1932

Abstract

The study of e-cigarette aerosol properties can inform public health while longer-term epidemiological investigations are ongoing. The determination of aerosol levels of known toxins, as well as of molecules with unknown inhalation toxicity profiles, affords specific information for estimating the risks of e-cigarettes and for uncovering areas that should be prioritized for further investigation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115329
2019-06-12
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115329.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115329&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Proctor RN. 2012. The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tob. Control 21:87–91
    [Google Scholar]
  2. 2.
    Huang J, Duan Z, Kwok J, Binns S, Vera LE et al. 2019. Vaping versus JUULing: how the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob. Control 28:146–51
    [Google Scholar]
  3. 3.
    Barrington-Trimis JL, Leventhal AM. 2018. Adolescents’ use of “pod mod” e-cigarettes—urgent concerns. N. Engl. J. Med. 379:1099–102
    [Google Scholar]
  4. 4.
    Russell M. 1976. Low-tar medium-nicotine cigarettes: a new approach to safer smoking. Br. Med. J. 1:1430–33
    [Google Scholar]
  5. 5.
    Peeters S, Gilmore AB. 2014. Understanding the emergence of the tobacco industry's use of the term tobacco harm reduction in order to inform public health policy. Tob. Control 24:182–89
    [Google Scholar]
  6. 6.
    Grandjean P. 2016. Paracelsus revisited: the dose concept in a complex world. Basic Clin. Pharm. Toxicol. 119:126–32
    [Google Scholar]
  7. 7.
    Bhatnagar A. 2016. E-cigarettes and cardiovascular disease risk: evaluation of evidence, policy implications, and recommendations. Curr. Cardiovasc. Risk Rep. 10:24
    [Google Scholar]
  8. 8.
    Lisko JG, Tran H, Stanfill SB, Blount BC, Watson CH 2015. Chemical composition and evaluation of nicotine, tobacco alkaloids, pH, and selected flavors in e-cigarette cartridges and refill solutions. Nicotine Tob. Res. 17:1270–78
    [Google Scholar]
  9. 9.
    Oh J-A, Shin H-S. 2014. Identification and quantification of several contaminated compounds in replacement liquids of electronic cigarettes by gas chromatography–mass spectrometry. J. Chromatogr. Sci. 53:841–48
    [Google Scholar]
  10. 10.
    Hutzler C, Paschke M, Kruschinski S, Henkler F, Hahn J, Luch A 2014. Chemical hazards present in liquids and vapors of electronic cigarettes. Arch. Toxicol. 88:1295–308
    [Google Scholar]
  11. 11.
    Hallaghan J. 2015. The safety assessment and regulatory authority to use flavors: focus on e-cigarettes https://www.femaflavor.org/member-update/safety-assessment-and-regulatory-authority-use-flavors-focus-e-cigarettes
    [Google Scholar]
  12. 12.
    Korzun T, Lazurko M, Munhenzva I, Barsanti KC, Huang Y et al. 2018. E-cigarette airflow rate modulates toxicant profiles and can lead to concerning levels of solvent consumption. ACS Omega 3:30–36
    [Google Scholar]
  13. 13.
    Behar RZ, Luo WT, McWhirter KJ, Pankow JF, Talbot P 2018. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 8:8288
    [Google Scholar]
  14. 14.
    Fetterman JL, Weisbrod RM, Feng B, Bastin R, Tuttle ST et al. 2018. Flavorings in tobacco products induce endothelial cell dysfunction. Arterioscler. Thromb. Vasc. Biol. 38:1607–15
    [Google Scholar]
  15. 15.
    Sassano MF, Davis ES, Keating JE, Zorn BT, Kochar TK et al. 2018. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLOS Biol 16:e2003904
    [Google Scholar]
  16. 16.
    Glantz SA, Bareham DW. 2018. E-cigarettes: use, effects on smoking, risks, and policy implications. Annu. Rev. Public Health 39:215–35
    [Google Scholar]
  17. 17.
    Abrams DB, Glasser AM, Pearson JL, Villanti AC, Collins LK, Niaura RS 2018. Harm minimization and tobacco control: reframing societal views of nicotine use to rapidly save lives. Annu. Rev. Public Health 39:193–213
    [Google Scholar]
  18. 18.
    US Food Drug Admin 2018. Statement from FDA Commissioner Scott Gottlieb, M.D., on new steps to address epidemic of youth e-cigarette use. Press Release, Sept. 12. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm620185.htm
    [Google Scholar]
  19. 19.
    Wang TW, Gentzke A, Sharapova S, Cullen KA, Ambrose BK, Jamal A 2018. Tobacco product use among middle and high school students—United States, 2011–2017. Morb. Mortal. Wkly. Rep. 67:629–33
    [Google Scholar]
  20. 20.
    Wild CP, Kleinjans J. 2003. Children and increased susceptibility to environmental carcinogens: evidence or empathy?. Cancer Epidemiol. Biomark. Prev. 12:1389–94
    [Google Scholar]
  21. 21.
    Rubinstein ML, Delucchi K, Benowitz NL, Ramo DE 2018. Adolescent exposure to toxic volatile organic chemicals from e-cigarettes. Pediatrics 141:e20173557
    [Google Scholar]
  22. 22.
    Bunnell RE, Agaku IT, Arrazola RA, Apelberg BJ, Caraballo RS et al. 2015. Intentions to smoke cigarettes among never-smoking US middle and high school electronic cigarette users: National Youth Tobacco Survey, 2011–2013. Nicotine Tob. Res. 17:228–35
    [Google Scholar]
  23. 23.
    USA Cig 2013. The electric cigarette: frequently asked questions https://web.archive.org/web/20130403100952/http://www.usacig.com/faq.aspx
    [Google Scholar]
  24. 24.
    De Andrade M, Hastings G, Angus K 2013. Promotion of electronic cigarettes: tobacco marketing reinvented?. BMJ 347:f7473
    [Google Scholar]
  25. 25.
    Jensen RP, Strongin RM, Peyton DH 2017. Solvent chemistry in the electronic cigarette reaction vessel. Sci. Rep. 7:42549
    [Google Scholar]
  26. 26.
    Nef JU. 1904. Dissociation processes in the glycol-glycerine sequence. Justus Liebigs Ann. Chem. 335:191–245
    [Google Scholar]
  27. 27.
    Chen WH, Wang P, Ito K, Fowles J, Shusterman D et al. 2018. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer. PLOS ONE 13:e0195925
    [Google Scholar]
  28. 28.
    Eddingsaas N, Pagano T, Cummings C, Rahman I, Robinson R, Hensel E 2018. Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. Int. J. Environ. Res. Public Health 15:323
    [Google Scholar]
  29. 29.
    Bansal V, Kim K-H. 2016. Review on quantitation methods for hazardous pollutants released by e-cigarette (EC) smoking. TrAC Trends Anal. Chem. 78:120–33
    [Google Scholar]
  30. 30.
    Malek N, Nakkash R, Talih S, Lotfi T, Salman R et al. 2018. A transdisciplinary approach to understanding characteristics of electronic cigarettes. Tob. Regul. Sci. 4:47–72
    [Google Scholar]
  31. 31.
    Zhao J, Nelson J, Dada O, Pyrgiotakis G, Kavouras IG, Demokritou P 2018. Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal. Toxicol. 30:78–88
    [Google Scholar]
  32. 32.
    Zhao JY, Zhang YP, Sisler JD, Shaffer J, Leonard SS et al. 2018. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. J. Hazard. Mater. 344:549–57
    [Google Scholar]
  33. 33.
    Gillman I, Kistler K, Stewart E, Paolantonio A 2016. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 75:58–65
    [Google Scholar]
  34. 34.
    Vreeke S, Korzun T, Luo W, Jensen RP, Peyton DH, Strongin RM 2018. Dihydroxyacetone levels in electronic cigarettes: wick temperature and toxin formation. Aerosol Sci. Technol. 52:370–76
    [Google Scholar]
  35. 35.
    Talih S, Salmon R, Karaoghlanian N, El-Hellani A, Saliba N et al. 2017. “Juice monsters”: sub-ohm vaping and toxic volatile aldehyde emissions. Chem. Res. Toxicol. 30:1791–93
    [Google Scholar]
  36. 36.
    Pisinger C, Døssing M. 2014. A systematic review of health effects of electronic cigarettes. Prev. Med. 69:248–60
    [Google Scholar]
  37. 37.
    Farsalinos KE, Gillman G. 2018. Carbonyl emissions in e-cigarette aerosol: a systematic review and methodological considerations. Front. Physiol. 8:1119
    [Google Scholar]
  38. 38.
    Farsalinos KE, Kistler KA, Pennington A, Spyrou A, Kouretas D, Gillman G 2018. Aldehyde levels in e-cigarette aerosol: findings from a replication study and from use of a new-generation device. Food Chem. Toxicol. 111:64–70
    [Google Scholar]
  39. 39.
    Farsalinos KE, Voudris V, Poulas K 2015. E‐cigarettes generate high levels of aldehydes only in ‘dry puff' conditions.. Addiction 110:1352–56
    [Google Scholar]
  40. 40.
    Farsalinos KE, Voudris V, Spyrou A, Poulas K 2017. E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions. Food Chem. Toxicol. 109:90–94
    [Google Scholar]
  41. 41.
    Shihadeh A, Talih S, Eissenberg T 2015. Unjustified conclusions. Addiction 110:1862
    [Google Scholar]
  42. 42.
    Khlystov A, Samburova V. 2017. Response to comment on “Flavoring compounds dominate toxic aldehyde production during e cigarette vaping.”. Environ. Sci. Technol. 51:2493–94
    [Google Scholar]
  43. 43.
    Salamanca JC, Meehan-Atrash J, Vreeke S, Escobedo JO, Peyton DH, Strongin RM 2018. E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Sci. Rep. 8:7559
    [Google Scholar]
  44. 44.
    Saliba NA, El Hellani A, Honein E, Salman R, Talih S et al. 2018. Surface chemistry of electronic cigarette electrical heating coils: effects of metal type on propylene glycol thermal decomposition. J. Anal. Appl. Pyrolysis 134:520–25
    [Google Scholar]
  45. 45.
    Khlystov A, Samburova V. 2016. Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping. Environ. Sci. Technol. 50:13080–85
    [Google Scholar]
  46. 46.
    Klager S, Vallarino J, MacNaughton P, Christiani DC, Lu Q, Allen JG 2017. Flavoring chemicals and aldehydes in e-cigarette emissions. Environ. Sci. Technol. 51:10806–13
    [Google Scholar]
  47. 47.
    Soussy S, Ahmad E-H, Baalbaki R, Salman R, Shihadeh A, Saliba NA 2016. Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tob. Control 25:ii88–93
    [Google Scholar]
  48. 48.
    Vreeke S, Peyton DH, Strongin RM 2018. Triacetin enhances levels of acrolein, formaldehyde hemiacetals, and acetaldehyde in electronic cigarette aerosols. ACS Omega 3:7165–70
    [Google Scholar]
  49. 49.
    Farsalinos K, Gillman G, Kistler K, Yannovits N 2017. Comment on “flavoring compounds dominate toxic aldehyde production during e cigarette vaping.”. Environ. Sci. Technol. 51:2491–92
    [Google Scholar]
  50. 50.
    Samburova V, Bhattarai C, Strickland M, Darrow L, Angermann J et al. 2018. Aldehydes in exhaled breath during e-cigarette vaping: pilot study results. Toxics 6:46
    [Google Scholar]
  51. 51.
    Qu Y, Kim K-H, Szulejko JE 2018. The effect of flavor content in e-liquids on e-cigarette emissions of carbonyl compounds. Environ. Res. 166:324–33
    [Google Scholar]
  52. 52.
    Bitzer ZT, Goel R, Reilly SM, Elias RJ, Silakov A et al. 2018. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radic. Biol. Med. 120:72–79
    [Google Scholar]
  53. 53.
    Pankow JF. 2017. Calculating compound dependent gas-droplet distributions in aerosols of propylene glycol and glycerol from electronic cigarettes. J. Aerosol Sci. 107:9–13
    [Google Scholar]
  54. 54.
    Oldham MJ, Zhang J, Rusyniak MJ, Kane DB, Gardner WP 2018. Particle size distribution of selected electronic nicotine delivery system products. Food Chem. Toxicol. 113:236–40
    [Google Scholar]
  55. 55.
    Mikheev VB, Brinkman MC, Granville CA, Gordon SM, Clark PI 2016. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18:1895–902
    [Google Scholar]
  56. 56.
    Kosmider L, Spindle TR, Gawron M, Sobczak A, Goniewicz ML 2018. Nicotine emissions from electronic cigarettes: individual and interactive effects of propylene glycol to vegetable glycerin composition and device power output. Food Chem. Toxicol. 115:302–5
    [Google Scholar]
  57. 57.
    Spindle TR, Talih S, Hiler MM, Karaoghlanian N, Halquist MS et al. 2018. Effects of electronic cigarette liquid solvents propylene glycol and vegetable glycerin on user nicotine delivery, heart rate, subjective effects, and puff topography. Drug Alcohol Depend 188:193–99
    [Google Scholar]
  58. 58.
    Duell AK, Pankow JF, Peyton DH 2018. Free-base nicotine determination in electronic cigarette liquids by 1H NMR spectroscopy. Chem. Res. Toxicol. 31:431–34
    [Google Scholar]
  59. 59.
    Koval R. 2017. Monitoring the future reveals good and bad news underscoring need for education and regulation. Truth Initiative Dec. 14. https://truthinitiative.org/news/monitoring-future-reveals-good-and-bad-news-underscoring-need-education-and-regulation
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115329
Loading
/content/journals/10.1146/annurev-anchem-061318-115329
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error