholar]
  145. Prodan E. 145.  2003. A hybridization model for the plasmon response of complex nanostructures. Science 302:5644419–22 [Google Scholar]
  146. Jain PK, Huang W, El-Sayed MA. 146.  2007. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:72080–88 [Google Scholar]
  147. Sheikholeslami S, Jun Y, Jain PK, Alivisatos AP. 147.  2010. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:72655–60 [Google Scholar]
  148. Zuloaga J, Prodan E, Nordlander P. 148.  2009. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 9:2887–91 [Google Scholar]
  149. Wen F, Zhang Y, Gottheim S, King NS, Zhang Y. 149.  et al. 2015. Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9:66428–35 [Google Scholar]
  150. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. 150.  2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105:41103–70 [Google Scholar]
  151. Cha H, Yoon JH, Yoon S. 151.  2014. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. ACS Nano 8:88554–63 [Google Scholar]
  152. Benz F, Tserkezis C, Herrmann LO, de Nijs B, Sanders A. 152.  et al. 2015. Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett 15:1669–74 [Google Scholar]
  153. Bürkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schön G. 153.  et al. 2012. Conduction mechanisms in biphenyl dithiol single-molecule junctions. Phys. Rev. B 85:71–12 [Google Scholar]
  154. Tan SF, Wu L, Yang JKW, Bai P, Bosman M, Nijhuis CA. 154.  2014. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343:61781496–99 [Google Scholar]
  155. Rossel F, Pivetta M, Schneider W-D. 155.  2010. Luminescence experiments on supported molecules with the scanning tunneling microscope. Surf. Sci. Rep. 65:5129–44 [Google Scholar]
  156. Schull G, Néel N, Johansson P, Berndt R. 156.  2009. Electron-plasmon and electron-electron interactions at a single atom contact. Phys. Rev. Lett. 102:557401 [Google Scholar]
  157. Berndt R, Gaisch R, Gimzewski JK, Reihl B, Schlittler RR. 157.  et al. 1993. Photon emission at molecular resolution induced by a scanning tunneling microscope. Science 262:51381425–27 [Google Scholar]
  158. Zhu S-E, Kuang Y-M, Geng F, Zhu J-Z, Wang C-Z. 158.  et al. 2013. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 135:4215794–800 [Google Scholar]
  159. Govorov AO, Zhang H, Demir HV, Gun'ko YK. 159.  2014. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9:185–101 [Google Scholar]
  160. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J. 160.  et al. 2002. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88:777402 [Google Scholar]
  161. Wu K, Rodríguez-Córdoba WE, Yang Y, Lian T. 161.  2013. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett 13:115255–63 [Google Scholar]
  162. Wu K, Chen J, McBride JR, Lian T. 162.  2015. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349:6248632–35 [Google Scholar]
  163. Boerigter C, Campana R, Morabito M, Linic S. 163.  2016. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7:10545 [Google Scholar]
  164. Boerigter C, Aslam U, Linic S. 164.  2016. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10:66108–15 [Google Scholar]
  165. Babenko DI, Ezhov AA, Turygin DS, Ivanov VK, Arslanov VV, Kalinina MA. 165.  2012. 2D “soap”-assembly of nanoparticles via colloid-induced condensation of mixed langmuir monolayers of fatty surfactants. Langmuir 28:1125–33 [Google Scholar]
  166. Wu W, Katsnelson A, Memis OG, Mohseni H. 166.  2007. A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology 18:48485302 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045325
Loading
/content/journals/10.1146/annurev-anchem-061516-045325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error