Since its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Raman CV, Krishnan KS. 1.  1928. A new type of secondary radiation. Nature 121:501–2 [Google Scholar]
  2. Fleischmann M, Hendra PJ, McQuillan AJ. 2.  1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26:163–66 [Google Scholar]
  3. Jeanmaire DL, Van Duyne RP. 3.  1977. Surface Raman spectroelectrochemistry part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84:1–20 [Google Scholar]
  4. Albrecht MG, Creighton JA. 4.  1977. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99:5215–17 [Google Scholar]
  5. Howard RE, Liao PF, Skocpol WJ, Jackel LD, Craighead HG. 5.  1983. Microfabrication as a scientific tool. Science 221:117–21 [Google Scholar]
  6. Liao PF, Bergman JG, Chemla DS, Wokaun A, Melngailis J. 6.  et al. 1981. Surface-enhanced Raman scattering from microlithographic silver particle surfaces. Chem. Phys. Lett. 82:355–59 [Google Scholar]
  7. Asiala SM, Schultz ZD. 7.  2011. Characterization of hotspots in a highly enhancing SERS substrate. Analyst 136:4472–79 [Google Scholar]
  8. Pavel I, McCarney E, Elkhaled A, Morrill A, Plaxco K, Moskovits M. 8.  2008. Label-free SERS detection of small proteins modified to act as bifunctional linkers. J. Phys. Chem. C 112:4880–83 [Google Scholar]
  9. Bell SEJ, Sirimuthu NMS. 9.  2006. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128:15580–81 [Google Scholar]
  10. Papadopoulou E, Bell SEJ. 10.  2011. Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 50:9058–61 [Google Scholar]
  11. Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C. 11.  2010. Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal. Chem. 82:2766–72 [Google Scholar]
  12. Gautam R, Vanga S, Ariese F, Umapathy S. 12.  2015. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2:1–38 [Google Scholar]
  13. Jamieson LE, Jaworska A, Jiang J, Baranska M, Harrison DJ, Campbell CJ. 13.  2015. Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst 140:2330–35 [Google Scholar]
  14. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A. 14.  et al. 2014. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal. Bioanal. Chem. 406:2355–65 [Google Scholar]
  15. Premasiri WR, Lee JC, Ziegler LD. 15.  2012. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J. Phys. Chem. B 116:9376–86 [Google Scholar]
  16. Sun F, Ella-Menye J-R, Galvan DD, Bai T, Hung H-C. 16.  et al. 2015. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9:2668–76 [Google Scholar]
  17. Schlücker S. 17.  2009. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10:1344–54 [Google Scholar]
  18. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N. 18.  et al. 2002. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56:150–54 [Google Scholar]
  19. Wang Y, Yan B, Chen L. 19.  2013. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113:1391–428 [Google Scholar]
  20. Alkilany AM, Murphy CJ. 20.  2010. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?. J. Nanopart. Res. 12:2313–33 [Google Scholar]
  21. Kennedy DC, Orts-Gil G, Lai C-H, Müller L, Haase A. 21.  et al. 2014. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J. Nanobiotechnol. 12:1–8 [Google Scholar]
  22. Anselmo AC, Mitragotri S. 22.  2016. Nanoparticles in the clinic. Bioeng. Transl. Med. 1:10–29 [Google Scholar]
  23. Graham D, Faulds K, Smith WE. 23.  2006. Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chem. Commun. 42:4363–71 [Google Scholar]
  24. Ahn J-M, Eom H-J, Yang X, Meyer JN, Choi J. 24.  2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode. Caenorhabditis elegans. Chemosphere 108:343–52 [Google Scholar]
  25. Graham D, Smith WE, Linacre AMT, Munro CH, Watson ND, White PC. 25.  1997. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69:4703–7 [Google Scholar]
  26. Harper MM, McKeating KS, Faulds K. 26.  2013. Recent developments and future directions in SERS for bioanalysis. Phys. Chem. Chem. Phys. 15:5312–28 [Google Scholar]
  27. Bartczak D, Kanaras AG. 27.  2011. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/sulfo-NHS coupling. Langmuir 27:10119–23 [Google Scholar]
  28. Ming L, Scott KC, Jianming Z, Jessica L, Zoraida PA. 28.  et al. 2012. Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23:115501 [Google Scholar]
  29. Gracie K, Moores M, Smith WE, Harding K, Girolami M. 29.  et al. 2016. Preferential attachment of specific fluorescent dyes and dye labeled DNA sequences in a surface enhanced Raman scattering multiplex. Anal. Chem. 88:1147–53 [Google Scholar]
  30. Bedics MA, Kearns H, Cox JM, Mabbott S, Ali F. 30.  et al. 2015. Extreme red shifted SERS nanotags. Chem. Sci. 6:2302–6 [Google Scholar]
  31. Kearns H, Bedics MA, Shand NC, Faulds K, Detty MR, Graham D. 31.  2016. Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst 141:5062–65 [Google Scholar]
  32. Kearns H, Shand NC, Smith WE, Faulds K, Graham D. 32.  2015. 1064 nm SERS of NIR active hollow gold nanotags. Phys. Chem. Chem. Phys. 17:1980–86 [Google Scholar]
  33. Schlücker S. 33.  2009. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10:1344–54 [Google Scholar]
  34. Karabeber H, Huang RM, Iacono P, Samii JM, Pitter K. 34.  et al. 2014. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 8:9755–66 [Google Scholar]
  35. Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B. 35.  et al. 2010. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal. Chem. 82:9058–65 [Google Scholar]
  36. Zavaleta CL, Garai E, Liu JT, Sensarn S, Mandella MJ. 36.  et al. 2013. A Raman-based endoscopic strategy for multiplexed molecular imaging. PNAS 110:E2288–97 [Google Scholar]
  37. Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S. 37.  et al. 2015. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLOS ONE 10:e0123185 [Google Scholar]
  38. Jeong S, Kim YI, Kang H, Kim G, Cha MG. 38.  et al. 2015. Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5:9455 [Google Scholar]
  39. Bohndiek SE, Wagadarikar A, Zavaleta CL, Van de Sompel D, Garai E. 39.  et al. 2013. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. PNAS 110:12408–13 [Google Scholar]
  40. McVeigh PZ, Mallia RJ, Veilleux I, Wilson BC. 40.  2013. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J. Biomed. Opt 18046011 [Google Scholar]
  41. Matousek P. 41.  2007. Deep non-invasive Raman spectroscopy of living tissue and powders. Chem. Soc. Rev. 36:1292–304 [Google Scholar]
  42. Stone N, Faulds K, Graham D, Matousek P. 42.  2010. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal. Chem. 82:3969–73 [Google Scholar]
  43. Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P. 43.  2011. Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2:776–80 [Google Scholar]
  44. Sharma B, Ma K, Glucksberg MR, Van Duyne RP. 44.  2013. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135:17290–93 [Google Scholar]
  45. Kotanen CN, Martinez L, Alvarez R, Simecek JW. 45.  2016. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sens. Bio-Sens. Res. 8:20–26 [Google Scholar]
  46. Gracie K, Correa E, Mabbott S, Dougan JA, Graham D. 46.  et al. 2014. Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem. Sci. 5:1030–40 [Google Scholar]
  47. Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R. 47.  2008. Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133:1505–12 [Google Scholar]
  48. McAughtrie S, Lau K, Faulds K, Graham D. 48.  2013. 3D optical imaging of multiple SERS nanotags in cells. Chem. Sci. 4:3566–72 [Google Scholar]
  49. Wang YW, Khan A, Som M, Wang D, Chen Y. 49.  et al. 2014. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. Technology 2:118–32 [Google Scholar]
  50. Kneipp J, Kneipp H, Rice WL, Kneipp K. 50.  2005. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem. 77:2381–85 [Google Scholar]
  51. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD. 51.  2005. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109:312–20 [Google Scholar]
  52. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. 52.  2006. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–31 [Google Scholar]
  53. Zhou H, Wang Q, Yuan D, Wang J, Huang Y. 53.  et al. 2016. Early apoptosis real-time detection by label-free SERS based on externalized phosphatidylserine. Analyst 141:4293–98 [Google Scholar]
  54. Jamieson LE, Byrne HJ. 54.  2016. Vibrational spectroscopy as a tool for studying drug-cell interaction: could high throughput vibrational spectroscopic screening improve drug development?. Vib. Spectrosc. In press. http://dx.doi.org/10.1016/j.vibspec.2016.09.003 [Crossref] [Google Scholar]
  55. Lee S, Kim S, Choo J, Soon YS, Lee YH. 55.  et al. 2007. Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced raman microscopy. Anal. Chem. 79:916–22 [Google Scholar]
  56. Park H, Lee S, Chen L, Lee EK, Shin SY. 56.  et al. 2009. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys. Chem. Chem. Phys. 11:7444–49 [Google Scholar]
  57. Lee S, Chon H, Lee J, Ko J, Chung BH. 57.  et al. 2014. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens. Bioelectron. 51:238–43 [Google Scholar]
  58. Stevenson R, McAughtrie S, Senior L, Stokes RJ, McGachy H. 58.  et al. 2013. Analysis of intracellular enzyme activity by surface enhanced Raman scattering. Analyst 138:6331–36 [Google Scholar]
  59. Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR. 59.  et al. 2006. All-optical nanoscale pH meter. Nano Lett 6:1687–92 [Google Scholar]
  60. Kneipp J, Kneipp H, Wittig B, Kneipp K. 60.  2007. One- and two-photon excited optical pH probing for cells using surface-enhanced raman and hyper-Raman nanosensors. Nano Lett 7:2819–23 [Google Scholar]
  61. Mallikarjun V, Clarke DJ, Campbell CJ. 61.  2012. Cellular redox potential and the biomolecular electrochemical series: a systems hypothesis. Free Radic. Biol. Med. 53:280–88 [Google Scholar]
  62. Auchinvole CAR, Richardson P, McGuinnes C, Mallikarjun V, Donaldson K. 62.  et al. 2012. Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6:888–96 [Google Scholar]
  63. Jiang J, Auchinvole C, Fisher K, Campbell CJ. 63.  2014. Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors. Nanoscale 6:12104–10 [Google Scholar]
  64. Thomson PIT, Camus VL, Hu Y, Campbell CJ. 64.  2015. Series of quinone-containing nanosensors for biologically relevant redox potential determination by surface-enhanced Raman spectroscopy. Anal. Chem. 87:4719–25 [Google Scholar]
  65. Camus VL, Stewart G, Nailon WH, McLaren DB, Campbell CJ. 65.  2016. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors. Analyst 141:5056–61 [Google Scholar]
  66. Jamieson LE, Camus VL, Bagnaninchi PO, Fisher KM, Stewart GD. 66.  et al. 2016. Targeted SERS nanosensors measure physicochemical gradients and free energy changes in live 3D tumor spheroids. Nanoscale 8:16710–18 [Google Scholar]
  67. Lawson LS, Chan JW, Huser T. 67.  2014. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale 6:7971–80 [Google Scholar]
  68. Lee KYJ, Wang Y, Nie S. 68.  2015. In vitro study of a pH-sensitive multifunctional doxorubicin-gold nanoparticle system: therapeutic effect and surface enhanced Raman scattering. RSC Adv 5:65651–59 [Google Scholar]
  69. Chen Y, Bai X, Su L, Du Z, Shen A. 69.  et al. 2016. Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging. Sci. Rep. 6:19173 [Google Scholar]
  70. Lee M. 70.  2009. Basic Skills in Interpreting Laboratory Data Bethesda, MD: ASHP, 4th ed.. [Google Scholar]
  71. Theodosiou Z, Kasampalidis IN, Livanos G, Zervakis M, Pitas I, Lyroudia K. 71.  2007. Automated analysis of FISH and immunohistochemistry images: a review. Cytometry A 71:439–50 [Google Scholar]
  72. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. 72.  2003. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125:588–93 [Google Scholar]
  73. Rohr TE, Cotton T, Fan N, Tarcha PJ. 73.  1989. Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 182:388–98 [Google Scholar]
  74. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P. 74.  2006. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J. Raman Spectrosc. 37:719–21 [Google Scholar]
  75. Sinha L, Wang Y, Yang C, Khan A, Brankov JG. 75.  et al. 2015. Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci. Rep. 5:8582 [Google Scholar]
  76. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus O. 76.  et al. 2011. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13:11551–67 [Google Scholar]
  77. Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL. 77.  1984. Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 56:1667–70 [Google Scholar]
  78. Vo-Dinh T, Houck K, Stokes DL. 78.  1994. Surface-enhanced Raman gene probes. Anal. Chem. 66:3379–83 [Google Scholar]
  79. Isola NR, Stokes DL, Vo-Dinh T. 79.  1998. Surface-enhanced Raman gene probe for HIV detection. Anal. Chem. 70:1352–56 [Google Scholar]
  80. Graham D, Mallinder BJ, Smith WE. 80.  2000. Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew. Chem. Int. Ed. 39:1061–63 [Google Scholar]
  81. Cao YC, Jin R, Mirkin CA. 81.  2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–40 [Google Scholar]
  82. Faulds K, Smith WE, Graham D. 82.  2004. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76:412–17 [Google Scholar]
  83. Faulds K, McKenzie F, Smith WE, Graham D. 83.  2007. Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew. Chem. Int. Ed. 46:1829–31 [Google Scholar]
  84. White PL, Hibbitts SJ, Perry MD, Green J, Stirling E. 84.  et al. 2014. Evaluation of a commercially developed semiautomated PCR–surface-enhanced Raman scattering assay for diagnosis of invasive fungal disease. J. Clin. Microbiol. 52:3536–43 [Google Scholar]
  85. Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q. 85.  2007. Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 38:896–902 [Google Scholar]
  86. Wang G, Park H-Y, Lipert RJ, Porter MD. 86.  2009. Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays. Anal. Chem. 81:9643–50 [Google Scholar]
  87. Wang G, Lipert RJ, Jain M, Kaur S, Chakraboty S. 87.  et al. 2011. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal. Chem. 83:2554–61 [Google Scholar]
  88. Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y. 88.  1997. Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal. Chem. 69:1492–95 [Google Scholar]
  89. Larmour IA, Faulds K, Graham D. 89.  2010. The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem. Sci. 1:151–60 [Google Scholar]
  90. Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ. 90.  et al. 2004. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat. Biotechnol. 22:1133–38 [Google Scholar]
  91. Lutz BR, Dentinger CE, Nguyen LN, Sun L, Zhang J. 91.  et al. 2008. Spectral analysis of multiplex Raman probe signatures. ACS Nano 2:2306–14 [Google Scholar]
  92. Sun L, Sung K-B, Dentinger C, Lutz B, Nguyen L. 92.  et al. 2007. Composite organic–inorganic nanoparticles as Raman labels for tissue analysis. Nano Lett 7:351–56 [Google Scholar]
  93. Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S. 93.  2013. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J. Biophotonics 6:785–92 [Google Scholar]
  94. Salehi M, Schneider L, Strobel P, Marx A, Packeisen J, Schlucker S. 94.  2014. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates. Nanoscale 6:2361–67 [Google Scholar]
  95. Wang Y, Kang S, Khan A, Ruttner G, Leigh SY. 95.  et al. 2016. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 6:21242 [Google Scholar]
  96. Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR. 96.  et al. 2006. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78:7211–15 [Google Scholar]
  97. Ma K, Yuen JM, Shah NC, Walsh JT Jr., Glucksberg MR, Van Duyne RP. 97.  2011. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83:9146–52 [Google Scholar]
  98. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ. 98.  et al. 2008. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26:83–90 [Google Scholar]
  99. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. 99.  2008. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. PNAS 105:5844–49 [Google Scholar]
  100. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G. 100.  et al. 2009. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. PNAS 106:13511–16 [Google Scholar]
  101. Kang H, Jeong S, Park Y, Yim J, Jun BH. 101.  et al. 2013. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv. Funct. Mater. 23:3719–27 [Google Scholar]
  102. Register JK, Fales AM, Wang HN, Norton SJ, Cho EH. 102.  et al. 2015. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models. Anal. Bioanal. Chem. 407:8215–24 [Google Scholar]
  103. Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS. 103.  et al. 2010. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron. 26:398–403 [Google Scholar]
  104. Samanta A, Maiti KK, Soh KS, Liao X, Vendrell M. 104.  et al. 2011. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. 50:6089–92 [Google Scholar]
  105. Maiti KK, Dinish US, Samanta A, Vendrell M, Soh KS. 105.  et al. 2012. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93 [Google Scholar]
  106. Dinish US, Balasundaram G, Chang YT, Olivo M. 106.  2014. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4:4075 [Google Scholar]
  107. McQueenie R, Stevenson R, Benson R, MacRitchie N, McInnes I. 107.  et al. 2012. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84:5968–75 [Google Scholar]
  108. Wang YW, Kang S, Khan A, Bao PQ, Liu JT. 108.  2015. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed. Opt. Express 63714–23 [Google Scholar]
  109. Yuen JM, Shah NC, Walsh JT Jr, Glucksberg MR, Van Duyne RP. 109.  2010. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82:8382–85 [Google Scholar]
  110. Niu XJ, Chen HY, Wang YQ, Wang WH, Sun XY, Chen LX. 110.  2014. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. Acs Appl. Mater. Interfaces 6:5152–60 [Google Scholar]
  111. Jeong S, Kim YI, Kang H, Kim G, Cha MG. 111.  et al. 2015. Fluorescence-Raman dual modal endoscopic system for multiplexed molecular diagnostics. Sci. Rep. 5:9455 [Google Scholar]
  112. Iacono P, Karabeber H, Kircher MF. 112.  2014. A “schizophotonic” all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew. Chem. Int. Ed. 53:11756–61 [Google Scholar]
  113. von Maltzahn G, Centrone A, Park J-H, Ramanathan R, Sailor MJ. 113.  et al. 2009. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21:3175–80 [Google Scholar]
  114. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA. 114.  et al. 2010. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 22:880–85 [Google Scholar]
  115. Zeng LY, Pan YW, Wang SJ, Wang X, Zhao XM. 115.  et al. 2015. Raman reporter-coupled Agcore@Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. Acs Appl. Mater. Interfaces 7:16781–91 [Google Scholar]
  116. Liu Y, Chang Z, Yuan HK, Fales AM, Vo-Dinh T. 116.  2013. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale 5:12126–31 [Google Scholar]
  117. Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK. 117.  et al. 2015. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 5:946–60 [Google Scholar]
  118. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ. 118.  et al. 2012. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18:829–34 [Google Scholar]
  119. Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G. 119.  et al. 2014. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 10:2476–86 [Google Scholar]
  120. Yigit MV, Zhu L, Ifediba MA, Zhang Y, Carr K. 120.  et al. 2011. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 5:1056–66 [Google Scholar]
  121. Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. 121.  2016. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 106:87–97 [Google Scholar]
  122. Dinish US, Song ZG, Ho CJH, Balasundaram G, Attia ABE. 122.  et al. 2015. Single molecule with dual function on nanogold: biofunctionalized construct for in vivo photoacoustic imaging and SERS biosensing. Adv. Funct. Mater. 25:2316–25 [Google Scholar]
  123. Henry AI, Sharma B, Cardinal MF, Kurouski D, Van Duyne RP. 123.  2016. Surface-enhanced Raman spectroscopy biosensing: in vivo diagnostics and multimodal imaging. Anal. Chem. 88:6638–47 [Google Scholar]
  124. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. 124.  2012. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41:2656–72 [Google Scholar]
  125. Lane LA, Qian XM, Nie SM. 125.  2015. SERS Nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115:10489–529 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error