Full text loading...
Abstract
Nanobiodevices have been developed to analyze biomolecules and cells for biomedical applications. In this review, we discuss several nanobiodevices used for disease-diagnostic devices, molecular imaging devices, regenerative medicine, and drug-delivery systems and describe the numerous advantages of nanobiodevices, especially in biological, medical, and clinical applications. This review also outlines the fabrication technologies for nanostructures and nanomaterials, including top-down nanofabrication and bottom-up molecular self-assembly approaches. We describe nanopillar arrays and nanowall arrays for the ultrafast separation of DNA or protein molecules and nanoball materials for the fast separation of a wide range of DNA molecules, and we present examples of applications of functionalized carbon nanotubes to obtain information about subcellular localization on the basis of mobility differences between free fluorophores and fluorophore-labeled carbon nanotubes. Finally, we discuss applications of newly synthesized quantum dots to the screening of small interfering RNA, highly sensitive detection of disease-related proteins, and development of cancer therapeutics and diagnostics.