Circulating tumor cells (CTCs) are shed from the primary tumor into the circulatory system and act as seeds that initiate cancer metastasis to distant sites. CTC enumeration has been shown to have a significant prognostic value as a surrogate marker in various cancers. The widespread clinical utility of CTC tests, however, is still limited due to the inherent rarity and heterogeneity of CTCs, which necessitate robust techniques for their efficient enrichment and detection. Significant recent advances have resulted in technologies with the ability to improve yield and purity of CTC enrichment as well as detection sensitivity. Current efforts are largely focused on the translation and standardization of assays to fully realize the clinical utility of CTCs. In this review, we aim to provide a comprehensive overview of CTC enrichment and detection techniques with an emphasis on novel approaches for rapid quantification of CTCs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ashworth T. 1.  1869. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J 14146–49 [Google Scholar]
  2. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J. 2.  et al. 2004. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351:781–91 [Google Scholar]
  3. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B. 3.  et al. 2014. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J. Clin. Oncol. 32:3483–89 [Google Scholar]
  4. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC. 4.  et al. 2008. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14:6302–9 [Google Scholar]
  5. Hu B, Rochefort H, Goldkorn A. 5.  2013. Circulating tumor cells in prostate cancer. Cancers 5:1676–90 [Google Scholar]
  6. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM. 6.  et al. 2011. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29:1556–63 [Google Scholar]
  7. Koch R, Aung T, Vogel D, Chapuy B, Wenzel D. 7.  et al. 2016. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone. Clin. Cancer Res. 22:395–404 [Google Scholar]
  8. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD. 8.  et al. 2008. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26:3213–21 [Google Scholar]
  9. Miller MC, Doyle GV, Terstappen LW. 9.  2010. Significance of circulating tumor cells detected by the CellSearch System in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010:617421 [Google Scholar]
  10. Nelson NJ. 10.  2010. Circulating tumor cells: Will they be clinically useful?. J. Natl. Cancer Inst. 102:146–48 [Google Scholar]
  11. Yu M, Stott S, Toner M, Maheswaran S, Haber DA. 11.  2011. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192:373–82 [Google Scholar]
  12. Gkountela S, Aceto N. 12.  2016. Stem-like features of cancer cells on their way to metastasis. Biol. Direct 11:33 [Google Scholar]
  13. Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC. 13.  et al. 2015. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res 75:4681–87 [Google Scholar]
  14. Seal SH. 14.  1959. Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 12:590–95 [Google Scholar]
  15. Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR. 15.  2003. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res 162:149–55 [Google Scholar]
  16. Rosenberg R, Gertler R, Friederichs J, Fuehrer K, Dahm M. 16.  et al. 2002. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49:150–58 [Google Scholar]
  17. Seal SH. 17.  1964. A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17:637–42 [Google Scholar]
  18. Williams A, Rawal S, Ao Z, Torres-Munoz J, Balic M. 18.  et al. 2013. Clinical translation of a novel microfilter technology capture, characterization and culture of circulating tumor cells. 2013 IEEE PHT Tech220–23 [Google Scholar]
  19. Lin HK, Zheng SY, Williams AJ, Balic M, Groshen S. 19.  et al. 2010. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16:5011–18 [Google Scholar]
  20. Birkhahn M, Mitra AP, Williams AJ, Barr NJ, Skinner EC. 20.  et al. 2013. A novel precision-engineered microfiltration device for capture and characterisation of bladder cancer cells in urine. Eur. J. Cancer 49:3159–68 [Google Scholar]
  21. Xu T, Lu B, Tai YC, Goldkorn A. 21.  2010. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res 70:6420–26 [Google Scholar]
  22. Ao Z, Parasido E, Rawal S, Williams A, Schlegel R. 22.  et al. 2015. Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications. Lab. Chip 15:4277–82 [Google Scholar]
  23. Apel P. 23.  2001. Track etching technique in membrane technology. Radiat. Meas. 34:559–66 [Google Scholar]
  24. Vona G, Sabile A, Louha M, Sitruk V, Romana S. 24.  et al. 2000. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156:57–63 [Google Scholar]
  25. Desitter I, Guerrouahen BS, Benali-Furet N, Wechsler J, Janne PA. 25.  et al. 2011. A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31:427–41 [Google Scholar]
  26. Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J. 26.  et al. 2016. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138:2894–904 [Google Scholar]
  27. Di Carlo D. 27.  2009. Inertial microfluidics. Lab. Chip 9:3038–46 [Google Scholar]
  28. Sollier E, Go DE, Che J, Gossett DR, O'Byrne S. 28.  et al. 2014. Size-selective collection of circulating tumor cells using Vortex technology. Lab. Chip 14:63–77 [Google Scholar]
  29. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PR. 29.  1995. Separation of human breast cancer cells from blood by differential dielectric affinity. PNAS 92:860–64 [Google Scholar]
  30. Shields CW, Reyes CD, Lopez GP. 30.  2015. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab. Chip 15:1230–49 [Google Scholar]
  31. Gascoyne PR, Noshari J, Anderson TJ, Becker FF. 31.  2009. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30:1388–98 [Google Scholar]
  32. Gupta V, Jafferji I, Garza M, Melnikova VO, Hasegawa DK. 32.  et al. 2012. ApoStream™, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6:24133 [Google Scholar]
  33. Manaresi N, Romani A, Medoro G, Altomare L, Leonardi A. 33.  et al. 2003. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circ. 38:2297–305 [Google Scholar]
  34. Peeters DJ, De Laere B, Van den Eynden GG, Van Laere SJ, Rothe F. 34.  et al. 2013. Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br. J. Cancer 108:1358–67 [Google Scholar]
  35. Ferreira MM, Ramani VC, Jeffrey SS. 35.  2016. Circulating tumor cell technologies. Mol. Oncol. 10:374–94 [Google Scholar]
  36. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A. 36.  et al. 2006. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12:4218–24 [Google Scholar]
  37. Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C. 37.  et al. 2007. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13:920–28 [Google Scholar]
  38. Hofman P, Popper HH. 38.  2016. Pathologists and liquid biopsies: To be or not to be?. Virchows Arch 469:601–9 [Google Scholar]
  39. De Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ. 39.  et al. 2015. The detection of EpCAM+ and EpCAM circulating tumor cells. Sci. Rep. 5:12270 [Google Scholar]
  40. Hofman V, Ilie M, Long E, Guibert N, Selva E. 40.  et al. 2014. Detection of circulating tumor cells from lung cancer patients in the era of targeted therapy: promises, drawbacks and pitfalls. Curr. Mol. Med. 14:440–56 [Google Scholar]
  41. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F. 41.  et al. 2009. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J. Natl. Cancer Inst. 101:61–6 [Google Scholar]
  42. Andreopoulou E, Yang LY, Rangel KM, Reuben JM, Hsu L. 42.  et al. 2012. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect™ versus Veridex CellSearch™ system. Int. J. Cancer 130:1590–97 [Google Scholar]
  43. Raimondi C, Nicolazzo C, Gradilone A, Giannini G, De Falco E. 43.  et al. 2014. Circulating tumor cells: exploring intratumor heterogeneity of colorectal cancer. Cancer Biol. Ther. 15:496–503 [Google Scholar]
  44. Giordano A, Gao H, Anfossi S, Cohen E, Mego M. 44.  et al. 2012. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol. Cancer Ther. 11:2526–34 [Google Scholar]
  45. Pluim D, Devriese LA, Beijnen JH, Schellens JH. 45.  2012. Validation of a multiparameter flow cytometry method for the determination of phosphorylated extracellular-signal-regulated kinase and DNA in circulating tumor cells. Cytometry A 81:664–71 [Google Scholar]
  46. Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH. 46.  et al. 2009. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. PNAS 106:3970–75 [Google Scholar]
  47. Whitesides GM. 47.  2006. The origins and the future of microfluidics. Nature 442:368–73 [Google Scholar]
  48. Hong JW, Quake SR. 48.  2003. Integrated nanoliter systems. Nat. Biotechnol. 21:1179–83 [Google Scholar]
  49. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. 49.  1999. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17:1109–11 [Google Scholar]
  50. Toner M, Irimia D. 50.  2005. Blood-on-a-chip. Annu. Rev. Biomed. Eng 777–103 [Google Scholar]
  51. Dittrich PS, Manz A. 51.  2006. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5:210–18 [Google Scholar]
  52. El-Ali J, Sorger PK, Jensen KF. 52.  2006. Cells on chips. Nature 442:403–11 [Google Scholar]
  53. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D. 53.  et al. 2007. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–39 [Google Scholar]
  54. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V. 54.  et al. 2014. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9:694–710 [Google Scholar]
  55. Galletti G, Sung MS, Vahdat LT, Shah MA, Santana SM. 55.  et al. 2014. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device. Lab. Chip 14:147–56 [Google Scholar]
  56. Kirby BJ, Jodari M, Loftus MS, Gakhar G, Pratt ED. 56.  et al. 2012. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLOS ONE 7:e35976 [Google Scholar]
  57. Mikolajczyk SD, Millar LS, Tsinberg P, Coutts SM, Zomorrodi M. 57.  et al. 2011. Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J. Oncol. 2011:252361 [Google Scholar]
  58. Dickson MN, Tsinberg P, Tang Z, Bischoff FZ, Wilson T, Leonard EF. 58.  2011. Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device. Biomicrofluidics 5:034119 [Google Scholar]
  59. Harb W, Fan A, Tran T, Danila DC, Keys D. 59.  et al. 2013. Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl. Oncol. 6:528–38 [Google Scholar]
  60. Winer-Jones JP, Vahidi B, Arquilevich N, Fang C, Ferguson S. 60.  et al. 2014. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell. PLOS ONE 9:e86717 [Google Scholar]
  61. Lu YT, Zhao L, Shen Q, Garcia MA, Wu D. 61.  et al. 2013. NanoVelcro Chip for CTC enumeration in prostate cancer patients. Methods 64:144–52 [Google Scholar]
  62. Wang S, Liu K, Liu J, Yu ZT, Xu X. 62.  et al. 2011. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. 50:3084–88 [Google Scholar]
  63. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT. 63.  et al. 2010. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. PNAS 107:18392–97 [Google Scholar]
  64. Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ. 64.  et al. 2014. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab. Chip 14:89–98 [Google Scholar]
  65. Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM. 65.  et al. 2013. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 8:735–41 [Google Scholar]
  66. Kamande JW, Hupert ML, Witek MA, Wang H, Torphy RJ. 66.  et al. 2013. Modular microsystem for the isolation, enumeration, and phenotyping of circulating tumor cells in patients with pancreatic cancer. Anal. Chem. 85:9092–100 [Google Scholar]
  67. Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D. 67.  et al. 2012. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int. J. Oncol. 41:1241–50 [Google Scholar]
  68. Nieva J, Wendel M, Luttgen MS, Marrinucci D, Bazhenova L. 68.  et al. 2012. High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys. Biol. 9:016004 [Google Scholar]
  69. Schiro PG, Zhao M, Kuo JS, Koehler KM, Sabath DE, Chiu DT. 69.  2012. Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew. Chem. Int. Ed. 51:4618–22 [Google Scholar]
  70. Strati A, Markou A, Parisi C, Politaki E, Mavroudis D. 70.  et al. 2011. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer 11:422 [Google Scholar]
  71. Pfitzner C, Schröder I, Scheungraber C, Dogan A, Runnebaum IB. 71.  et al. 2014. Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma. Sci. Rep. 4:3970 [Google Scholar]
  72. Myung JH, Tam KA, Park SJ, Cha A, Hong S. 72.  2016. Recent advances in nanotechnology-based detection and separation of circulating tumor cells. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol 8223–39 [Google Scholar]
  73. Sioss JA, Bhiladvala RB, Pan W, Li M, Patrick S. 73.  et al. 2012. Nanoresonator chip-based RNA sensor strategy for detection of circulating tumor cells: response using PCA3 as a prostate cancer marker. Nanomedicine 8:1017–25 [Google Scholar]
  74. Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. 74.  2016. Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew. Chem. Int. Ed. 55:1252–65 [Google Scholar]
  75. Saha K, Agasti SS, Kim C, Li X, Rotello VM. 75.  2012. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112:2739–79 [Google Scholar]
  76. Yang X, Yang M, Pang B, Vara M, Xia Y. 76.  2015. Gold nanomaterials at work in biomedicine. Chem. Rev. 115:10410–88 [Google Scholar]
  77. Sperling RA, Parak WJ. 77.  2010. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A 368:1333–83 [Google Scholar]
  78. Israelsen ND, Hanson C, Vargis E. 78.  2015. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. Sci. World J. 2015:124582 [Google Scholar]
  79. Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR. 79.  et al. 2011. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71:1526–32 [Google Scholar]
  80. Wu X, Luo L, Yang S, Ma X, Li Y. 80.  et al. 2015. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl. Mater. Interfaces 7:9965–71 [Google Scholar]
  81. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A. 81.  et al. 2013. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31:539–44 [Google Scholar]
  82. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W. 82.  et al. 2013. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5:180ra48 [Google Scholar]
  83. Nima ZA, Mahmood M, Xu Y, Mustafa T, Watanabe F. 83.  et al. 2014. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 4:4752 [Google Scholar]
  84. Weber J, Beard PC, Bohndiek SE. 84.  2016. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13:639–50 [Google Scholar]
  85. Li W, Chen X. 85.  2015. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320 [Google Scholar]
  86. Uchiyama MK, Deda DK, Rodrigues SF, Drewes CC, Bolonheis SM. 86.  et al. 2014. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol. Sci. 142:497–507 [Google Scholar]
  87. Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. 87.  2009. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4:855–60 [Google Scholar]
  88. Hu X, Wei CW, Xia J, Pelivanov I, O'Donnell M, Gao X. 88.  2013. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles. Small 9:2046–5245 [Google Scholar]
  89. Issadore D, Chung J, Shao H, Liong M, Ghazani AA. 89.  et al. 2012. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci. Transl. Med. 4:141ra92 [Google Scholar]
  90. Lee H, Sun E, Ham D, Weissleder R. 90.  2008. Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14:869–74 [Google Scholar]
  91. Ghazani AA, Castro CM, Gorbatov R, Lee H, Weissleder R. 91.  2012. Sensitive and direct detection of circulating tumor cells by multimarker micro-nuclear magnetic resonance. Neoplasia 14:388–95 [Google Scholar]
  92. Unwin PR, Guell AG, Zhang G. 92.  2016. Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49:2041–48 [Google Scholar]
  93. Kauffman DR, Star A. 93.  2008. Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chem. Soc. Rev. 37:1197–206 [Google Scholar]
  94. Shao N, Wickstrom E, Panchapakesan B. 94.  2008. Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19:465101 [Google Scholar]
  95. Liu Y, Zhu F, Dan W, Fu Y, Liu S. 95.  2014. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst 139:5086–92 [Google Scholar]
  96. Ghuge AD, Shirode AR, Kadam VJ. 96.  2017. Graphene: a comprehensive review. Curr. Drug Targets 18:724–33 [Google Scholar]
  97. Feng L, Chen Y, Ren J, Qu X. 97.  2011. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–37 [Google Scholar]
  98. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. 98.  2013. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7:1239–45 [Google Scholar]
  99. Cao L, Meziani MJ, Sahu S, Sun YP. 99.  2013. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46:171–80 [Google Scholar]
  100. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. 100.  2015. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–36 [Google Scholar]
  101. Wang D, Chen J-F, Dai L. 101.  2015. Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Particle 32:515–23 [Google Scholar]
  102. Shi Y, Pramanik A, Tchounwou C, Pedraza F, Crouch RA. 102.  et al. 2015. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells. ACS Appl. Mater. Interfaces 7:10935–43 [Google Scholar]
  103. Pramanik A, Vangara A, Viraka Nellore BP, Sinha SS, Chavva SR. 103.  et al. 2016. Development of multifunctional fluorescent-magnetic nanoprobes for selective capturing and multicolor imaging of heterogeneous circulating tumor cells. ACS Appl. Mater. Interfaces 8:15076–85 [Google Scholar]
  104. Ronkainen NJ, Halsall HB, Heineman WR. 104.  2010. Electrochemical biosensors. Chem. Soc. Rev. 39:1747–63 [Google Scholar]
  105. Wang Z, Dai Z. 105.  2015. Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7:6420–31 [Google Scholar]
  106. Seenivasan R, Maddodi N, Setaluri V, Gunasekaran S. 106.  2015. An electrochemical immunosensing method for detecting melanoma cells. Biosens. Bioelectron. 68:508–15 [Google Scholar]
  107. Qu L, Xu J, Tan X, Liu Z, Xu L, Peng R. 107.  2014. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS Appl. Mater. Interfaces 6:7309–15 [Google Scholar]
  108. Maltez-da Costa M, de la Escosura-Muñiz A, Nogués C, Barrios L, Ibáñez E, Merkoçi A. 108.  2012. Detection of circulating cancer cells using electrocatalytic gold nanoparticles. Small 8:3605–12 [Google Scholar]
  109. Hong WY, Jeon SH, Lee ES, Cho Y. 109.  2014. An integrated multifunctional platform based on biotin-doped conducting polymer nanowires for cell capture, release, and electrochemical sensing. Biomaterials 35:9573–80 [Google Scholar]
  110. Safaei TS, Mohamadi RM, Sargent EH, Kelley SO. 110.  2015. In situ electrochemical ELISA for specific identification of captured cancer cells. ACS Appl. Mater. Interfaces 7:14165–69 [Google Scholar]
  111. Wan Y, Zhou YG, Poudineh M, Safaei TS, Mohamadi RM. 111.  et al. 2014. Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. Angew. Chem. Int. Ed. 53:13145–49 [Google Scholar]
  112. Han SI, Han KH. 112.  2015. Electrical detection method for circulating tumor cells using graphene nanoplates. Anal. Chem. 87:10585–92 [Google Scholar]
  113. Nwankire CE, Venkatanarayanan A, Glennon T, Keyes TE, Forster RJ, Ducree J. 113.  2015. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens. Bioelectron. 68:382–89 [Google Scholar]
  114. Hosseini SA, Abdolahad M, Zanganeh S, Dahmardeh M, Gharooni M. 114.  et al. 2016. Nanoelectromechanical chip (NELMEC) combination of nanoelectronics and microfluidics to diagnose epithelial and mesenchymal circulating tumor cells from leukocytes. Small 12:883–91 [Google Scholar]
  115. Shen H, Yang J, Chen Z, Chen X, Wang L. 115.  et al. 2016. A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs. Biosens. Bioelectron. 81:495–502 [Google Scholar]
  116. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. 116.  2013. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6:143–62 [Google Scholar]
  117. Zhou J, Yang Y, Zhang CY. 117.  2015. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115:11669–717 [Google Scholar]
  118. Wegner KD, Hildebrandt N. 118.  2015. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44:4792–834 [Google Scholar]
  119. Song EQ, Hu J, Wen CY, Tian ZQ, Yu X. 119.  et al. 2011. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5:761–70 [Google Scholar]
  120. Guo S, Chen YQ, Lu NN, Wang XY, Xie M, Sui WP. 120.  2014. Ultrasonication-assisted one-step self-assembly preparation of biocompatible fluorescent-magnetic nanobeads for rare cancer cell detection. Nanotechnology 25:505603 [Google Scholar]
  121. Lee HJ, Cho HY, Oh JH, Namkoong K, Lee JG. 121.  et al. 2013. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles. Biosens. Bioelectron. 47:508–14 [Google Scholar]
  122. He W, Wang H, Hartmann LC, Cheng JX, Low PS. 122.  2007. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. PNAS 104:11760–65 [Google Scholar]
  123. Min H, Jo SM, Kim HS. 123.  2015. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Small 11:2536–42 [Google Scholar]
  124. Winnik FM, Maysinger D. 124.  2013. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 46:672–80 [Google Scholar]
  125. Ding H, Yu SB, Wei JS, Xiong HM. 125.  2016. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–91 [Google Scholar]
  126. Yoo JM, Kang JH, Hong BH. 126.  2015. Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44:4835–52 [Google Scholar]
  127. Viraka Nellore BP, Kanchanapally R, Pramanik A, Sinha SS, Chavva SR. 127.  et al. 2015. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjug. Chem. 26:235–42 [Google Scholar]
  128. Fang Y. 128.  2006. Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4:583–95 [Google Scholar]
  129. Daghestani HN, Day BW. 129.  2010. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10:9630–46 [Google Scholar]
  130. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J. 130.  2006. Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91:1925–40 [Google Scholar]
  131. Mousavi MZ, Chen HY, Hou HS, Chang CY, Roffler S. 131.  et al. 2015. Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance. Biosensors 5:98–117 [Google Scholar]
  132. Inci F, Filippini C, Baday M, Ozen MO, Calamak S. 132.  et al. 2015. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. PNAS 112:E4354–63 [Google Scholar]
  133. Scott D, Dikici E, Ensor M, Daunert S. 133.  2011. Bioluminescence and its impact on bioanalysis. Annu. Rev. Anal. Chem. 4:297–319 [Google Scholar]
  134. Paley MA, Prescher JA. 134.  2014. Bioluminescence: a versatile technique for imaging cellular and molecular features. Med. Chem. Comm 5255–67 [Google Scholar]
  135. Tiffen JC, Bailey CG, Ng C, Rasko JE, Holst J. 135.  2010. Luciferase expression and bioluminescence does not affect tumor cell growth invitro or in vivo. . Mol. Cancer 9:299 [Google Scholar]
  136. Arlett JL, Myers EB, Roukes ML. 136.  2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6:203–15 [Google Scholar]
  137. Tamayo J, Kosaka PM, Ruz JJ, San Paulo A, Calleja M. 137.  2013. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 42:1287–311 [Google Scholar]
  138. Cheng CI, Chang YP, Chu YH. 138.  2012. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41:1947–71 [Google Scholar]
  139. Pan Y, Guo M, Nie Z, Huang Y, Pan C. 139.  et al. 2010. Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosens. Bioelectron. 25:1609–14 [Google Scholar]
  140. Lange K, Rapp BE, Rapp M. 140.  2008. Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391:1509–19 [Google Scholar]
  141. Senveli SU, Ao Z, Rawal S, Datar RH, Cote RJ, Tigli O. 141.  2016. A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities. Lab. Chip 16:163–71 [Google Scholar]
  142. Zhang WM, Hu KM, Peng ZK, Meng G. 142.  2015. Tunable micro- and nanomechanical resonators. Sensors 15:26478–566 [Google Scholar]
  143. Goeders KM, Colton JS, Bottomley LA. 143.  2008. Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev. 108:522–42 [Google Scholar]
  144. Etayash H, Jiang K, Azmi S, Thundat T, Kaur K. 144.  2015. Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci. Rep. 5:13967 [Google Scholar]
  145. Kosaka PM, Pini V, Ruz JJ, da Silva RA, Gonzalez MU. 145.  et al. 2014. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 9:1047–53 [Google Scholar]
  146. Alix-Panabieres C, Pantel K. 146.  2016. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6:479–91 [Google Scholar]
  147. Heitzer E, Ulz P, Geigl JB. 147.  2015. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61:112–23 [Google Scholar]
  148. Kalluri R. 148.  2016. The biology and function of exosomes in cancer. J. Clin. Invest. 126:1208–15 [Google Scholar]
  149. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST. 149.  et al. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–82 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error