1932

Abstract

Nanobiodevices have been developed to analyze biomolecules and cells for biomedical applications. In this review, we discuss several nanobiodevices used for disease-diagnostic devices, molecular imaging devices, regenerative medicine, and drug-delivery systems and describe the numerous advantages of nanobiodevices, especially in biological, medical, and clinical applications. This review also outlines the fabrication technologies for nanostructures and nanomaterials, including top-down nanofabrication and bottom-up molecular self-assembly approaches. We describe nanopillar arrays and nanowall arrays for the ultrafast separation of DNA or protein molecules and nanoball materials for the fast separation of a wide range of DNA molecules, and we present examples of applications of functionalized carbon nanotubes to obtain information about subcellular localization on the basis of mobility differences between free fluorophores and fluorophore-labeled carbon nanotubes. Finally, we discuss applications of newly synthesized quantum dots to the screening of small interfering RNA, highly sensitive detection of disease-related proteins, and development of cancer therapeutics and diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-062012-092619
2013-06-12
2024-06-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-anchem-062012-092619
Loading
/content/journals/10.1146/annurev-anchem-062012-092619
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error