The author recounts progress observed in analytical chemistry (the discipline) from the vantage point of a 20-year editor of (the journal). The recounting draws liberally from the journal's monthly editorials. A complete listing of the editorials can be found in .

Keyword(s): editorialeducationfrontiers

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Murray RW. 1.  1980. Chemically modified electrodes. Acc. Chem. Res. 13:135–41 [Google Scholar]
  2. Murray RW. 2.  2008. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes and nanopores. Chem. Rev. 108:2688–720 [Google Scholar]
  3. Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury J. 3.  et al. 1997. 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM coulomb staircases. J. Am. Chem. Soc. 119:9279–80 [Google Scholar]
  4. Murray RW. 4.  2009. Nanoparticles: an emerged and lasting frontier. Anal. Chem. 81:1723 [Google Scholar]
  5. Murray RW. 5.  2001. Biography and reminiscences of a 40-plus year career as a chemistry faculty member. J. Phys. Chem. B 105:8642–47 [Google Scholar]
  6. Murray RW. 6.  2004. “Cadmium horses” and glucose. Anal. Chem. 76:149a [Google Scholar]
  7. Murray RW. 7.  1991. Analytical chemistry: the science of chemical measurements. Anal. Chem. 63:271a http://pubs.acs.org/doi/pdf/10.1021/ac00005a600 [Google Scholar]
  8. Murray RW. 8.  2007. Analytical chemistry is still the science of chemical measurements. Anal. Chem. 79:1765 [Google Scholar]
  9. Murray RW. 9.  1996. The permanency of fading boundaries. Anal. Chem. 68:457a http://pubs.acs.org/doi/abs/10.1021/ac961988b [Google Scholar]
  10. Murray RW. 10.  1994. Chemical sensors and molecular selectivity. Anal. Chem. 66:505a http://pubs.acs.org/doi/pdf/10.1021/ac00081a600 [Google Scholar]
  11. McCollom TM, Seewald JS. 11.  2007. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107:382–91 [Google Scholar]
  12. Adams KL, Puchades ME, Ewing AG. 12.  2008. In vitro electrochemistry of biological systems. Annu. Rev. Anal. Chem. 1:329–55 [Google Scholar]
  13. Borland LM, Kottegoda S, Phillips KS, Allbritton NL. 13.  2008. Chemical analysis of single cells. Annu. Rev. Anal. Chem. 1:191–27 [Google Scholar]
  14. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ. 14.  et al. 1991. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 88:10754–58 [Google Scholar]
  15. Murray RW. 15.  1997. There is no analysis without sampling. Anal. Chem. 69:269a http://pubs.acs.org/doi/abs/10.1021/ac9715985 [Google Scholar]
  16. Murray RW. 16.  1997. Sampling of small spaces. Anal. Chem. 69:327a http://pubs.acs.org/doi/abs/10.1021/ac971635s [Google Scholar]
  17. Murray RW. 17.  1999. Molecular recognition. Anal. Chem. 71:359a http://pubs.acs.org/doi/abs/10.1021/ac990020n [Google Scholar]
  18. Walt DR. 18.  2005. Electronic noses: Wake up and smell the coffee. Anal. Chem. 77:45a [Google Scholar]
  19. Murray RW. 19.  1992. Ode to the separator. Anal. Chem. 64:661a http://pubs.acs.org/doi/pdf/10.1021/ac00037a601 [Google Scholar]
  20. Murray RW. 20.  2005. Enabling monoliths. Anal. Chem. 77:277a [Google Scholar]
  21. Murray RW. 21.  1994. Chemical sensors and molecular selectivity. Anal. Chem. 66:505a http://pubs.acs.org/doi/pdf/10.1021/ac00081a600 [Google Scholar]
  22. Terry SC, Jerman JH, Angell JB. 22.  1979. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26:1880–86 [Google Scholar]
  23. Murray RW. 23.  2005. Enabling fast GC separations. Anal. Chem. 77:5a [Google Scholar]
  24. White RL. 24.  2008. Volatile mixture analysis by repetitive injection fast gas chromatography/mass spectrometry. Anal. Chem. 80:9812–16 [Google Scholar]
  25. Reidy S, George D, Agah M, Sacks R. 25.  2007. Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors. Anal. Chem. 79:2911–17 [Google Scholar]
  26. Murray RW. 26.  2003. Chips and more chips. Anal. Chem. 75:5a [Google Scholar]
  27. Harrison DJ, Manz A, Fan Z, Luedi H, Widmer H. 27.  1992. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64:1926–32 [Google Scholar]
  28. Broyles BS, Jacobsen SC, Ramsey JM. 28.  2003. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 75:2761–67 [Google Scholar]
  29. Jacobson SC, Hergenröder R, Koutny LB, Ramsey JM. 29.  1994. High-speed separations on a microchip. Anal. Chem. 66:1114–18 [Google Scholar]
  30. Carrilho E, Martinez AW, Whitesides GM. 30.  2009. Micropatterning process for paper-based microfluidics. Anal. Chem. 81:7091–95 [Google Scholar]
  31. Martinez AW, Phillips ST, Whitesides GM. 31.  2008. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 105:19606–11 [Google Scholar]
  32. Murray RW. 32.  1996. The federal rudder. Anal. Chem. 68:649a http://pubs.acs.org/doi/abs/10.1021/ac9620977 [Google Scholar]
  33. Zubritsky E. 33.  2002. How analytical chemists saved the human genome project. Anal. Chem. 74:23–26 [Google Scholar]
  34. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr. 34.  et al. 2009. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–16 [Google Scholar]
  35. Deamer DW, Branton D. 35.  2002. Characteristics of nucleic acids by nanopore analysis. Acc. Chem. Res. 35:817–25 [Google Scholar]
  36. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 36.  1996. A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–9 [Google Scholar]
  37. Rosi NL, Mirkin CA. 37.  2005. Nanostructures in biodiagnostics. Chem. Rev. 105:1547–62 [Google Scholar]
  38. Willner I, Willner B. 38.  2002. Functional nanoparticle architectures for sensoric optoelectronic and bioelectronic applications. Pure Appl. Chem. 74:1773–83 [Google Scholar]
  39. Murray RW. 39.  2009. Soft and molecular surfaces. Anal. Chem. 81:7127 [Google Scholar]
  40. Takats Z, Wiseman JM, Gologan B, Cooks RG. 40.  2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73 [Google Scholar]
  41. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. 41.  2006. Ambient mass spectrometry. Science 311:1566–70 [Google Scholar]
  42. Venter A, Nefliu M, Cooks RG. 42.  2008. Ambient desorption ionization mass spectrometry. Trends Anal. Chem. 27:284–90 [Google Scholar]
  43. Young S, Talaty N, Datsenko K, Wanner BL, Cooks RG. 43.  2009. In vivo recognition of Bacillus subtilis by desorption electrospray ionization mass spectrometry (DESI-MS). R. Soc. Chem. 134:838–41 [Google Scholar]
  44. Costa AB, Cooks RG. 44.  2008. Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett. 464:1–8 [Google Scholar]
  45. Bard AJ, Denuault G, Lee C, Mandler D, Wipf DO. 45.  1990. Scanning electrochemical microscopy—a new technique for the characterization and modification of surfaces. Acc. Chem. Res. 23:357–63 [Google Scholar]
  46. Bard AJ, Fan F-RF, Kwak J, Lev O. 46.  1989. Scanning electrochemical microscopy. Introductions and principles. Anal. Chem. 61:132–38 [Google Scholar]
  47. Bard AJ, Mirkin MV. 47.  2001. Scanning Electrochemical Microscopy New York: Marcel Dekker [Google Scholar]
  48. Amemiya S, Bard AJ, Fan F-RF, Mirkin MV, Unwin PR. 48.  2008. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 1:95–31 [Google Scholar]
  49. Zhang M, Girault HH. 49.  2009. SECM for imaging and detection of latent fingerprints. Analyst 134:25–30 [Google Scholar]
  50. Gao N, Wang X, Li L, Zhang X, Jin W. 50.  2007. Scanning electrochemical microscopy coupled with intracellular standard addition method for quantification of enzyme activity in single intact cells. Analyst 132:1139–46 [Google Scholar]
  51. Hauquier F, Matrab T, Kanoufi F, Combellas C. 51.  2009. Local direct and indirect reduction of electrografted aryldiazonium/gold surfaces for polymer brushes patterning. Electrochim. Acta 54:5127–36 [Google Scholar]
  52. Rodriquez-Lopez J, Alpuche-Aviles MA, Bard AJ. 52.  2008. Interrogation of surfaces for the quantification of adsorbed species on electrodes: oxygen on gold and platinum in neutral media. J. Am. Chem. Soc. 130:16985–95 [Google Scholar]
  53. Wang K, Goyer C, Anne A, Demaille C. 53.  2007. Exploring the motional dynamics of end-grafted DNA oligonucleotides by in situ electrochemical atomic force microscopy. J. Phys. Chem. B 111:6051–58 [Google Scholar]
  54. Murray RW. 54.  1993. The handsome 600 pound gorilla. Anal. Chem. 65:341a http://pubs.acs.org/doi/pdf/10.1021/ac00055a600 [Google Scholar]
  55. Karas M, Hillenkamp F. 55.  1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  56. Yamashita M, Fenn JB. 56.  1984. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88:4451–59 [Google Scholar]
  57. Yamashita M, Fenn JB. 57.  1984. Negative ion production with the electrospray ion source. J. Phys. Chem. 88:4761–75 [Google Scholar]
  58. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 58.  1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 [Google Scholar]
  59. Commisarow MB, Marshall AG. 59.  1974. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25:282–83 [Google Scholar]
  60. Marshall AG, Hendrickson CL. 60.  2008. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1:579–99 [Google Scholar]
  61. Kelleher NL. 61.  2004. Top down proteomics. Anal. Chem. 76:196–203A [Google Scholar]
  62. Bogdanov B, Smith RD. 62.  2005. Proteomics by FT-ICR mass spectrometry: top down and bottom up. Mass Spectrom. Rev. 79:7984–91 [Google Scholar]
  63. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr. 63.  2008. Ion mobility–mass spectrometry. 431–22
  64. Baumbach JI, Eiceman GA. 64.  1999. Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl. Spectrosc. 53:338–55A [Google Scholar]
  65. Aebersold R, Goodlet DR. 65.  2001. Mass spectrometry in proteomics. Chem. Rev. 101:269–95 [Google Scholar]
  66. Lubec G, Afjehi-Sadat L. 66.  2007. Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev. 107:3568–84 [Google Scholar]
  67. Tomer KB. 67.  2001. Separations combined with mass spectrometry. Chem. Rev. 101:297–328 [Google Scholar]
  68. Bierbaum VB. 68.  2001. Introduction: frontiers in mass spectrometry. Chem. Rev. 101:209–10 [Google Scholar]
  69. Noble CA, Prather KA. 69.  2000. Real-time single particle mass spectrometry: a historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom. Rev. 19:248–74 [Google Scholar]
  70. Suess DT, Prather KA. 70.  1999. Mass spectrometry of aerosols. Chem. Rev. 99:3007–35 [Google Scholar]
  71. Murray RW. 71.  1996. Environmental analytical chemistry: basic and applied. Anal. Chem. 68:589a http://pubs.acs.org/doi/abs/10.1021/ac962063z [Google Scholar]
  72. Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi J-P. 72.  et al. 2007. Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J. Am. Chem. Soc. 129:6706–7 [Google Scholar]
  73. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL. 73.  1998. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 102:10643–46 [Google Scholar]
  74. Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T. 74.  2007. Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J. Am. Chem. Soc. 129:1322–23 [Google Scholar]
  75. Murray RW. 75.  2003. An electrochemical evolution and invitation to the future. Anal. Chem. 75:325a [Google Scholar]
  76. Arrigan DWM. 76.  2004. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–65 [Google Scholar]
  77. Watkins JJ, Chen J, White HS, Abruna HD, Maisonhaute E. 77.  et al. 2003. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimension. Anal. Chem. 75:3962–71 [Google Scholar]
  78. Morris RB, Franta DJ, White HS. 78.  1987. Electrochemistry at platinum band electrodes of width approaching molecular dimensions: breakdown of transport equations at very small electrodes. J. Phys. Chem. 91:3559–64 [Google Scholar]
  79. Robinson DL, Hermans A, Seipel AT, Wightman RW. 79.  2008. Monitoring rapid chemical communication in the brain. Chem. Rev. 108:2554–84 [Google Scholar]
  80. Long JW, Dunn B, Rolison DR, White HS. 80.  2004. Three-dimensional battery architectures. Chem. Rev. 104:4463–92 [Google Scholar]
  81. Murray RW. 81.  2007. Single-molecule chemistry. Anal. Chem. 79:4739 [Google Scholar]
  82. Moerner WE, Kador L. 82.  1989. Optical detection and spectroscopy of single molecules in solids. Phys. Rev. Lett. 62:2535–38 [Google Scholar]
  83. Basché T, Moerner WE, Orrit M, Talon H. 83.  1992. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69:1516–19 [Google Scholar]
  84. Lounis B, Moerner WE. 84.  2000. Single photons on demand from a single molecule at room temperature. Nature 407:491–93 [Google Scholar]
  85. Murray RW. 85.  2008. Technology foundations—the powerful piezo. Anal. Chem. 80:3939 [Google Scholar]
  86. Cui Y, Bustamante C. 86.  2000. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97:127–32 [Google Scholar]
  87. Murray RW. 87.  1992. Environmental analytical chemistry: a continuing frontier. Anal. Chem. 64:1111a http://pubs.acs.org/doi/pdf/10.1021/ac00047a600 [Google Scholar]
  88. Murray RW. 88.  2007. Services offered by analytical chemists. Anal. Chem. 79:5495 [Google Scholar]
  89. Murray RW. 89.  2008. Analytical chemistry and risk. Anal. Chem. 80:1 [Google Scholar]
  90. Murray RW. 90.  1991. The education frontier. Anal. Chem. 63:671a http://pubs.acs.org/doi/pdf/10.1021/ac00013a600 [Google Scholar]
  91. Murray RW. 91.  1994. Analytical chemistry is what analytical chemists do. Anal. Chem. 66:682a http://pubs.acs.org/doi/pdf/10.1021/ac00085a600 [Google Scholar]
  92. Murray RW. 92.  2006. Educational budgets (i.e., time). Anal. Chem. 78:7353 [Google Scholar]
  93. Murray RW. 93.  1993. A macromolecular proposal. Anal. Chem. 65:13a http://pubs.acs.org/doi/pdf/10.1021/ac00049a600 [Google Scholar]
  94. Murray RW. 94.  1991. The analytical side of materials science. Anal. Chem. 63:493a http://pubs.acs.org/doi/pdf/10.1021/ac00009a600 [Google Scholar]
  95. Murray RW. 95.  2006. Let's continue to talk about building instruments. Anal. Chem. 78:1372a [Google Scholar]
  96. Murray RW. 96.  2007. Honors course in introductory analytical chemistry. Anal. Chem. 79:8817 [Google Scholar]
  97. Murray RW. 97.  1999. The scientific method. Anal. Chem. 71:153a http://pubs.acs.org/doi/abs/10.1021/ac990210y [Google Scholar]
  98. Murray RW. 98.  2002. Controls and reliable conclusions. Anal. Chem. 74:109a [Google Scholar]
  99. Murray RW. 99.  2007. Influences of high school science and math. Anal. Chem. 79:7227 [Google Scholar]
  100. Murray RW. 100.  1993. Diversity and quality in science education. Anal. Chem. 65:431a http://pubs.acs.org/doi/pdf/10.1021/ac00057a600 [Google Scholar]
  101. Murray RW. 101.  1994. Infrastructure. Anal. Chem. 66:17a http://pubs.acs.org/doi/pdf/10.1021/ac00073a600 [Google Scholar]
  102. Murray RW. 102.  2005. The chemical fertilizer called new space. Anal. Chem. 77:125a [Google Scholar]
  103. Murray RW. 103.  2002. Academic tenure equals freedom of inquiry. Anal. Chem. 74:229a [Google Scholar]
  104. Murray RW. 104.  2005. The responsibilities of tenure evaluators. Anal. Chem. 77:365a [Google Scholar]
  105. Murray RW. 105.  1999. University conflicts of interest: Manage rather than avoid. Anal. Chem. 71:713a http://pubs.acs.org/doi/abs/10.1021/ac9907538 [Google Scholar]
  106. Murray RW. 106.  2003. Science projects and (very) young analytical chemists. Anal. Chem. 75:445a [Google Scholar]
  107. Murray RW. 107.  2001. Undergraduate research secrets rediscovered. Anal. Chem. 72:237a [Google Scholar]
  108. Murray RW. 108.  2001. A primer for choosing a graduate school. Anal. Chem. 72:572 [Google Scholar]
  109. Murray RW. 109.  2002. The graduate. Anal. Chem. 74:293a [Google Scholar]
  110. Murray RW. 110.  2005. Chapters of our lives. Anal. Chem. 77:156a [Google Scholar]
  111. Murray RW. 111.  1996. The teaching assistant. Anal. Chem. 68:709a http://pubs.acs.org/doi/abs/10.1021/ac9621332 [Google Scholar]
  112. Murray RW. 112.  1996. The season of the interview. Anal. Chem. 68:231a http://pubs.acs.org/doi/abs/10.1021/ac961866j [Google Scholar]
  113. Murray RW. 113.  1996. Fewer PhDs?. Anal. Chem. 68:161a http://pubs.acs.org/doi/abs/10.1021/ac961836g [Google Scholar]
  114. Murray RW. 114.  1994. Employment and change. Anal. Chem. 66:395a http://pubs.acs.org/doi/pdf/10.1021/ac00079a600 [Google Scholar]
  115. Murray RW. 115.  2001. The post-doc: an opportunity for learning and more. Anal. Chem. 72:75a [Google Scholar]
  116. Murray RW. 116.  2009. A conversation with some postdoctorals. Anal. Chem. 81:857 [Google Scholar]
  117. Murray RW. 117.  1999. Mentoring—one of the most important acts. Anal. Chem. 71:5a http://pubs.acs.org/doi/abs/10.1021/ac990077%2B [Google Scholar]
  118. Murray RW. 118.  2007. Michael Faraday's advice to the lecturer. Anal. Chem. 79:6425 [Google Scholar]
  119. Murray RW. 119.  1995. Time constants. Anal. Chem. 67:287a http://pubs.acs.org/doi/pdf/10.1021/ac00105a600 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error