An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Schlesinger WH, Bernhardt ES. 1.  1997. Biogeochemistry: An Analysis of Global Change New York: Academic
  2. Grierson CS, Barnes SR, Chase MW, Clarke M, Grierson D. 2.  et al. 2011. One hundred important questions facing plant science research. New Phytol 192:6–12 [Google Scholar]
  3. Li L, Zhang Q, Huang D. 3.  2014. A review of imaging techniques for plant phenotyping. Sensors 14:20078–111 [Google Scholar]
  4. Walter A, Liebisch F, Hund A. 4.  2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14 [Google Scholar]
  5. Fiorani F, Schurr U. 5.  2013. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64:267–91 [Google Scholar]
  6. Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. 6.  2015. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619 [Google Scholar]
  7. Giavalisco P, Köhl K, Hummel J, Seiwert B, Willmitzer L. 7.  2009. 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Anal. Chem. 81:6546–51 [Google Scholar]
  8. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML. 8.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  9. Chaudhuri B, Hörmann F, Frommer WB. 9.  2011. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J. Exp. Bot. 62:2411–17 [Google Scholar]
  10. Chaerle L, Van Der Straeten D. 10.  2001. Seeing is believing: imaging techniques to monitor plant health. Biochim. Biophys. Acta 1519:153–66 [Google Scholar]
  11. Jones HG. 11.  1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–55 [Google Scholar]
  12. Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D. 12.  2004. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–96 [Google Scholar]
  13. Kosaka P, Pini V, Ruz J, da Silva R, González M. 13.  et al. 2014. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 9:1047–53 [Google Scholar]
  14. Zhang C, Yeh HY, Kuroki T, Wang T. 14.  2005. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4:826–31 [Google Scholar]
  15. Howes PD, Chandrawati R, Stevens MM. 15.  2014. Collodial nanoparticles as advanced biological sensors. Science 346:1247390–1–10 [Google Scholar]
  16. Li F, Zhang Z-P, Peng J, Cui Z-Q, Pang D-W. 16.  et al. 2009. Imaging virtual behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5:718–26 [Google Scholar]
  17. Sun M, Sun B, Liu Y, Shen Q, Jiang S. 17.  2016. Dual-color fluorescence imaging of magnetic nanoparticles in live cancer cells using conjugated polymer probes. Nat. Sci. Rep. 6:1–12 [Google Scholar]
  18. Wise K, Brasuel M. 18.  2011. The current state of engineered nanomaterials in consumer goods and waste streams: the need to develop nanoproperty-quantifiable sensors for monitoring engineered nanomaterials. Nanotechnol. Sci. Appl. 4:73–86 [Google Scholar]
  19. Reuel NF, Mu B, Zhang JQ, Hinckley A, Strano MS. 19.  2012. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps. Chem. Soc. Rev. 41:5744–79 [Google Scholar]
  20. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K. 20.  2015. Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Nat. Sci. Rep. 5:1–14 [Google Scholar]
  21. Lichtenstein A, Havivi E, Shacham R, Hahamy E, Leibovich R. 21.  et al. 2014. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Commun. 5:1–12 [Google Scholar]
  22. Tiwari M, Krishnamurthy S, Shukla D, Kiiskila J, Jain A. 22.  et al. 2016. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis. Sci. Rep. 6:21733 [Google Scholar]
  23. Walsh R, Morales J, Skipwith C, Ruckh T, Clark H. 23.  2015. Enzyme-linked DNA dendrimer nanosensors for acetylcholine. Nat. Sci. Rep. 5:1–11 [Google Scholar]
  24. Sagadevan S, Periasamy M. 24.  2014. Recent trends in nanobiosensors and their applications—a review. Rev. Adv. Mater. Sci. 36:62–69 [Google Scholar]
  25. Rai VAS, Dey N. 25.  2012. Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotechnol. 3:315–24 [Google Scholar]
  26. Cognet L, Tsyboulski DA, Rocha JD, Doyle CD, Tour JM, Weisman RB. 26.  2007. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316:1465–68 [Google Scholar]
  27. Jin H, Heller DA, Kim JH, Strano MS. 27.  2008. Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett 8:4299–304 [Google Scholar]
  28. Boghossian AA, Zhang JQ, Le Floch-Yin FT, Ulissi ZW, Bojo P. 28.  et al. 2011. The chemical dynamics of nanosensors capable of single-molecule detection. J. Chem. Phys. 135:8 [Google Scholar]
  29. Amine A, Mohammadi H, Bourais I, Palleschi G. 29.  2006. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 21:1405–23 [Google Scholar]
  30. Choi I, Choi Y. 30.  2012. Plasmonic nanosensors: review and prospect. IEEE Quantum Electron 18:1110–22 [Google Scholar]
  31. Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V. 31.  2015. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 74:562–74 [Google Scholar]
  32. Chen G, Song F, Xiong X, Peng X. 32.  2013. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind. Eng. Chem. Res. 52:11228–45 [Google Scholar]
  33. Okumoto S, Jones A, Frommer WB. 33.  2012. Quantitative imaging with fluorescent biosensors. Annu. Rev. Plant Biol. 63:663–706 [Google Scholar]
  34. Qureshi A, Kang WP, Davidson JL, Gurbuz Y. 34.  2009. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diamond Related Mater 18:1401–20 [Google Scholar]
  35. Patolsky F, Lieber CM. 35.  2005. Nanowire nanosensors. Mater. Today 8:20–28 [Google Scholar]
  36. Wujcik EK, Wei H, Zhang X, Guo Y, Yan X. 36.  et al. 2014. Antibody nanosensors: a detailed review. RSC Adv 4:43725–45 [Google Scholar]
  37. Swanson SJ, Choi WG, Chanoca A, Gilroy S. 37.  2011. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. Annu. Rev. Plant Biol. 62:273–97 [Google Scholar]
  38. Okumoto S, Takanaga H, Frommer WB. 38.  2008. Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol 180:271–95 [Google Scholar]
  39. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C. 39.  et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv. 33:1582–614 [Google Scholar]
  40. Medintz IL. 40.  2006. Recent progress in developing FRET-based intracellular sensors for the detection of small molecule nutrients and ligands. Trends Biotechnol 24:539–42 [Google Scholar]
  41. Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M. 41.  2012. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol. 96:895–902 [Google Scholar]
  42. Chen GW, Song FL, Xiong XQ, Peng XJ. 42.  2013. Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind. Eng. Chem. Res. 52:11228–45 [Google Scholar]
  43. Maxwell D, Taylor JR, Nie S. 43.  2002. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124:9606–12 [Google Scholar]
  44. Huang T, Murray RW. 44.  2002. Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles. Langmuir 18:7077–81 [Google Scholar]
  45. Xia Y, Song L, Zhu C. 45.  2011. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal Chem 83:1401–7 [Google Scholar]
  46. Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB. 46.  2006. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–25 [Google Scholar]
  47. Chaudhuri B, Hörmann F, Lalonde S, Brady SM, Orlando DA. 47.  et al. 2008. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J. Cell Mol. Biol. 56:948–62 [Google Scholar]
  48. Chen NT, Cheng SH, Liu CP, Souris JS, Chen CT. 48.  et al. 2012. Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int. J. Mol. Sci. 13:16598–623 [Google Scholar]
  49. Chen GY, Qju HL, Prasad PN, Chen XY. 49.  2014. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114:5161–214 [Google Scholar]
  50. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. 50.  2008. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1:601–26 [Google Scholar]
  51. Sun LL, Song YH, Wang L, Guo CL, Sun YJ. 51.  et al. 2008. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C 112:1415–22 [Google Scholar]
  52. Zeiri L. 52.  2007. SERS of plant material. J. Raman Spectrosc. 38:950–55 [Google Scholar]
  53. Auchinvole CA, Richardson P, McGuinnes C, Mallikarjun V, Donaldson K. 53.  et al. 2012. Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6:888–96 [Google Scholar]
  54. Ceja-Fdez A, López-Luke T, Torres-Castro A, Wheeler DA, Zhang JZ, De la Rosa E. 54.  2014. Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium. RSC Adv 4:59233–41 [Google Scholar]
  55. Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D. 55.  2017. Bioanalytical measurements enabled by surface-enhanced Raman scattering (SERS) probes. Annu. Rev. Anal. Chem. 10:415–37 [Google Scholar]
  56. Wujcik EK, Wei H, Zhang X, Guo J, Yan X. 56.  et al. 2014. Antibody nanosensors: a detailed review. RSC Adv 4:43725–45 [Google Scholar]
  57. Yotova L, Yaneva S, Marinkova D. 57.  2013. Biomimetic nanosensors for determination of toxic compounds in food and agricultural products (review). J. Chem. Technol. Metall. 48:215–27 [Google Scholar]
  58. Bard AJ, Faulkner LR. 58.  2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  59. Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. 59.  2013. Chemical analysis of single cells. Anal. Chem. 85:522–42 [Google Scholar]
  60. Clausmeyer J, Schuhmann W. 60.  2016. Nanoelectrodes: applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. TRAC Trends Anal. Chem. 79:46–59 [Google Scholar]
  61. Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM. 61.  2015. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 182:2091–114 [Google Scholar]
  62. Yáñez-Sedeño P, Pingarrón JM. 62.  2005. Gold nanoparticle-based electrochemical biosensors. Anal. Bioanal. Chem. 382:884–86 [Google Scholar]
  63. Geim AK. 63.  2009. Graphene: status and prospects. Science 324:1530–34 [Google Scholar]
  64. Vilatela JJ, Eder D. 64.  2012. Nanocarbon composites and hybrids in sustainability: a review. ChemSusChem 5:456–78 [Google Scholar]
  65. Liu Y, Dong X, Chen P. 65.  2012. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41:2283–307 [Google Scholar]
  66. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. 66.  2010. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–36 [Google Scholar]
  67. Zhu C, Yang G, Li H, Du D, Lin Y. 67.  2015. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87:230–49 [Google Scholar]
  68. Cui F, Zhang X. 68.  2012. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J. Electroanal. Chem. 669:35–41 [Google Scholar]
  69. Orozco J, Fernández-Sánchez C, Jiménez-Jorquera C. 69.  2010. Ultramicroelectrode array based sensors: a promising analytical tool for environmental monitoring. Sensors 10:475 [Google Scholar]
  70. Wen Y, Xu J, Liu M, Li D, Lu L. 70.  et al. 2012. A vitamin C electrochemical biosensor based on one-step immobilization of ascorbate oxidase in the biocompatible conducting poly(3,4-ethylenedioxythiophene)-lauroylsarcosinate film for agricultural application in crops. J. Electroanal. Chem. 674:71–82 [Google Scholar]
  71. Uchiyama S, Umetsu Y. 71.  1991. Concentration-step amperometric sensor of L-ascorbic acid using cucumber juice. Anal. Chim. Acta 255:53–57 [Google Scholar]
  72. Nasirizadeh N, Shekari Z, Nazari A, Tabatabaee M. 72.  2016. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples. J. Food Drug Anal. 24:72–82 [Google Scholar]
  73. Ai F, Chen H, Zhang S-H, Liu S-Y, Wei F. 73.  et al. 2009. Real-time monitoring of oxidative burst from single plant protoplasts using microelectrochemical sensors modified by platinum nanoparticles. Anal. Chem. 81:8453–58 [Google Scholar]
  74. Janssen S, Schmitt K, Blanke M, Bauersfeld ML, Wöllenstein J, Lang W. 74.  2014. Ethylene detection in fruit supply chains. Philos. Trans. Ser. A 372:20130311 [Google Scholar]
  75. Cristescu SM, Mandon J, Arslanov D, De Pessemier J, Hermans C, Harren FJM. 75.  2012. Current methods for detecting ethylene in plants. Ann. Bot. 111:347–60 [Google Scholar]
  76. Zhang Y, Zhang M, Zhu Y, Wei Q, Li X. 76.  et al. 2016. A facile graphene nanosheets-based electrochemical sensor for sensitive detection of honokiol in traditional Chinese medicine. Electroanalysis 28:508–15 [Google Scholar]
  77. Zhao J, Huang W, Zheng X. 77.  2009. Mesoporous silica-based electrochemical sensor for simultaneous determination of honokiol and magnolol. J. Appl. Electrochem. 39:2415–19 [Google Scholar]
  78. Liu G, Ma Y, Hou X, Huang Y, Chen J. 78.  et al. 2015. Synthesis of 1-[3-(N-pyrrole)propyl]-3-[1-tert-butoxycarbonylamino-propyl]-imidazolium tetrafluoroborate ionic liquid for application in electrochemical sensing of magnolol. Ionics 21:2567–74 [Google Scholar]
  79. Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM. 79.  2000. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann. Bot. 86:687–703 [Google Scholar]
  80. Bai S-J, Ryu W, Fasching RJ, Grossman AR, Prinz FB. 80.  2011. In vivo O2 measurement inside single photosynthetic cells. Biotechnol. Lett. 33:1675–81 [Google Scholar]
  81. Neethirajan S, Jayas DS, Sadistap S. 81.  2009. Carbon dioxide (CO2) sensors for the agri-food industry—a review. Food Bioprocess Technol 2:115–21 [Google Scholar]
  82. Supalkova V, Huska D, Diopan V, Hanustiak P, Zitka O. 82.  et al. 2007. Electroanalysis of plant thiols. Sensors 7:932 [Google Scholar]
  83. Alberich A, Ariño C, Díaz-Cruz JM, Esteban M. 83.  2007. Multivariate curve resolution applied to the simultaneous analysis of electrochemical and spectroscopic data: study of the Cd(II)/glutathione-fragment system by voltammetry and circular dichroism spectroscopy. Anal. Chim. Acta 584:403–9 [Google Scholar]
  84. Liu J-T, Hu L-S, Liu Y-L, Chen R-S, Cheng Z. 84.  et al. 2014. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires. Angew. Chem. Int. Ed. 53:2643–47 [Google Scholar]
  85. McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ. 85.  et al. 2010. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–16 [Google Scholar]
  86. Ali SMU, Ibupoto ZH, Salman S, Nur O, Willander M, Danielsson B. 86.  2011. Selective determination of urea using urease immobilized on ZnO nanowires. Sens. Actuators B 160:637–43 [Google Scholar]
  87. Hubalek J, Hradecky J, Adam V, Krystofova O, Huska D. 87.  et al. 2007. Spectrometric and voltammetric analysis of urease–nickel nanoelectrode as an electrochemical sensor. Sensors 7:1238 [Google Scholar]
  88. Kojima S, Bohner A, von Wirén N. 88.  2006. Molecular mechanisms of urea transport in plants. J. Membrane Biol. 212:83–91 [Google Scholar]
  89. Wu S, He Q, Tan C, Wang Y, Zhang H. 89.  2013. Graphene-based electrochemical sensors. Small 9:1160–72 [Google Scholar]
  90. Tian K, Alex S, Siegel G, Tiwari A. 90.  2015. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater. Sci. Eng. C 46:548–52 [Google Scholar]
  91. Zhang H, Zhang G, Xu J, Wen Y, Lu B. 91.  et al. 2016. Novel highly selective fluorescent sensor based on electrosynthesized poly(9-fluorenecarboxylic acid) for efficient and practical detection of iron(III) and its agricultural application. Sens. Actuators B 230:123–29 [Google Scholar]
  92. Roy E, Patra S, Madhuri R, Sharma PK. 92.  2014. Simultaneous determination of heavy metals in biological samples by a multiple-template imprinting technique: an electrochemical study. RSC Adv 4:56690–700 [Google Scholar]
  93. Veerakumar P, Veeramani V, Chen S-M, Madhu R, Liu S-B. 93.  2016. Palladium nanoparticle incorporated porous activated carbon: electrochemical detection of toxic metal ions. ACS Appl. Mater. Interfaces 8:1319–26 [Google Scholar]
  94. Li S, Simonian A, Chin BA. 94.  2010. Sensors for agriculture and the food industry. Electrochem. Soc. Interface 19:41–46 [Google Scholar]
  95. Moretto LM, Kalcher K. 95.  2014. Environmental Analysis by Electrochemical Sensors and Biosensors New York: Springer
  96. Vitosh ML, Silva GH. 96.  1994. A rapid petiole sap nitrate‐nitrogen test for potatoes. Commun. Soil Sci. Plant Anal. 25:183–90 [Google Scholar]
  97. Errebhi M, Rosen CJ, Birong DE. 97.  1998. Calibration of a petiole sap nitrate test for irrigated ‘russet Burbank’ potato. Commun. Soil Sci. Plant Anal. 29:23–35 [Google Scholar]
  98. Rashed MN. 98.  1995. Trace element determination in warm-climate plants by atomic absorption spectroscopy and ion selective electrodes. J. Arid Environ. 30:463–78 [Google Scholar]
  99. Kubota A, Thompson TL, Doerge TA, Godin RE. 99.  1997. A petiole sap nitrate test for broccoli. J. Plant Nutr. 20:669–82 [Google Scholar]
  100. Delgado JA, Gross CM, Lal H, Cover H, Gagliardi P. 100.  et al. 2010. A new GIS nitrogen trading tool concept for conservation and reduction of reactive nitrogen losses to the environment. Adv. Agron 105:117–71 [Google Scholar]
  101. Gieling TH, van Straten G, Janssen HJJ, Wouters H. 101.  2005. ISE and Chemfet sensors in greenhouse cultivation. Sens. Actuators B 105:74–80 [Google Scholar]
  102. Gutiérrez M, Alegret S, Cáceres R, Casadesús J, Marfà O, del Valle M. 102.  2007. Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation. Comput. Electron. Agric. 57:12–22 [Google Scholar]
  103. Krystofova O, Trnkova L, Adam V, Zehnalek J, Hubalek J. 103.  et al. 2010. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. Sensors 10:5308 [Google Scholar]
  104. Wang L, Han D, Ni S, Ma W, Wang W, Niu L. 104.  2015. Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chem. Sci. 6:6632–38 [Google Scholar]
  105. Neri G. 105.  2015. First fifty years of chemoresistive gas sensors. Chemosensors 3:1–20 [Google Scholar]
  106. Swager TM, Marsella MJ. 106.  1994. Molecular recognition and chemoresistive materials. Adv. Mater. 6:595–97 [Google Scholar]
  107. Esser B, Schnorr JM, Swager TM. 107.  2012. Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew. Chem. Int. Ed. 51:5752–56 [Google Scholar]
  108. Chauhan R, Moreno M, Banda DM, Zamborini FP, Grapperhaus CA. 108.  2014. Chemiresistive metal-stabilized thiyl radical films as highly selective ethylene sensors. RSC Adv 4:46787–90 [Google Scholar]
  109. Krivec M, Mc Gunnigle G, Abram A, Maier D, Waldner R. 109.  et al. 2015. Quantitative ethylene measurements with MOx chemiresistive sensors at different relative air humidities. Sensors 15:28088–98 [Google Scholar]
  110. Mirica KA, Azzarelli JM, Weis JG, Schnorr JM, Swager TM. 110.  2013. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. PNAS 110:E3265–70 [Google Scholar]
  111. Weerakoon KA, Shu JH, Chin BA. 111.  2011. A chemiresistor sensor with a poly3-hexylthiophene active layer for the detection of insect infestation at early stages. IEEE Sens. J. 11:1617–22 [Google Scholar]
  112. Degenhardt DC, Greene JK, Ahmad K. 112.  2012. Temporal dynamics and electronic nose detection of stink bug-induced volatile emissions from cotton balls. Psyche 2012:236762 [Google Scholar]
  113. Zhang JQ, Landry MP, Barone PW, Kim JH, Lin SC. 113.  et al. 2013. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8:959–68 [Google Scholar]
  114. Landry M, Kruss S, Nelson J, Bisker G, Iverson N. 114.  et al. 2014. Experimental tools to study molecular recognition within the nanoparticle corona. Sensors 14:16196–211 [Google Scholar]
  115. Zhang JQ, Boghossian AA, Barone PW, Rwei A, Kim JH. 115.  et al. 2011. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 133:567–81 [Google Scholar]
  116. Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. 116.  2013. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65:1933–50 [Google Scholar]
  117. Bisker G, Dong J, Park HD, Iverson NM, Ahn J. 117.  et al. 2016. Protein-targeted corona phase molecular recognition. Nat. Commun. 7:10241 [Google Scholar]
  118. Choi JH, Strano MS. 118.  2007. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90: https://doi.org/10.1063/1.2745228 [Crossref] [Google Scholar]
  119. Barone PW, Baik S, Heller DA, Strano MS. 119.  2005. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4:86–92 [Google Scholar]
  120. Iverson NM, Bisker G, Farias E, Ivanov V, Ahn J. 120.  et al. 2016. Quantitative tissue spectroscopy of near infrared fluorescent nanosensor implants. J. Biomed. Nanotechnol 12:1035–47 [Google Scholar]
  121. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM. 121.  et al. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13:400–8 [Google Scholar]
  122. Giraldo JP, Landry MP, Kwak SY, Jain RM, Wong MH. 122.  et al. 2015. A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 11:3973–84 [Google Scholar]
  123. Mu B, Ahn J, McNicholas TP, Strano MS. 123.  2015. Generating selective saccharide binding affinity of phenyl boronic acids by using single-walled carbon nanotube corona phases. Chemistry 21:4523–28 [Google Scholar]
  124. Oliveira SF, Bisker G, Bakh NA, Gibbs SL, Landry MP, Strano MS. 124.  2015. Protein functionalized carbon nanomaterials for biomedical applications. Carbon 95:767–79 [Google Scholar]
  125. Bisker G, Ahn J, Kruss S, Ulissi ZW, Salem DP, Strano MS. 125.  2015. A mathematical formulation and solution of the cophmore inverse problem for helically wrapping polymer corona phases on cylindrical substrates. J. Phys. Chem. C 119:13876–86 [Google Scholar]
  126. Wang ZL. 126.  2007. Nanopiezotronics. Adv. Mater. 19:889–92 [Google Scholar]
  127. Wang ZL. 127.  2007. The new field of nanopiezotronics. Mater. Today 10:20–28 [Google Scholar]
  128. Nguyen TD, Deshmukh N, Nagarah JM, Kramer T, Purohit PK. 131.  et al. 2012. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7:587–93 [Google Scholar]
  129. Wang XD, Zhou J, Song JH, Liu J, Xu NS, Wang ZL. 128.  2006. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett 6:2768–72 [Google Scholar]
  130. Fernández JR, García-Aznar JM, Martínez R. 129.  2012. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling. J. Theor. Biol. 292:86–92 [Google Scholar]
  131. Motamed C, Kirov K, Combes X, Duvaldestin P. 130.  2003. Comparison between the Datex-Ohmeda M-NMT module and a force-displacement transducer for monitoring neuromuscular blockade. Eur. J. Anaesthesiol. 20:467–69 [Google Scholar]
  132. Zhu H, Han J, Xiao JQ, Jin Y. 132.  2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10:713–17 [Google Scholar]
  133. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R. 133.  et al. 2009. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45 [Google Scholar]
  134. Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y. 134.  et al. 2016. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–72 [Google Scholar]
  135. Siddiqui MH, Al-Whaibi MH, Mohammad F. 135.  2015. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants Heidelberg: Springer
  136. Dietz K-J, Herth S. 136.  2011. Plant nanotoxicology. Trends Plant Sci 16:582–89 [Google Scholar]
  137. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. 137.  2010. Nanoparticulate material delivery to plants. Plant Sci 179:154–63 [Google Scholar]
  138. Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss CA Jr., Vikesland PJ. 138.  2009. Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ. Sci. Technol. 43:4169–74 [Google Scholar]
  139. Creighton MA, Rangel-Mendez JR, Huang J, Kane AB, Hurt RH. 139.  2013. Graphene-induced adsorptive and optical artifacts during in vitro toxicology assays. Small 9:1921–27 [Google Scholar]
  140. Wang P, Lombi E, Zhao F-J, Kopittke PM. 140.  Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712 [Google Scholar]
  141. Miralles P, Church TL, Harris AT. 141.  2012. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46:9224–39 [Google Scholar]
  142. Ma X, Geiser-Lee J, Deng Y, Kolmakov A. 142.  2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ. 408:3053–61 [Google Scholar]
  143. Liu Q, Chen B, Wang Q, Shi X, Xiao Z. 143.  et al. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–10 [Google Scholar]
  144. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M. 144.  et al. 2010. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–17 [Google Scholar]
  145. Cañas JE, Long M, Nations S, Vadan R, Dai L. 145.  et al. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27:1922–31 [Google Scholar]
  146. Khodakovskaya MV, Kim B-S, Kim JN, Alimohammadi M, Dervishi E. 146.  et al. 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–23 [Google Scholar]
  147. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K. 147.  et al. 2011. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–99 [Google Scholar]
  148. Tan X, Lin C, Fugetsu B. 148.  2009. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–87 [Google Scholar]
  149. Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A. 149.  et al. 2012. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 31:15–31 [Google Scholar]
  150. Lager I, Looger LL, Hilpert M, Lalonde S, Frommer WB. 150.  2006. Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose. J. Biol. Chem. 281:30875–83 [Google Scholar]
  151. Bagal-Kestwal D, Kestwal RM, Chiang BH. 151.  2015. Invertase-nanogold clusters decorated plant membranes for fluorescence-based sucrose sensor. J. Nanobiotechnol. 13:30 [Google Scholar]
  152. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. 152.  2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53:1237–47 [Google Scholar]
  153. Planchet E, Kaiser WM. 153.  2006. Nitric oxide production in plants: facts and fictions. Plant Signal. Behav. 1:46–51 [Google Scholar]
  154. Quan L-J, Zhang B, Shi W-W, Li H-Y. 154.  2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50:2–18 [Google Scholar]
  155. Baudouin E, Hancock JT. 155.  2013. Nitric oxide signaling in plants. Front. Plant Sci. 4:553 [Google Scholar]
  156. Kim JH, Heller DA, Jin H, Barone PW, Song C. 156.  et al. 2009. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat. Chem. 1:473–81 [Google Scholar]
  157. Flavel BS, Moore KE, Pfohl M, Kappes MM, Hennrich F. 157.  2014. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 8:1817–26 [Google Scholar]
  158. Tvrdy K, Jain RM, Han R, Hilmer AJ, McNicholas TP, Strano MS. 158.  2013. A kinetic model for the deterministic prediction of gel-based single-chirality single-walled carbon nanotube separation. ACS Nano 7:1779–89 [Google Scholar]
  159. Jain RM, Tvrdy K, Han R, Ulissi Z, Strano MS. 159.  2014. Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes. ACS Nano 8:3367–79 [Google Scholar]
  160. Liu H, Nishide D, Tanaka T, Kataura H. 160.  2011. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2:309 [Google Scholar]
  161. Ast C, Schmalzlin E, Lohmannsroben HG, van Dongen JT. 161.  2012. Optical oxygen micro- and nanosensors for plant applications. Sensors 12:7015–32 [Google Scholar]
  162. Clark LC Jr., Wolf R, Granger D, Taylor Z. 162.  1953. Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 6:189–93 [Google Scholar]
  163. Demas JN, DeGraff BA, Coleman PB. 163.  1999. Oxygen sensors based on luminescence quenching. Anal. Chem. 71:793A–800A [Google Scholar]
  164. Lakowicz JR. 164.  2006. Principles of Fluorescence Spectroscopy New York: Springer Sci. Bus. Media
  165. Lee YE, Smith R, Kopelman R. 165.  2009. Nanoparticle PEBBLE sensors in live cells and in vivo. Annu. Rev. Anal. Chem. 2:57–76 [Google Scholar]
  166. Schmälzlin E, van Dongen JT, Klimant I, Marmodee B, Steup M. 166.  et al. 2005. An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys. J. 89:1339–45 [Google Scholar]
  167. Saito K, Chang YF, Horikawa K, Hatsugai N, Higuchi Y. 167.  et al. 2012. Luminescent proteins for high-speed single-cell and whole-body imaging. Nat. Commun. 3:1262 [Google Scholar]
  168. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA. 168.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  169. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 169.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  170. Akiyama K, Hayashi H. 170.  2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot. 97:925–31 [Google Scholar]
  171. Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Shigeo T. 171.  et al. 2015. Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349:864–68 [Google Scholar]
  172. Kulma A, Szopa J. 172.  2007. Catecholamines are active compounds in plants. Plant Sci 172:433–40 [Google Scholar]
  173. Roshchina VV. 173.  2016. The fluorescence methods to study neurotransmitters (biomediators) in plant cells. J. Fluoresc. 26:1029–43 [Google Scholar]
  174. Kruss S, Landry M, Vander Ende E, Lima B, Reuel NF. 174.  et al. 2014. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J. Am. Chem. Soc. 136:713–24 [Google Scholar]
  175. Wong MH, Giraldo JP, Kwak SY, Koman V, Sinclair R. 175.  et al. 2017. Nitroaromatic detection and infrared communication from wild-type plants using plant nanonionics. Nat. Mater. 16:264–72 [Google Scholar]
  176. Leegood PLRC. 176.  1998. Plant Biochemistry and Molecular Biology New York: John Wiley
  177. Cederroth CR, Nef S. 177.  2009. Soy, phytoestrogens and metabolism: a review. Mol. Cell. Endocrinol. 304:30–42 [Google Scholar]
  178. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. 178.  2003. Phytoestrogens: recent developments. Planta Medica 69:589–99 [Google Scholar]
  179. Dumbrepatil AB, Lee SG, Chung SJ, Lee MG, Park BC. 179.  et al. 2010. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst 135:2879–86 [Google Scholar]
  180. Muntean CM, Leopold N, Halmagyi A, Valimareanu S. 180.  2011. Surface-enhanced Raman spectroscopy of DNA from leaves of in vitro grown apple plants. J. Raman Spectrosc. 42:844–50 [Google Scholar]
  181. Fay MF. 181.  1992. Conservation of rare and endangered plants using in vitro methods. Vitro Cell. Dev. Biol. 28:1–4 [Google Scholar]
  182. Muntean CM, Leopold N, Tripon C, Coste A, Halmagyi A. 182.  2015. Surface-enhanced Raman spectroscopy of genomic DNA from in vitro grown tomato (Lycopersicon esculentum Mill.) cultivars before and after plant cryopreservation. Spectrochim. Acta A 144:107–14 [Google Scholar]
  183. Qiu L, Liu P, Zhao L, Wen MQ, Yang HY. 183.  et al. 2014. Analysis of plant genomic DNAs and the genetic relationship among plants by using surface-enhanced Raman spectroscopy. Vib. Spectrosc. 72:134–41 [Google Scholar]
  184. Boudaoud A. 184.  2010. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–60 [Google Scholar]
  185. Geitmann A, Ortega JKE. 185.  2009. Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–78 [Google Scholar]
  186. Hamant O, Traas J. 186.  2010. The mechanics behind plant development. New Phytol 185:369–85 [Google Scholar]
  187. Mirabet V, Das P, Boudaoud A, Hamant O. 187.  2011. The role of mechanical forces in plant morphogenesis. Annu. Rev. Plant Biol. 62:365–85 [Google Scholar]
  188. Afsharinejad A, Davy A, Jennings B, Brennan C. 188.  2016. Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet Things J 3:59–69 [Google Scholar]
  189. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. 189.  2014. Plant pathogen nanodiagnostic techniques: Forthcoming changes?. Biotechnol. Biotechnol. Equip. 28:775–85 [Google Scholar]
  190. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY. 190.  et al. 2009. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mater. Res. 79–82:513–16 [Google Scholar]
  191. Firrao G, Moretti M, Rosquete MR, Gobbi E, Locci R. 191.  2005. Nanobiotransducer for detecting flavescence dorée phytoplasma. J. Plant Pathol. 87:101–7 [Google Scholar]
  192. Yuksel S, Schwenkbier L, Pollok S, Weber K, Cialla-May D, Popp J. 192.  2015. Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy. Analyst 140:7254–62 [Google Scholar]
  193. Werres S, Marwitz R, In't veld WAM, De Cock AWAM, Bonants PJM. 193.  et al. 2001. Phytophthora ramorum sp nov., a new pathogen on Rhododendron and Viburnum. . Mycol. Res 105:1155–65 [Google Scholar]
  194. Bilodeau GJ, Levesque CA, de Cock AWAM, Duchaine C, Briere S. 194.  et al. 2007. Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and molecular beacons. Phytopathology 97:632–42 [Google Scholar]
  195. Martin FN. 195.  2013. Molecular identification of Phytophthora. Phytophthora: A Global Perspective K Lamour 19–27 Oxfordshire, UK: CAB Int. [Google Scholar]
  196. Schena L, Duncan JM, Cooke DEL. 196.  2008. Development and application of a PCR-based ‘molecular tool box’ for the identification of Phytophthora species damaging forests and natural ecosystems. Plant Pathol 57:64–75 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error