1932

Abstract

The last few years have seen breakthroughs that will transform our ability to measure important analytes. Miniaturization of reaction volumes and confinement of analytes of interest into ultrasmall containers have greatly enhanced the sensitivity and throughput of many detection methods. Fabrication of microwell arrays and implementation of bead-based assays have been instrumental in the development of methods for measuring relevant biomolecules, with applications to both diagnostics and fundamental biological studies. In this review, we describe how microwell arrays are fabricated and utilized for measuring analytes of interest. We then discuss the fundamental concepts of digital enzyme-linked immunosorbent assay (ELISA) using single-molecule arrays and applications of microwell arrays to ultrasensitive protein measurements. We also explore the utility of microwell arrays for nucleic acid detection and applications for single-cell studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045340
2017-06-12
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045340.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045340&mimeType=html&fmt=ahah

Literature Cited

  1. Whitesides GM. 1.  2006. The origins and the future of microfluidics. Nature 442:7101368–73 [Google Scholar]
  2. Nakano M, Komatsu J, Matsuura SI, Takashima K, Katsura S, Mizuno A. 2.  2003. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102:2117–24 [Google Scholar]
  3. Albayrak C, Jordi CA, Zechner C, Lin J, Bichsel CA. 3.  et al. 2016. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61:6914–24 [Google Scholar]
  4. Jesorka A, Orwar O. 4.  2008. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1:801–32 [Google Scholar]
  5. Vriezema DM, Aragonès MC, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM. 5.  2005. Self-assembled nanoreactors. Chem. Rev. 105:41445–89 [Google Scholar]
  6. Manz A, Graber N, Widmer HM. 6.  1990. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1:1–6244–48 [Google Scholar]
  7. Chiu DT, Lorenz RM, Jeffries GDM. 7.  2009. Droplets for ultrasmall-volume analysis. Anal. Chem. 81:135111–18 [Google Scholar]
  8. Schuster R, Kirschner V, Allongue P, Ertl G. 8.  2000. Electrochemical micromachining. Science 289:547698–101 [Google Scholar]
  9. Park M. 9.  1997. Block copolymer lithography: periodic arrays of ∼1011 holes in 1 square centimeter. Science 276:53171401–4 [Google Scholar]
  10. Jansson M, Emmer Å, Roeraade J, Lindberg U, Hök B. 10.  1992. Micro vials on a silicon wafer for sample introduction in capillary electrophoresis. J. Chromatogr. A. 626:2310–14 [Google Scholar]
  11. Clark RA, Hietpas PB, Ewing AG. 11.  1997. Electrochemical analysis in picoliter microvials. Anal. Chem. 69:2259–63 [Google Scholar]
  12. Bratten CD, Cobbold PH, Cooper JM. 12.  1997. Micromachining sensors for electrochemical measurement in subnanoliter volumes. Anal. Chem. 69:2253–258 [Google Scholar]
  13. Jackman RJ, Duffy DC, Ostuni E, Willmore ND, Whitesides GM. 13.  1998. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal. Chem. 70:112280–87 [Google Scholar]
  14. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. 14.  2005. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105:41171–96 [Google Scholar]
  15. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H. 15.  et al. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:127–40 [Google Scholar]
  16. Xia Y, Whitesides GM. 16.  1998. Soft lithography. Angew. Chem. 37:5550–75 [Google Scholar]
  17. Weibel DB, Diluzio WR, Whitesides GM. 17.  2007. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5:3209–18 [Google Scholar]
  18. Michael KL, Taylor LC, Schultz SL, Walt DR. 18.  1998. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem. 70:71242–48 [Google Scholar]
  19. Walt DR. 19.  2010. Fibre optic microarrays. Chem. Soc. Rev. 39:138–50 [Google Scholar]
  20. Pantano P, Walt DR. 20.  1996. Ordered nanowell arrays. Chem. Mater. 8:122832–35 [Google Scholar]
  21. Zhang H, Nie S, Etson CM, Wang RM, Walt DR. 21.  2012. Oil-sealed femtoliter fiber-optic arrays for single molecule analysis. Lab Chip 12:2229 [Google Scholar]
  22. Kan CW, Rivnak AJ, Campbell TG, Piech T, Rissin DM. 22.  et al. 2012. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. Lab Chip 12:5977 [Google Scholar]
  23. Wilson R, Cossins AR, Spiller DG. 23.  2006. Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem. 45:376104–17 [Google Scholar]
  24. Han M, Gao X, Su JZ, Nie S. 24.  2001. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19:7631–35 [Google Scholar]
  25. Jin R, Cao YC, Thaxton CS, Mirkin CA. 25.  2006. Glass-bead-based parallel detection of DNA using composite Raman labels. Small 2:3375–80 [Google Scholar]
  26. Braeckmans K, De Smedt SC, Leblans M, Pauwels R, Demeester J. 26.  2002. Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov. 1:6447–56 [Google Scholar]
  27. Hermanson GT. 27.  2013. Bioconjugate Techniques Cambridge, MA: Academic, 3rd ed..
  28. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR. 28.  1997. Advanced multiplexed analysis with the flowmetrixTM system. Clin. Chem. 43:91749–56 [Google Scholar]
  29. Lyon LA, Musick MD, Natan MJ. 29.  1998. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 70:245177–83 [Google Scholar]
  30. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. 30.  1998. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120:91959–64 [Google Scholar]
  31. Giljohann DA, Mirkin CA. 31.  2009. Drivers of biodiagnostic development. Nature 462:461–64 [Google Scholar]
  32. Srinivas PR, Kramer BS, Srivastava S. 32.  2001. Trends in biomarker research for cancer detection. Lancet Oncol 2:11698–704 [Google Scholar]
  33. Barletta JM, Edelman DC, Constantine NT. 33.  2004. Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am. J. Clin. Pathol. 122:120–27 [Google Scholar]
  34. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS. 34.  et al. 2009. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann. Neurol. 65:4403–13 [Google Scholar]
  35. Anderson NL. 35.  2010. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin. Chem. 56:2177–85 [Google Scholar]
  36. Rissin DM, Walt DR. 36.  2006. Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett 6:3520–23 [Google Scholar]
  37. Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H. 37.  et al. 2005. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23:3361–66 [Google Scholar]
  38. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR. 38.  et al. 2010. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28:6595–99 [Google Scholar]
  39. Wild D. 39.  2013. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques Amsterdam: Elsevier, 4th ed..
  40. Rissin DM, Fournier DR, Piech T, Kan CW, Campbell TG. 40.  et al. 2011. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal. Chem. 83:62279–85 [Google Scholar]
  41. Rivnak AJ, Rissin DM, Kan CW, Song L, Fishburn MW. 41.  et al. 2015. A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. J. Immunol. Methods 424:20–27 [Google Scholar]
  42. Rissin DM, Kan CW, Song L, Rivnak AJ, Fishburn MW. 42.  et al. 2013. Multiplexed single molecule immunoassays. Lab Chip 13:152902–11 [Google Scholar]
  43. Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T. 43.  et al. 2015. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21:4533–47 [Google Scholar]
  44. Chang L, Song L, Fournier DR, Kan CW, Patel PP. 44.  et al. 2013. Simple diffusion-constrained immunoassay for p24 protein with the sensitivity of nucleic acid amplification for detecting acute HIV infection. J. Virol. Methods 188:1–2153–60 [Google Scholar]
  45. Song L, Hanlon DW, Chang L, Provuncher GK, Kan CW. 45.  et al. 2011. Single molecule measurements of tumor necrosis factor α and interleukin-6 in the plasma of patients with Crohn's disease. J. Immunol. Methods 372:1–2177–86 [Google Scholar]
  46. Randall J, Mörtberg E, Provuncher GK, Fournier DR, Duffy DC. 46.  et al. 2013. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation 84:3351–56 [Google Scholar]
  47. Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK. 47.  et al. 2011. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLOS ONE 6:12e28263 [Google Scholar]
  48. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K. 48.  et al. 2013. Plasma tau levels in Alzheimer's disease. Alzheimer's Res. Ther. 5:29 [Google Scholar]
  49. Klein D. 49.  2002. Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8:6257–60 [Google Scholar]
  50. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ. 50.  et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84:21003–11 [Google Scholar]
  51. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J. 51.  et al. 2006. [3] Illumina universal bead arrays. Methods Enzymol 410:57–73 [Google Scholar]
  52. Yeakley JM, Fan J-B, Doucet D, Luo L, Wickham E. 52.  et al. 2002. Profiling alternative splicing on fiber-optic arrays. Nat. Biotechnol. 20:353–58 [Google Scholar]
  53. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS. 53.  et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:7057376–80 [Google Scholar]
  54. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W. 54.  et al. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:7356348–52 [Google Scholar]
  55. Levene M, Korlach J, Turner S, Foquet M, Craighead H, Webb W. 55.  2003. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–86 [Google Scholar]
  56. Eid J, Fehr A, Gray J, Luong K, Lyle J. 56.  et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:5910133–38 [Google Scholar]
  57. Ha T. 57.  2001. Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol. 11:3287–92 [Google Scholar]
  58. Bustamante C, Bryant Z, Smith SB. 58.  2003. Ten years of tension: single-molecule DNA mechanics. Nature 421:423–27 [Google Scholar]
  59. Walt DR. 59.  2013. Optical methods for single molecule detection and analysis. Anal. Chem. 85:31258–63 [Google Scholar]
  60. Spiller DG, Wood CD, Rand DA, White MRH. 60.  2010. Measurement of single-cell dynamics. Nature 465:7299736–45 [Google Scholar]
  61. Bendall SC, Nolan GP. 61.  2012. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30:7639–47 [Google Scholar]
  62. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 62.  2011. Stochastic gene expression in a single cell. Science 297:1183–86 [Google Scholar]
  63. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A. 63.  et al. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33:2155–60 [Google Scholar]
  64. Snijder B, Sacher R, Rämö P, Damm E-M, Liberali P, Pelkmans L. 64.  2009. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461:7263520–23 [Google Scholar]
  65. Schmid A, Kortmann H, Dittrich PS, Blank LM. 65.  2010. Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21:112–20 [Google Scholar]
  66. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 66.  1998. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:3356–63 [Google Scholar]
  67. Nilsson J, Evander M, Hammarström B, Laurell T. 67.  2009. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649:2141–57 [Google Scholar]
  68. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M. 68.  et al. 2009. Droplet microfluidic technology for single-cell high-throughput screening. PNAS 106:3414195–200 [Google Scholar]
  69. Macaulay IC, Voet T. 69.  2014. Single cell genomics: advances and future perspectives. PLOS Gen 10:1e1004126 [Google Scholar]
  70. Konry T, Sarkar S, Sabhachandani P, Cohen N. 70.  2015. Innovative tools and technology for analysis of single cells and cell-cell interaction. Annu. Rev. Biomed. Eng 18259–84 [Google Scholar]
  71. Nelson CM, Raghavan S, Tan JL, Chen CS. 71.  2003. Degradation of micropatterned surfaces by cell-dependent and -independent processes. Langmuir 19:51493–99 [Google Scholar]
  72. Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K. 72.  2001. On-chip culture system for observation of isolated individual cells. Lab Chip 1:150–55 [Google Scholar]
  73. Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E. 73.  et al. 2006. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab Chip 6:8995–1000 [Google Scholar]
  74. Parce JW, Owicki JC, Kercso KM, Sigal GB, Wada HG. 74.  et al. 1989. Detection of cell-affecting agents with a silicon biosensor. Science 246:4927243–47 [Google Scholar]
  75. Tokimitsu Y, Kishi H, Kondo S, Honda R, Tajiri K. 75.  et al. 2007. Single lymphocyte analysis with a microwell array chip. Cytom. Part A 71:121003–10 [Google Scholar]
  76. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R. 76.  et al. 2005. Single-cell microarray for analyzing cellular response. Anal. Chem. 77:248050–56 [Google Scholar]
  77. Biran I, Walt DR. 77.  2002. Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. Anal. Chem. 74:133046–54 [Google Scholar]
  78. Taylor LC, Walt DR. 78.  2000. Application of high-density optical microwell arrays in a live-cell biosensing system. Anal. Biochem. 278:2132–42 [Google Scholar]
  79. Rettig JR, Folch A. 79.  2005. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77:175628–34 [Google Scholar]
  80. Ostuni E, Chen CS, Ingber DE, Whitesides GM. 80.  2001. Selective deposition of proteins and cells in arrays of microwells. Langmuir 17:92828–34 [Google Scholar]
  81. Regehr KJ, Domenech M, Koepsel JT, Carver KC, Ellison-Zelski SJ. 81.  et al. 2009. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:152132–39 [Google Scholar]
  82. Ochsner M, Dusseiller MR, Grandin HM, Luna-Morris S, Textor M. 82.  et al. 2007. Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7:81074–77 [Google Scholar]
  83. Zhu H, Stybayeva G, Silangcruz J, Yan J, Ramanculov E. 83.  et al. 2009. Detecting cytokine release from single T-cells. Anal. Chem. 81:198150–56 [Google Scholar]
  84. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. 84.  2012. From the cover: polyfunctional responses by human T cells result from sequential release of cytokines. PNAS 109:51607–12 [Google Scholar]
  85. Shi Q, Qin L, Wei W, Geng F, Fan R. 85.  et al. 2012. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. PNAS 109:2419–24 [Google Scholar]
  86. Wood DK, Weingeist DM, Bhatia SN, Engelward BP. 86.  2010. Single cell trapping and DNA damage analysis using microwell arrays. PNAS 107:2210008–13 [Google Scholar]
  87. Fan HC, Fu GK, Fodor SPA. 87.  2015. Combinatorial labeling of single cells for gene expression cytometry. Science 347:62221258367 [Google Scholar]
  88. Hughes AJ, Spelke DP, Xu Z, Kang C-C, Schaffer DV, Herr AE. 88.  2014. Single-cell western blotting. Nat. Methods 11:7749–55 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045340
Loading
/content/journals/10.1146/annurev-anchem-061516-045340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error