Proteins constitute a key class of molecular components that perform essential biochemical reactions in living cells. Whether the aim is to extensively characterize a given protein or to perform high-throughput qualitative and quantitative analysis of the proteome content of a sample, liquid chromatography coupled to tandem mass spectrometry has become the technology of choice. In this review, we summarize the current state of mass spectrometry applied to bottom-up proteomics, the approach that focuses on analyzing peptides obtained from proteolytic digestion of proteins. With the recent advances in instrumentation and methodology, we show that the field is moving away from providing qualitative identification of long lists of proteins to delivering highly consistent and accurate quantification values for large numbers of proteins across large numbers of samples. We believe that this shift will have a profound impact for the field of proteomics and life science research in general.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Nesvizhskii AI, Aebersold R. 1.  2005. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell Proteom. 4:1419–40 [Google Scholar]
  2. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J. 2.  et al. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–34 [Google Scholar]
  3. Anderson C. 3.  2008. The end of theory: the data deluge makes the scientific method obsolete. Wired June 23. http://www.wired.com/print/science/discoveries/magazine/16-07/pb_theory [Google Scholar]
  4. Pigliucci M. 4.  2009. The end of theory in science?. EMBO Rep. 10:534 [Google Scholar]
  5. Mazzocchi F. 5.  2015. Could Big Data be the end of theory in science? A few remarks on the epistemology of data-driven science. EMBO Rep. 16:1250–55 [Google Scholar]
  6. Smith LM, Kelleher NL. 6.  Consort. Top Down Proteom 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87 [Google Scholar]
  7. Catherman AD, Skinner OS, Kelleher NL. 7.  2014. Top down proteomics: facts and perspectives. Biochem. Biophys. Res. Commun. 445:683–93 [Google Scholar]
  8. Toby TK, Fornelli L, Kelleher NL. 8.  2016. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9:499–519 [Google Scholar]
  9. Walzthoeni T, Leitner A, Stengel F, Aebersold R. 9.  2013. Mass spectrometry supported determination of protein complex structure. Curr. Opin. Struct. Biol. 23:252–60 [Google Scholar]
  10. Larance M, Lamond AI. 10.  2015. Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16:269–80 [Google Scholar]
  11. Choudhary C, Mann M. 11.  2010. Decoding signalling networks by mass spectrometry–based proteomics. Nat. Rev. Mol. Cell Biol. 11:427–39 [Google Scholar]
  12. Bensimon A, Heck AJ, Aebersold R. 12.  2012. Mass spectrometry–based proteomics and network biology. Annu. Rev. Biochem. 81:379–405 [Google Scholar]
  13. Worboys JD, Sinclair J, Yuan Y, Jorgensen C. 13.  2014. Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome. Nat. Methods 11:1041–44 [Google Scholar]
  14. Chang CY, Picotti P, Huttenhain R, Heinzelmann-Schwarz V, Jovanovic M. 14.  et al. 2012. Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol. Cell Proteom. 11:M111.014662 [Google Scholar]
  15. Teo G, Kim S, Tsou CC, Collins B, Gingras AC. 15.  et al. 2015. mapDIA: preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J. Proteom. 129:108–20 [Google Scholar]
  16. Oberg AL, Vitek O. 16.  2009. Statistical design of quantitative mass spectrometry–based proteomic experiments. J. Proteome Res. 8:2144–56 [Google Scholar]
  17. Vandermarliere E, Mueller M, Martens L. 17.  2013. Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrom. Rev. 32:453–65 [Google Scholar]
  18. Tsiatsiani L, Heck AJ. 18.  2015. Proteomics beyond trypsin. FEBS J. 282:2612–26 [Google Scholar]
  19. Claassen M, Reiter L, Hengartner MO, Buhmann JM, Aebersold R. 19.  2012. Generic comparison of protein inference engines. Mol. Cell Proteom. 11:O110.007088 [Google Scholar]
  20. Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K. 20.  et al. 2012. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell Proteom. 11:M111.013722 [Google Scholar]
  21. Han J, Ye L, Xu L, Zhou Z, Gao F. 21.  et al. 2014. Towards high peak capacity separations in normal pressure nanoflow liquid chromatography using meter long packed capillary columns. Anal. Chim. Acta 852:267–73 [Google Scholar]
  22. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR 3rd. 22.  2013. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113:2343–94 [Google Scholar]
  23. Eliuk S, Makarov A. 23.  2015. Evolution of Orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. 8:61–80 [Google Scholar]
  24. Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC. 24.  2011. Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83:5442–46 [Google Scholar]
  25. Beck S, Michalski A, Raether O, Lubeck M, Kaspar S. 25.  et al. 2015. The Impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell Proteom. 14:2014–29 [Google Scholar]
  26. Ting YS, Egertson JD, Payne SH, Kim S, MacLean B. 26.  et al. 2015. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data. Mol. Cell Proteom. 14:2301–7 [Google Scholar]
  27. Picotti P, Aebersold R. 27.  2012. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9:555–66 [Google Scholar]
  28. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. 28.  2012. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell Proteom. 11:1475–88 [Google Scholar]
  29. Chapman JD, Goodlett DR, Masselon CD. 29.  2013. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom. Rev. 33:452–70 [Google Scholar]
  30. Hoopmann MR, Finney GL, MacCoss MJ. 30.  2007. High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal. Chem. 79:5620–32 [Google Scholar]
  31. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B. 31.  et al. 2007. SuperHirn—a novel tool for high resolution LC-MS–based peptide/protein profiling. Proteomics 7:3470–80 [Google Scholar]
  32. Weisser H, Nahnsen S, Grossmann J, Nilse L, Quandt A. 32.  et al. 2013. An automated pipeline for high-throughput label-free quantitative proteomics. J. Proteome Res. 12:1628–44 [Google Scholar]
  33. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 33.  2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 13:2513–26 [Google Scholar]
  34. Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y. 34.  et al. 2002. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2:513–23 [Google Scholar]
  35. Zimmer JS, Monroe ME, Qian WJ, Smith RD. 35.  2006. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom. Rev. 25:450–82 [Google Scholar]
  36. Stanley JR, Adkins JN, Slysz GW, Monroe ME, Purvine SO. 36.  et al. 2011. A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal. Chem. 83:6135–40 [Google Scholar]
  37. Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H. 37.  et al. 2015. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12:258–64 [Google Scholar]
  38. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N. 38.  et al. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 11:O111.016717 [Google Scholar]
  39. Eng JK, Searle BC, Clauser KR, Tabb DL. 39.  2011. A face in the crowd: recognizing peptides through database search. Mol. Cell Proteom. 10:R111.009522 [Google Scholar]
  40. Lam H. 40.  2011. Building and searching tandem mass spectral libraries for peptide identification. Mol. Cell Proteom. 10:R111.008565 [Google Scholar]
  41. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. 41.  2004. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1:39–45 [Google Scholar]
  42. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD. 42.  et al. 2009. Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal. Chem. 81:6481–88 [Google Scholar]
  43. Carvalho PC, Han X, Xu T, Cociorva D, da Gloria Carvalho M. 43.  et al. 2010. XDIA: improving on the label-free data-independent analysis. Bioinformatics 26:847–48 [Google Scholar]
  44. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ. 44.  et al. 2009. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–95 [Google Scholar]
  45. Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ. 45.  2010. Deconvolution of mixture spectra from ion-trap data-independent–acquisition tandem mass spectrometry. Anal. Chem. 82:833–41 [Google Scholar]
  46. Liebler DC, Hansen BT, Davey SW, Tiscareno L, Mason DE. 46.  2002. Peptide sequence motif analysis of tandem MS data with the SALSA algorithm. Anal. Chem. 74:203–10 [Google Scholar]
  47. Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. 47.  2012. Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. J. Proteome Res. 11:1621–32 [Google Scholar]
  48. Aebersold R, Mann M. 48.  2003. Mass spectrometry–based proteomics. Nature 422:198–207 [Google Scholar]
  49. Gingras AC, Gstaiger M, Raught B, Aebersold R. 49.  2007. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8:645–54 [Google Scholar]
  50. Stahl DC, Swiderek KM, Davis MT, Lee TD. 50.  1996. Data-controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. J. Am. Soc. Mass Spectrom. 7:532–40 [Google Scholar]
  51. Swaney DL, McAlister GC, Coon JJ. 51.  2008. Decision tree–driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5:959–64 [Google Scholar]
  52. Liu H, Sadygov RG, Yates JR 3rd. 52.  2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76:4193–201 [Google Scholar]
  53. Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A. 53.  et al. 2014. Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer. J. Proteome Res. 13:6187–95 [Google Scholar]
  54. Scheltema RA, Hauschild JP, Lange O, Hornburg D, Denisov E. 54.  et al. 2014. The Q exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell Proteom. 13:3698–708 [Google Scholar]
  55. Michalski A, Cox J, Mann M. 55.  2011. More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J. Proteome Res. 10:1785–93 [Google Scholar]
  56. Zhang N, Li XJ, Ye M, Pan S, Schwikowski B, Aebersold R. 56.  2005. ProbIDtree: an automated software program capable of identifying multiple peptides from a single collision-induced dissociation spectrum collected by a tandem mass spectrometer. Proteomics 5:4096–106 [Google Scholar]
  57. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. 57.  2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:1794–805 [Google Scholar]
  58. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. 58.  1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–67 [Google Scholar]
  59. Rauniyar N, Yates JR 3rd. 59.  2014. Isobaric labeling–based relative quantification in shotgun proteomics. J. Proteome Res. 13:5293–309 [Google Scholar]
  60. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC. 60.  2009. iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly.”. J. Proteome Res. 8:5347–55 [Google Scholar]
  61. Ow SY, Salim M, Noirel J, Evans C, Wright PC. 61.  2011. Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics 11:2341–46 [Google Scholar]
  62. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH. 62.  et al. 2011. Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat. Methods 8:933–35 [Google Scholar]
  63. Ting L, Rad R, Gygi SP, Haas W. 63.  2011. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8:937–40 [Google Scholar]
  64. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL. 64.  et al. 2014. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86:7150–58 [Google Scholar]
  65. Chalkley RJ, Clauser KR. 65.  2012. Modification site localization scoring: strategies and performance. Mol. Cell Proteom. 11:3–14 [Google Scholar]
  66. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR. 66.  et al. 2009. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nat. Biotechnol. 27:633–41 [Google Scholar]
  67. Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R. 67.  et al. 2009. A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nat. Methods 6:423–30 [Google Scholar]
  68. Surinova S, Radova L, Choi M, Srovnal J, Brenner H. 68.  et al. 2015. Non-invasive prognostic protein biomarker signatures associated with colorectal cancer. EMBO Mol. Med. 7:1153–65 [Google Scholar]
  69. Surinova S, Choi M, Tao S, Schuffler PJ, Chang CY. 69.  et al. 2015. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol. Med. 7:1166–78 [Google Scholar]
  70. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B. 70.  et al. 2014. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry–based assay development using a fit-for-purpose approach. Mol. Cell Proteom. 13:907–17 [Google Scholar]
  71. Lange V, Picotti P, Domon B, Aebersold R. 71.  2008. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4:222 [Google Scholar]
  72. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W. 72.  et al. 2007. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell Proteom. 6:1809–17 [Google Scholar]
  73. Ludwig C, Aebersold R. 73.  2014. Getting absolute: determining absolute protein quantities via selected reaction monitoring mass spectrometry. Quantitative Proteomics CE Eyers, SJ Gaskell 80–109 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  74. Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A. 74.  et al. 2014. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32:1036–44 [Google Scholar]
  75. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL. 75.  et al. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–68 [Google Scholar]
  76. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M. 76.  et al. 2011. mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 8:430–35 [Google Scholar]
  77. Purvine S, Eppel JT, Yi EC, Goodlett DR. 77.  2003. Shotgun collision–induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–50 [Google Scholar]
  78. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID. 78.  et al. 2006. UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 20:1989–94 [Google Scholar]
  79. Geiger T, Cox J, Mann M. 79.  2010. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol. Cell Proteom. 9:2252–61 [Google Scholar]
  80. Panchaud A, Jung S, Shaffer SA, Aitchison JD, Goodlett DR. 80.  2011. Faster, quantitative, and accurate precursor acquisition independent from ion count. Anal. Chem. 83:2250–57 [Google Scholar]
  81. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G. 81.  et al. 2015. Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat. Protoc. 10:426–41 [Google Scholar]
  82. Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM. 82.  et al. 2014. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32:219–23 [Google Scholar]
  83. Bruderer R, Bernhardt OM, Gandhi T, Miladinovic SM, Cheng LY. 83.  et al. 2015. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteom. 14:1400–10 [Google Scholar]
  84. Elias JE, Gygi SP. 84.  2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4:207–14 [Google Scholar]
  85. Storey JD, Tibshirani R. 85.  2003. Statistical significance for genomewide studies. PNAS 100:9440–45 [Google Scholar]
  86. Käll L, Storey JD, MacCoss MJ, Noble WS. 86.  2008. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 7:29–34 [Google Scholar]
  87. Selevsek N, Chang CY, Gillet LC, Navarro P, Bernhardt OM. 87.  et al. 2015. Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-MS. Mol. Cell Proteom. 14:739–49 [Google Scholar]
  88. Huang Q, Yang L, Luo J, Guo L, Wang Z. 88.  et al. 2015. SWATH enables precise label-free quantification on proteome scale. Proteomics 15:1215–23 [Google Scholar]
  89. Rosenberger G, Koh CC, Guo T, Röst HL, Kouvonen P. 89.  et al. 2014. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci. Data 1:140031 [Google Scholar]
  90. Schubert OT, Ludwig C, Kogadeeva M, Zimmermann M, Rosenberger G. 90.  et al. 2015. Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe 18:96–108 [Google Scholar]
  91. Nesvizhskii A. 91.  2007. Protein identification by tandem mass spectrometry and sequence database searching. Mass Spectrometry Data Analysis in Proteomics R Matthiesen 87–119 New York: Humana [Google Scholar]
  92. Frank AM, Monroe ME, Shah AR, Carver JJ, Bandeira N. 92.  et al. 2011. Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra. Nat. Methods 8:587–91 [Google Scholar]
  93. Kim S, Gupta N, Bandeira N, Pevzner PA. 93.  2009. Spectral dictionaries: integrating de novo peptide sequencing with database search of tandem mass spectra. Mol. Cell Proteom. 8:53–69 [Google Scholar]
  94. Allmer J. 94.  2011. Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev. Proteom. 8:645–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error